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Abstract. We show that in dimensions two or more a sequence of long
range contact processes suitably rescaled in space and time converges to a
super-Brownian motion with drift. As a consequence of this result we can
improve the results of Bramson, Durrett, and Swindle (1989) by replacing
their order of magnitude estimates of how close the critical value is to 1
with sharp asymptotics.
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1. Introduction

Our contact processes takes place on a fine lattice Z/M = {z/M : z €
Z9}. The state of the process at time ¢ is given by a function &, : Z¢/M —
{0, 1}, where & (x) = O indicates that x is vacant at time ¢ and & (x) = 1
that the site is occupied by a particle. The dynamics of this right-continuous
continuous time Markov chain can be described as follows:

(a) Particles die at rate 1 and give birth to one new particle at rate 3.

(b) When a birth occurs at x the new particle is sent to a site y chosen at
random from the y € Z¢ with 0 < ||y — x|l < 1, where [zl = sup; |z;|.
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(c) If y is vacant a new particle establishes itself there. If y is occupied, the
birth is suppressed and no change occurs.

If B < 1 then particles die faster than they give birth and in addition
lose births onto occupied sites, so the process dies out. To be precise, if
we start with all sites occupied i.e., consider the process & starting from
£ (x) = 1 then the probability of an occupied site, P(£ (x) = 1), which
does not depend on x, tends to 0 as ¢t — oo. Harris (1974) was the first to
show that if § is large enough then (a) P (& (x) = 0) decreases to a positive
limit as r — oo, and (b) the limit of the & defines a stationary distribution,
£+. Simple monotonicity considerations tell us that conclusion (a) will hold
for all B larger than

Be = inf{B : P(xc(x) = 1) > 0}

Self-duality of the contact process (see Theorem VI.1.7 of Liggett (1985))
shows that

Pe =nf{f : lim P(& 7 0§ = do) > 0} ,

i.e., B is also the critical birth rate for survival of the contact process starting
with a single occupied site. Harris’ original bound of . was very large but
Holley and Liggett (1978) showed that in the nearest neighbor case that
B: < 4 in all dimensions. There has been much work on numerical bounds
for B in particular cases, most commonly the nearest neighbor one. See
Stacey (1994) and Liggett (1985, 1995), but note that our parameter S is the
total birth rate onto any site rather than than the rate of birth A from a site
to a particular neighbouring site. Chapter VI of Liggett (1985), and Durrett
(1988), (1992b) are good places to learn about contact processes.

Bramson, Durrett, and Swindle (1989) considered the problem of the
asymptotic behavior of the critical value B.(M) for the long range contact
process as M — oo.

Theorem A. AsM — oo, B.(M) — 1. Furthermore

c/M?*3 d=1
Be(M) -1~ ClogM)/M?* d=2
Cc/M? d>3

where~x means ifC is a small(large) positive number then the right hand
side is a loweruppen bound for largeM.

To explain the answer, we begin by considering an inverse problem:
given B =14 6/N, where 6 > 0, how large does M need to be to allow
the contact process to survive? For the branching process with M = oo
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(so that new particles are never born onto occupied sites) the mean number
of particles at time ¢ is exp(¢6/N), so the process will need time O (N) to
become significantly supercritical.

Itis a well known fact that for the branching random walk when a typical
particle at time N counts the number of its relatives within distance 1, the
expected value of the result will be

N CN'2 d=1
%c/ 2 dr = ClogN d =2 (L1)
‘ C d>3

Here N — t is the time the nearby relative broke off from the ancestral tree
of our typical particle and Ct~%/? is the probability that it stays near to the
original particle. The excess birth rate above 1 is only /N in the contact
process, so for this to compensate for the suppressed births we need M to
be large enough so that the fraction of occupied sites will be of order 1/N.
That is, we choose M such that

N3/2 d=1
M?*={ NlogN d=2 (1.2)
N d>3

Bramson, Durrett, and Swindle (1989) used branching process estimates
and a block construction to show that with this choice of M the contact
process dies out for small & > 0 and survives for large 6. To approach the
problem of getting sharp asymptotics we will set 8 = 1 4+ 6/N, compress
time by a factor of N, and scale space by a factor of N~!/2 to compensate
for the time scaling. That is, we declare that:

(a) Particles die at rate N and give birth to one new particle at rate N + 6.
(b) When a birth occurs at x the new particle is sent to a site y chosen at
random from the y € Z¢/(N'/>M) with 0 < ||y — x|lec < N™V/2.

(c) If y is vacant a new particle establishes itself there. If y is occupied, then
the birth is suppressed and no change occurs.

Now 6 is a fixed real number (although we are primarily interested in 6 > 0)
and we only consider N € N such that N 4+ 6 > 0.

The case d = 1 has been previously studied by Mueller and Tribe (1995).
To state their result, we rewrite the contact process as a set valued process by
considering {x : & (x) = 1} and consider the approximate density process

1

MN(I‘,X)=W

};‘?t N [x — N2 x + N_l/z]‘

To check this scaling note that for d = 1, M = N3/ so the lattice is Z/N?
and the above neighbourhood will contain N3/ sites but only about O (N !/2)
particles by (1.1) and our spatial scaling by N~!/2. Let %, denote the space
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of continuous functions from R to [0, co) with compact support equipped
with the topology of uniform convergence and let 2, = D([0, c0), €o)
be the Skorokhod space of cadlag %(-valued paths. A special case of their
result shows

Theorem B. If the initial conditionsu y (0, x) approachu (0, x) in %, as
N — oo, thenuy(t, x) converges weakly if2, to the solution of the
stochastic partial differential equation

1
du = <8u” +0u — u2>dt +2udw (1.3)

Here u” denotes differentiatioin with respect to x, d W is a space-time white
noise (see Walsh (1986)), and we have considered a restricted class of initial
conditions to avoid the issue of growth conditions at co. To explain the limit,
the u” results from displacement of particles with the 6 = 2 - 3 dictated by
the fact that the uniform distribution on [—1, 1] has variance 1/3. The drift
term Ou comes from the “excess” birth rate, —u? reflects the lost births onto
occupied sites, and the »/2u from the fact that we have births and deaths
each at rate 1 per particle. To prepare for our discussion of our Theorem
1, note that in proving Theorem B, Mueller and Tribe showed tightness of
the approximations in a space of continuous functions. Thus for large N,
nearby sites have an almost identical number of occupied neighbors, i.e.,
the ratio of the number of neighbors at two nearby sites is close to 1.
Without the —u? the equation in (1.3) is the stochastic partial differen-
tial equation (SPDE) for the density of one-dimensional super-Brownian
motion (see Reimers (1989) or Konno and Shiga (1988)). When d > 2,
super-Brownian motion is singular with respect to Lebesgue measure so
equations like (1.3) are meaningless. An alternate approach is to character-
ize super-Brownian motion as the solution of a measure-valued martingale
problem. To this end we introduce the space CZ(R") of bounded contin-
uous functions whose partial derivatives of order less than n + 1 are also
bounded and continuous (n € N or n = o0). Let M(R?) denote the
space of finite measures on R? with the topology of weak convergence,
Qx = D([0, 00), Mr(R%)) be the Skorokhod space of cadlag M (R?)-
valued paths, and Qyx ¢ be the space of continuous M (R?)-valued paths
with the topology of uniform convergence on compacts. Integration of a
function ¢ with respect to a measure p is denoted by u(¢). An adapted
a.s.-continuous M (R?)-valued process (X;, t > 0) on a complete filtered
probability space (2, #, #,, P) (#, is right-continuous) is an (Z ,)-super-
Brownian motion starting at Xo € M (R with branching rate y > 0,
diffusion coefficient 0> > 0 and drift & € R if and only if it satisfies the
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following martingale problem:
For all ¢ € Cgo(Rd),
t
0_2
(MPL" Zi($) = Xi(¢) — Xo() — / X (0> Ap/2 4 0)ds
0

is an (#,)-martingale with (Z(¢)), = / Xs(yqﬁz)ds .
0

The law of X on Qx ¢ is then unique and (M P)’;(’OUZ’G holds for a larger class

of test functions including Cg(Rd ). See Theorem 2.3 of Evans and Perkins
(1994) for the latter. The uniqueness follows from Dawson’s Girsanov the-
orem (see Theorem 5.1 of Dawson (1978)) and the uniqueness of the above
martingale problem with 8 = 0. This latter result may be found in Dawson
(1994) (Theorem 6.1.3) for a slightly larger class of test functions but as
our class of functions contains a core for the generator of Brownian motion
on the Banach space of continuous functions with limits at infinity (Ethier
and Kurtz (1986), Proposition 5.1.1) uniqueness then follows in the above.

If instead of (1.2) we choose M = oo, then the set of occupied sites
at time ¢ is a branching random walk ¥ C R?. Define a measure-valued
process by

1
@) =) ¢

xEC,N

for all bounded measurable functions ¢. Results in Chapter 4 of Dawson
(1993) (see Theorem 4.6.2) then give

Theorem C. If the initial measure,m{)v approachyu in Mz (R%), then the
sequence of measure-valued procegsgsconverges to super-Brownian
motion u, starting at o with branching rate2, diffusion coefficient /3
and drifto.

The purist may notice that our branching mechanism is slightly different
than that in Dawson (1993) (only one particle jumps at each birth time) and
Dawson works on the one-point compactification. The necessary modifica-
tions are straightforward, moreover Theorem C will also follow from the
easy parts of our proof of Theorem 1 below.

Since the contact process can be dominated by the branching process
that results by ignoring rule (c) and allowing births onto occupied sites, we
must have a singular limit for the rescaled contact process in d > 2. We
again assign each particle mass 1/N and look at the measure valued process
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defined by

XN =N"Y o)

xe&;

Then XV e Qy. Here for reasons that will become clear in a moment we
have suppressed the dependence on N in &;. To state our limit result we
need a definition. In d > 3 we let u;, u», ... be i.i.d. uniform on [—1, 1]¢,
define the random walk U, = u; + - -+ + u,, and let

ba=)_ P(U, €[-1,11%) j2°

n=1

Ind =2wesetb, =3/2x.

Theorem 1. Suppose that > 2. If the initial measuresx) approach a
limit X, in Mr(R?) with no point masseshen the sequence of measure-
valued processd "} converges weakly ddy to a super-Brownian motion
X. starting atX, with branching rate2, diffusion coefficient /3 and drift

0 — by.

To explain Theorem 1, we begin with the easier case d > 3 and again
look at the unscaled branching random walk in which births and deaths each
occur at rates O(1). A closer look at the reasoning that led to (1.2) tells us
that

N
c/ 72 qr ~ c L1742 (1.4)
L

gives an upper bound on the expected number of neighbors y of a ran-
domly chosen particle x at time N such that the last common ancestor of
x and y was at a time before N — L. Here x, y € Z¢/My are neighbors if
0 < ||x — ¥|leo < 1. This implies that if |[x; — x| > Ky where Ky — 00
then the number of neighbors of two particles x; and x, in the unit speed
(and unscaled) branching random walk are “almost independent”. To see
this note that (1.4) shows that, up to a small error approaching 0 as L — oo,
we only need consider contributions to the number of neighbors of x; and
x, from cousins which branch off in the last time interval of length L. As
Ky — o0 this shows that modulo a small error the number of neighbors
of the two points depends on a disjoint set of random walk increments in
the branching Brownian tree and so are “almost independent”. Rescaling
time and space we see that the number of neighbors of two particles x; and
xy with |x; — x| > KyN~'/? are almost independent. This and the law
of large numbers implies that the amount of mass lost near a point x due
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to births onto an occupied site is just the mean number of neighbors of a
randomly chosen point, b;, times the mass there.

The reasoning described in the last paragraph just barely works ind = 2.
Taking L = N/log N in (1.4) gives

N
/ t='dr ~loglog N = o(log N)
N/log N
So rescaling time and space, we see most of the neighbors of a particle are
its relatives with most recent common ancestor less than 1/log N back in
time. Thus, if Ky — oo the number of neighbors of two particles x; and
xp with |x; — x2| > Ky(log N)~!/? are almost independent. Again the law
of large numbers implies that the amount of mass lost near a point x due to
births onto an occupied site is just a constant b, times the mass there, where

N/log N

3
_ 2 2 __
> P(U,el-1,11%) /2 =5-

n=1

b2 = lim
N—o00 lOgN

the last by a local central limit theorem (see Section 8).

To turn the heuristics in the last two paragraphs into a proof, we will
define a sequence of approximating processes £ with the same initial con-
dition &j. Like the contact process, &;, these depend on N but we will not
exhibit the dependence in the notation. The first process in the sequence
is the branching random walk £° which results if we ignore rule (c) in the
definition of the contact process above and allow births onto occupied sites.
Without the collision rule, £° may have more than one particle at a site so
we regard EIO as a “multi-set,” i.e., a set in which repetitions of elements is
allowed. For example, {a, a, b, b, b, c} would represent two particles at a,
three at b and one at c.

For k > 1 we let &' be the branching random walk &° with the collision
rule that births onto sites in £~ are suppressed. &' is an underestimate
of the contact process & since it removes particles that collide with the
larger set &”. In the other direction &7 is an overestimate since it removes
only particles that collide with the smaller set &'. The processes £f are an
alternating sequence of upper and lower bounds that, for fixed N and ¢, are
equal to the contact process for k > ko(w, t), i.e., the number of iterations
needed depends on the realization and the time of interest. We will not
use this fact and so leave its verification to the interested reader. From the
approximating processes £/, k > 0 we can define measure-valued processes
by

X{@)=N") o)

xekf
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where sites are counted according to their multiplicities in £¥. Ind = 1, we
conjecture that as N — oo these processes converge to limits that are all
distinct. However, we can prove

Proposition 1. Under the hypotheses of Theorénif d > 2, then for all
T >0,

E(sup|Xt2(1) — th(1)|) —0as N - o©

t<T

Note here that X?> > X! so this result implies the total variation of
X? — X! approaches 0 as N — oo uniformly in # < 7. Since the contact
process X, is trapped between X ? and X it follows that X, is asymptotically
the same as X/. Given this, we can prove Theorem 1 by demonstrating

Proposition 2. Under the hypotheses of Theordmif 4 > 2, then X!
converges weakly 2y to super-Brownian motion starting a, with
branching rate2, diffusion coefficient /3 and drifto — b,.

The process & is much easier to analyze than the contact process since
it is just the branching process minus particles that are born onto sites in
the branching process. However, it still takes quite a bit of effort to prove
Proposition 2. An outline of the proof can be found in Section 2. The details
fill up Sections 3 to 10.

One reason for interest in Theorem 1 is that it allows us to sharpen the
conclusion of a result of Bramson, Durrett, and Swindle (1989). Letting
V = (2M + 1)? — 1 be the number of neighbors a site has, and recalling
that M and N are related by (1.2), we can now refine Theorem A as follows:

Theorem 2. Ind > 2,

Bo(M) — 1 ~ {2192(10% M)/M? ~ 4by(log V)/V ind =2
) ba/M? ~ 2'by/V ind=3,

where~ means the ratio approaches oneds(or V) approachesc.

The block construction, as described, for example, in Section 4 of Durrett
(1995b), makes this a fairly straightforward consequence of Theorem 1. The
details of the lower and upper bounds needed to prove Theorem 2 are given
in Sections 11 and 12.

Ind = 1, Mueller and Tribe (1994) have shown that the limiting SPDE
in Theorem B has a critical value, 6., below which there is a.s. extinction and
above which there is longterm survival with positive probability. In view of
this it is natural to
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Conjecture.Ind =1 asM — o0,

Oc

pe(M) =1 ~

To prove this seems difficult. Our proof of Theorem 2 makes crucial

use of two facts: (i) the supercritical-subcritical phase transition in super-

Brownian motion can be identified by by looking at the mean number of

particles, and (ii) by computing second moments we can identify a suitable

block event for the limiting process. Neither of these is available for the
SPDE.

For d = 2, Theorem 2 gives the following asymptotic result for the

critical value of the contact process for an L* neighbourhood with V points:

B.(V)— 1 6 logV
¢ T V

To investigate the quality of this approximation for finite range M we have
simulated the process with M = 2,i.e. V = 25.

For the simulation it is convenient to change the time scale so that 8 = 1
and the death rate, 4, is the parameter so that we can simulate the process for
all values of § simultaneously using the methods of Buttel, Cox and Durrett
(1993). In the graph below we have plotted the fraction of occupied sites
at time 5000 as a function of §, starting from a configuration of all sites
occupied in the 1000 x 1000 grid and with periodic boundary conditions.
The estimate of 8. from the formula is about 1.25 which leads to an estimate
of 4/5 for the critical value of §. This latter estimate is higher than the
critical value of 2/3 obtained from the simulation. Note, however, that the
straight line from (0, 1) to (.8, 0) does a much better job of estimating
the equilibrium density of particles than Theorem 2 of Bramson, Durrett
and Swindle (1989) which, when rewritten in terms of 3, says

th Plcx)=1)=1-34 (1.6)

(1.5)

In principle one could use our methods to sharpen Theorem 3 of Bramson,
Durrett and Swindle (1989) and give corrections to (1.6). We leave this task
to an energetic reader.

2. Outline of the Proof

Choose 6 € R and consider only N € N with N + 6 > 0. We begin by
constructing the processes which live on the rescaled lattices
N-12. N—1/d . 7d d>3

Iy =
N {N—'/2-N—'/2(1<>g1\/)—‘/2-z2 d=2

2.1)
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We have separated the scaling into two pieces since the first compensates
for the fact that births occur at rate N + 6, while the second increases the
number of neighbors a site has. Since we want to relate the behavior of the
long range contact process to that of a branching process, we will use a
branching process type construction for the contact process rather than the
usual graphical representation. Let

(o)
s = U (Nx{0,1}")
n=0
be the set of labels for the particles in our process. The first term in the
union, N = {1, 2, ...}, labels the initial particles {xiN i < Ky} C Zu.
Throughout, we will
ASSUME that the initial state consists of a finite number of
particles that are located at distinct sites {xiN (i < Ky} (2.2)
and that X\ = % Z,K:Nl (SXI_N approaches Xy in Mp(RY) .
To construct the time evolution we usually suppress dependence on N

and work on a complete probability space (€2, #, P) containing the follow-
ing independent collections of random variables:
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{tg : B € #} arei.i.d. exponential with rate 2N + 6

N
dp : I iid.with P(6g = —1) =
{0 : B € J}areiid. wi (8p ) N O
N +6
and P(ég=1) =
2N +6

{eg: B € S}areiid. with P(eg =0) = P(eg=1)=1/2

(Wg : B € #}areiid. uniformon 4y = [-N"V2 N71/2 4 N Zy—{0}
B

Deaths occur at rate N and births at rate N + 6, so tg is the time until a
birth or death affects particle B. The event is a death if 3 = —1 and a birth
if 85 = 1. The particle (B, eg) is displaced from its parent 8 at Bf by an
amount W#, while the other particle (8, 1 — eg) remains at the location of .
(Here, (B, i) is anew member of .# obtained from f by adding a coordinate
=i at the end.)

If 8 = (Bo,...,PBn) € # then we say B is in generation n and write
1Bl = n. If m < |B| we write 8lm = (By, ..., Bn) for the ancestor of 8
in generation m. If |8 > O then we use wf to denote its parent, i.e., its
ancestor in generation |8| — 1. If |8] = O this is the —1 generation which
does not exist, so we set 78 = @, the empty string. From the definitions
above it should be clear that

1B

Ty =Y tpim
m=0

is the end of the life of particle 8. Since ¢ is a particle that doesn’t exist, it
is reasonable to declare that it died at time —o0, i.e., Ty = —o0. Let

yr =0 {l(Ta S t)(TasaaseCt’ WO{) o G Ef}

which we assume has been completed by adding all the null sets.

To compute the positions of particles, we begin by noting that Wy is
the displacement of the jumping particle at time 7. The family line of B
is moved when B|m dies if eg,, = Bu+1, S0 we define the position of the
family line of § at time ¢ by

1BI-1
B = xp, + > Wi Legm = Bus1» Tom < 1) (2.3)

m=0

The B here is meant to suggest Brownian motion, a stopped version of
which is the limit of B, if N - ooand |B|/N — c (the stopping time).
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The bar is added here so that it can be removed in the next paragraph in the
displacement process that we will use repeatedly.

Up to this point we have ignored the deaths. To take them into account
let

t) = Tg Ainf (T : Sppw = —1,m < |B|} (2.4)

Note that when the set of times is empty, we have inf § = oo and ¢ ;(9) = Tg.
Since §’s produce deaths, the family line dies out at time gg (or ceases to
make sense at time 7) and we let

Bﬂ: Btﬂ l<§g
' A =g

Here A is the usual cemetery state of Markov process theory used to indicate
that the particle is no longer alive. In a number of instances we will be
interested in the spatial location of particle 8. Since B is alive on [T,g, Tg)
and never moves, we can write

Bj =B} =B’
where = indicates that the last quantity is a shorthand we will use for the
first two.

We write B ~ tif T,3 <t < Tg. In words, B ~ ¢t if B labels a particle
which mightbe alive at time ¢. Trivia buffs will want to note that if || = 0
then 78 = ¥ and Ty = —oo, so the particles in the initial configuration
are actually alive at all negative times. We will adopt the convention that
¢ (A) = 0, for all functions ¢ so that dead particles don’t contribute to our
sums. Counting only the particles that are actually alive leads to our first
measure-valued processes, the branching random walk X?. This and all
the subsequent measure-valued processes will be defined by integrating a
bounded measurable test function ¢ with respect to the process:

1
X(@®) = D #(B) 2.5)
B~t

Note that X” depends on N even though we have not recorded this de-
pendence in the notation. When we need to display the N, we will write
X0V

If u is a measure, let supp(u) denote its closed support. If ¥ — u; is a
measure-valued path which is cadlag, recall the definition of ;g from (2.4)
and let

é‘ﬁ(ﬂ) = ;g A lnf{Tﬂlm tm < |:3|’ €glm = ,Bm—i-ly Bﬁmm € supp (/LTmm—)}
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In words the second term identifies the first time Tpg),, that a jump in the
family line of 8 lands on a site that is already occupied, i.e., in u,_. With
this notation introduced, we can define the contact processsimply as the
unique ‘“‘strong solution” of

X,(¢) = % > ¢ (B 1cp(X) > 1) (2.6)
B~t
The existence and uniqueness of the solution are trivial for an initial finite
set of particles since we can successively decide what to do at the event
times T,.
We can now define the sequence of processes X", n > 1 introduced in
the previous section by:

1
X{ (@) =5 2 BOI(¢f > 1) where g = ¢p(X"™))  @7)
B~t

Note that in the case n = 0 this reduces to the definition of the branching
random walk given in (2.5). (Anyone who is concerned that X"~! is not
defined when n = 0O can let this process be =0.)

Since X? > X; as measures (i.e., X?(q&) > X:(¢) for all ¢ > 0),
comparing (2.6) and (2.7) shows X! < X,, again as measures. Repeating
this reasoning gives
X' <X, <x?<Xx? (2.8)

t

The first step in our derivation of Propositions 1 and 2 is to write down a
stochastic equation for X', n > 1, whichin the limit N — oo will approach
the martingale problem characterizing the limiting super-Brownian motion.
We will only have to do this for n = 1 and n = 2 but for most of the proof
it will be easier to write out the arguments for a general n. To derive our
equation, we start with the observation that as ¢ passes through time 75 we
lose the particle 8, but if we have a birth event then a new particle will exist
at the same location, B?, and a second particle will exist at Bf + Wg if it
does not land on an occupied site:

1

X5, (@) = Xj,_(9) = 116} > Top) |~ (B) + 15 = 1)
[¢(B") + 1{B” + Wy & supp(X7. 1))
x ¢(BP + W,g)]}

Taking advantage of the fact that g € {1, —1} we can rewrite the last
expression as (just check the two cases)
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1
Nl(é,’; > Tnﬁ){¢(3ﬁ)6ﬂ +1g=1)
(B + W)L (B} + W ¢ supp(X})) - ¢<Bﬂ)]} 2.9

Centering dg by subtracting its expected value, we can define gg = dg — 0/
(2N + 0) and split the first term (involving ¢ (B )dp) into two pieces:

0
n B

Define hg = 1(6g = 1) — (N + 6)/(2N + 0) and do some arithmetic to
write the second term in (2.9) as the sum of the following three terms:

1
71 (& > Tup) ¢ (B”) 95 +

1
1@ > Tephgle(B” + Wp)I{B]. + Wy & supp(Xy )} — ¢(BP)]
N+6

- n B B B
tNan 1o G = Tl B+ Wy) = ¢(BD)]
N+O N
~Nan 1o G > Tl# (B + W) L(B” + W € supp(X, 1))

To check this easily, begin by combining the second and third terms.
Summing in (2.9) over B with T < 1, telescoping the sum, recalling the
above definition of 44, and introducing

ag(t) =1(Tp <t, gg > Thp) = 1(Tp <t, ;g >Tg), n=0,1,2,...
as shorthand for “B was alive in X" but died before time #,” we have

1
X'(p) = X(¢) + N > ai e (BP)gp
B

- B n
+6 - N(ZN vy Zaﬂmqs(B )+ §a5<t)hﬂ

x [¢ (B + Wﬁ)l{Bﬁ + Wp ¢ supp(X7 )} — ¢(BP)]

_NHO s _ s(BP
+N(2N+0)Xﬂjaﬂa>[¢(3 + Wp) — ¢(BM]

N +6
NN 15 OB+ Wy)LBP + Wy & supp(xy D)
B

(2.10)

By introducing notation for the various terms, we can rewrite the last equa-
tion briefly as
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X' ($) = X (@) +Z! @)+ D () +E! (9)+D]*(p)—K'(¢)  (2.11)

Note this is valid for n = 0, in which case K° = 0 by our convention that
X '=o.

Here K;'(¢) is the “collision term” which counts the number of births
onto occupied sites. The analysis of this term will be the hard part of the
argument, so we begin with the other four terms. Here, and in what follows,
E;"' (¢) are “error” terms that will go to 0, the D} are “drift” terms that will
have non-zero limits which are locally of bounded variation. Throughout
this paper we will

ASSUME that ¢ € C} and let ||¢]lo = max |¢(x)| . (2.12)

For a number of the results this condition can be weakened to: ¢ is bounded
and measurable (or ¢: is Lipschitz continuous). However, we find it con-
venient to use one collection of test functions for all the results. Let ey =
0/(2N + 60). In Section 3 we establish the following results for n > 1:

Lemma 2.1. Z]'(¢) is an(#,)-martingale with
n — ﬁ _ 2 ' ne .2
2@ = (2+ ) 1= [ xr@dar

9 t
and(Z3(¢) = Z' @) = (2+ ;)1 = €}) / (X2 (@) — X} (@")dr.
0
Lemma2.2.Forallt >0
m E(sup | D™ (9) —9/‘ X"(¢)dr|) =0

li
N—o0 s<t 0

Lemma?2.3.Forallt >0

Nlim E(sup |D§"2(¢) — /S Xf(A¢/6)dr|) =0
—00 0

s<t
Lemma2.4. Forall >0 limy_ E (sup,, |[E*'(¢)]) =0

The first three conclusions are straightforward to prove and are what one
should guess by comparison with the corresponding parts of (2.10), i.e., the
first, second, and fourth lines. To handle the error term E;' o1 (¢), note that
if we remove the mean-zero random variables Az from the definition, it is
equal to D" (¢) — K} (¢). Intuitively, if DM (¢) — K (¢) stays bounded,
then the hg should cause cancellations that drive £ v ! (¢) to 0. To turn this
idea into a proof we bound K/ (¢) above by the “collision term” of the
branching random walk.
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Lemma 2.5. There is a constart < C < oo so that

E[N"Y ag)1{B” + W € supp(X), )} | < C(X3(1) + XJ(1)%)
B

Notice about constantsThis result has the first of a large number of C’s that
will appear. All of these constants may depend on the drift 6, the time 7 (or s),
and (though it is vacuous here) on the test function ¢. However, for fixed ¢
our constant C (6, t) will be bounded on compact subsets of R x [0, oo). This
condition is obviously satisfied whenever Cy (6, t) is a continuous function.
C will never depend on N, or on the initial condition X)'.

Lemma 2.5 indicates that we have enough neighbors so that the amount
of mass lost due to interference is O(1). This result is proved in Section
4, by proving two results, Lemmas 4.1 and 4.4 that investigate the amount
of interference between (i) unrelated individuals and (ii) individuals with a
common ancestor in generation 0. In Lemmas 5.1 and 5.3, we sharpen the
two bounds in Section 4 to show that if the initial conditions Xg’N = Xo
a measure with no point masses, then “collisions between distant relatives
can be ignored.” Here distant means that their most recent common ancestor
was more than 7y units of time in the past where

(i)ind > 2, Nty — oo and Ty — 0.

(ii)ind =2,y = 1/log N.

These observations are the key to our result for the collision term.

lim E =
sim £ (sup )=0

To argue intuitively, note that if Cy is large then two individuals that
are related within Ty units of time lie within Cy /Ty distance in space with
high probability. From this we see that the collision term has a correlation
length that vanishes in the limit, and the number of collisions in a region
becomes a constant times the mass of the process there.

An outline of the proof of Lemma 2.6 can be found in Section 6. There
the result is broken down into seven lemmas that are proved in Sections
6—10. Rather than describe those technicalities now, we will instead explain
why Lemmas 2.1-2.6 are enough to prove Propositions 1 and 2, and hence
Theorem 1. The next step in that direction is the

Lemma 2.6. Then forn = 1,2 and anyr < oo

K} (¢) — /0 baX, ($)dr

Proof of Proposition 1. Subtracting (2.11) with ¢ = 1 and n = 2 from the
same formula with n = 1 and using Lemmas 2.1-2.6 shows that
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X[ ()=X7(1) = Z/()=Z] (1)+(6—ba) / X ()=X;(dr+E, (2.13)
0

where uy (1) = E(sup;, |E3,|) satisfies u () — 0. Since Z}(l) — Z,Z(l)
is a martingale, taking expected values and letting

fn@® =EX/ (1) —X}(D]>0
shows that

In(@) < <9+f Sn(r)dr + un(t)
0

Let Fy(r) = ¢/ "up(t). A form of Gronwall’s lemma implies that

sup fn(s) < sup Fy(s) = Fn(2)

s<t s<t
and hence

sup E(X (1) — X2(1)) < Fy(t) > 0 (2.14)

s<t

To put the supremum inside the expected value we have to look at the
martingale difference M, = Ztl(l) — le(l). The L? maximal inequality
(applied to M,) combined with the fact that M?> — (M), is a martingale null
at 0 implies that

E(sup 1Z}(1) — Z?(l)ﬁ) < CE|Z/()=Z}()]* = CE(Z'(1)-Z*()),

S<t
(2.15)
Using Lemma 2.1 now, we have

(Z'(1) — 22(1)), = (2 + 2)(1 — e,@)f X'(1) — X2(1))dr  (2.16)
N 0
Combining (2.14)—(2.16) we have that as N — oo

() =E <sup 1z (1) — 23(1)|) -0 (2.17)
S<t

Returning to (2.13) now, we can let gy (1) = E(sup,_, | X} (1) — X2(1)|),

note that the difference inside the absolute values is always positive, and

conclude
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gn(®) < vy + 9*/ gn(r)dr + uy(t)
0

Againif welet Gy (¢) = eeﬂ(uN(t) + vy (t)) then gy(t) < Gy(t) — 0.0
Turning now to Proposition 2, we have from the above lemmas:

For each ¢ € C;(Rd)

XN ¢) = XL@) + Z1 @) + [, XL (0 — ba)p + Ag/6)ds + EL(¢)
Zt1 (¢) is an 7 ,-martingale as in Lemma 2.1 and

. 1 —
limy_, o E(sup,_, |[E[(#)]) =0 . (2.18)

Let Py denote the law of X' on Qy and X, (@) = w(¢) denote the coordinate
variables on Q2. To prove tightness of { Py} we use the following specialized
version of Jakubowski’s general criterion on D ([0, 00), E) for E Polish (see
Theorem 3.6.4 of Dawson (1993)). Recall that ® C C,(R?) is a separating
class iff the integrals {i(¢) : ¢ € ®} uniquely determine u in My (R%).

Lemma 2.7. Let & be a separating class which is closed under addition.
A sequence of probabilitigdy } on Qy is tight iff the following conditions
hold:

(i) For eachT, € > 0, there is a compact s . C R? such that

sup Py (supX,(K;’e) > e) <€ .
N

t<T

(ii) limy/_ o0 supy Py (sup, .7 X;(1) > M) = 0.
(iii) If PJ(A) = Py(X.(¢) € A), then for eachp € @, {P{ : N € N}
is tightin D = D([0, 00), R).

The derivation of this result from the more general results cited above
is straightforward (see Theorem 3.7.1 of Dawson (1993) for the slightly
simpler setting of the one-point compactification of R?).

Recall that Q2x ¢ is the space of continuous M r(RY)-valued paths with
the compact-open topology. Specializing the above result further we have

Lemma 2.8. Assumé Py} satisfy hypothesig) of Lemma2.7 and for each
$in C*(RY), {ﬁﬁ : N € N}istightin D and all limit points are supported
by C = C([0, 00), RY). Then{Py} is tight in Qx and all limit points are
supported o2y ¢.

Proof. Taking ¢ = 1, we see that our assumption on {151{,} readily implies
(i1) in Lemma 2.7 (see Theorem 3.10.2 of Ethier and Kurtz (1986)). Lemma
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2.7 shows that {PN} is tight on Qx. Let P be a limit point. If ¢ € C°°(Rd)
then P?(-) = P(X(¢) € ) is a limit point of {P¢} and so is supported
by C. Let @ be a countable subset of the functions in C;° with compact
support which is dense in the space of continuous functions with compact
support in R?. Then X.(¢) is continuous for all $ € &y P — a.s. As Py is
a separating class, this implies X, = X,_ forallt > 0 P — a.s. |

Lemma 2.9. Let P" denote the law of a continuous time random waJk
starting atx which at rateN + 6 takes a step uniformly distributed over
N 'n.f ¢ : R? = R is bounded and measurable then

E(X)(¢)) = ¢’ / EY(¢(B))XJ(dx)

and there is a constarf = C (0, r) such that
EX? ()Y < LX) + Xg(1)*] .

Proof. This follows from the known moment measures of a branching ran-
dom walk starting from a single particle. See for example Lemma 2.2 of
Bramson, Durrett and Swindle (1989) (and set . = 14 (6/N) in that result).
A few simple moment inequalities for sums of i.i.d. random variables are
needed to derive the second result from the lemma in Bramson et al. which
assumes a single initial particle. |

Lemma 2.10. { Py} is tight onQx and all limit points are supported by
QX,C-

Proof. We apply Lemma 2.8. Let € € (0, 1), T > 0, and for R > 1 choose
a C* function hg : RY — [0, 1] such that

BO,R) C{x:hg(x)=0}C{x:hg(x) <1} C B(O,R+1)

and all the derivatives of hy of order two or less are uniformly bounded
in (x,r) € RY x (1, 00). By (2.2), Lemma 2.9 and the weak convergence
of the random walks in that result to Brownian motion, we may choose R
sufficiently large so that

supsup E(X°(B(0, R))) < € (2.19)
N t<T

The analogue of (2.18) for X ? (omit the killing term) gives:

t
X(hg) = Xo(hg) + Z (hg) + / X%(Ohg + Ahg/6)ds + EX(hg) ,
0
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where Zf)(h r) is an (#,) — martingale such that
9 t
(Z%hg)) = <2 + ﬁ) (1- 612\/)/0 X{(h)ds

and

A}im E(sup |E?(hR)|) =0forall 7T >0
—

t<T

Therefore, applying Chebychev on each term and then (2.19), we see that

p 0 0 < ! 0,72
(sup X, (hg) > 46) < 1(Xy(hg) > €) + = / E(X{(hg))ds
0

t<T

c T
+ 2/ E(X2(B(0, R)*))ds
0

1 .
+ EE(sup |E?(hR)|)

t<T

1 R
<cTe+ —E(sup |E?(hR)|)
€

t<T

< (cT + e ,

where the last inequality is valid for N sufficiently large. As X' < X°, (i)
of Lemma 2.7 is now obvious.

Fix ¢ € C;O(Rd). We will use (2.18) to verify the other hypothesis of
Lemma?2.8.If0 <t <u < T, then

u 2 u 2
E((f Y (C —bd)¢+A¢>/6)ds) ) < c(d))E((/ X;(l)ds) )

< c(@) sup EX{(DH U —1)* < c@) —1)?* |
s<T
where we have used Lemma 2.9 in the last line. This shows that Cy (t) =
fol X160 — ba)¢p + Ap/6)ds defines a tight sequence of processes on C
(e.g. by Theorem 8.3 of Billingsley (1968)).

Turning now to the martingale terms in (2.18), arguing as above we see
from Lemma 2.1 that {{Z'(¢)), : N € N} is a tight sequence of processes
in C. Note that by definition, sup,_; |AZ,1 @) < 2||¢llcoN~!. Theorem
V1.4.13 and Proposition V1.3.26 of Jacod and Shiryaev (1987) now show
that {Z!(¢) : N e N} is a tight sequence in D and all limit points are
supported by C. These results with (2.18) and Corollary VI.3.33 of Jacod
and Shiryaev (1987) show that {Pﬁ : N € N}is tightin D and that all limit
points are supported on C. Lemma 2.8 now completes the proof. |
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It is now straightforward to prove Proposition 2. Let P be a limit point
of {Py}. Then P is a law on Qx ¢ and we must show it satisfies the
martingale problem (M P)i’ol/ 36=P from Section 1 which characterizes
super-Brownian motion with the appropriate parameters. By Skorokhod’s
theorem we may assume that (now making dependence on N explicit)
XN — X1in Qy as. Let ¢ € C°(R?) and set

Z,() = X, (@) — Xp (@) — fo X (0 — ba)p + A¢/6)ds

We must show that Z, (¢) and Z, (¢)? —fot XSl (2¢?)ds are (ftxl )-martingales
under P, where (7 X ') is the canonical right-continuous filtration generated
by X'. We only show the latter as it is slightly more involved. Fix 0 < #; <

. <t, <s <t,and let h; : Mp(R?%) — R be bounded and continuous
fori < n. Write Z,I’Nk (¢) for the martingale term in (2.18) with N = N;.
By taking another subsequence we see from (2.18) that sup, . |Z,1’N () —
Z,(¢)| — Oforall T > 0 a.s. Use Lemma 2.9 for the necessary uniform
integrability to conclude

E((zf«z»)2 — Z,(¢)* — / t X} (2¢°) dr) 1‘[/11-<X,{.)>
S 1

= lim E((2"¢)* - 1M @)

[ () 0= hae)o) 1 ()

= 0 (by (2.18)) :

This completes the proof of Proposition 2 and hence proves Theorem 1,
modulo Lemmas 2.1-2.6.

3. The four easy convergences

In this section, we have two aims. First we will introduce some useful
martingales. Then we will prove Lemmas 2.1-2.4.

Lemma 3.1. (a) #, is a right-continuous filtration.
(b) For eachp € .7, B is #,-optional.
(c)Forall B € # andn > 0, Ty, and¢g are 7 ,-stopping times.
(d) Forall n > 0, X" and X are #,-optional.

These claims are intuitively obvious and formal proofs are not hard to
construct so we proceed to:
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Lemma 3.2. Lety : [0, 00) x 2 — R be bounded angr,-predictable and
let 8 € .# with |8| > 0. Then the following process is an,-martingale

Y(Tg, w)1(Tg <t) — (2N —{—9)/ 1(Trp <1 < Tp)Y (r, w)dr
0

Proof.Let N; be the number of arrivals by time ¢ in a rate A Poisson process,
and let 7,, = inf{z : N, = n} be the time of the nth arrival. As is well known
M; = N; — At is a martingale with respectto 4, = o (T,1(T, <t) : n € N),
and so is the stochastic integral

f Y, o) 1(T,_y <r <T,)dM,
0

=Y (T, o) (T, < 1) — K[ (T <r < T)Y(r, w)dr
0

If we take . = 2N + 6, n = || + 1 we obtain the desired result for the
filtration #° = o (Tp;1(Tp; < t) : i < |B]) and hence also for the larger
filtration obtained by adjoining the independent information in

o(t, : y not an ancestor of 8) Vo (8,,e,, W, : y € 1)

As this is larger than 7, the result follows. |

Our second class of martingales is

Lemma 3.3. Let ¢ be bounded and measurablet 3 € .# and recall
gp = 8 — ey Whereey = 6/(2N + 60). Then the following process is an
Z -martingale

J(t) = UTp <1, Trp < £} (BP)gp

Proof. Recall that 7 7, is generated by {B N {Tg >t} : B € 7,,t > 0},
a class of sets closed under finite intersections. It is then straightforward to
check that

EJ(Tp|F1,-) = UTp < 1, Top < {5YP(BPE(gpl 7 1,) =0

Sincet — J(¢) is constant except for a jump at Tg, equal to J (Tg) it follows
that J(¢) is an & ,-martingale. |

Before extending the class of martingales in Lemma 3.3, we need a
technical result which will enable us to compute or bound various random
variables. Let (0, 1) = [, ¢** ds.
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Lemma 3.4. (a) E[(Z/3 I(Tp < t)>p] < ooforany0 < p < oo
(b)y E(N™! D plTp <t Tp < 4;3))) = (2N +60)r(0, ) Xg(1)

Proof.To prove (a) consider Y;, the number of particles that would contribute
to our branching random walk X ? if we start with N X 8 (1) individuals and
have no deaths. That s, at each event Ty we ignore the §4°s so a new particle
is born and the old one does not die. Clearly, ) 8 I(Tg <t) <Y,.Since Y,
is a branching process in which each particle gives birth at rate 2N + 6, it is
a speeded up version of the Yule process. It has long been known, see e.g.,
Kendall (1949), that Y; has a geometric distribution, so EY;/ < oo for all
p > 0.
To prove (b) we begin by observing that

X9.(1) = X9, (1) = N""1(Ty < £)3p

Recalling g5 = 83 — 6/(2N + 60) and ag(t) = 1(Tp < 1, Tp < &),
multiplying the above equation by 1(7 < t), and summing over 8, which
is legitimate because of (a), we have

01y _ v0 _l 0 0 0
XP(1) = Xo(h) = Xﬂ:aﬁ(z)gﬁ + NON O Xﬂ:aﬂ(t)

The first term on the right-hand side is a martingale by Lemma 3.3 (part (a)
proved above justifies integrability). Taking the expected value and using
Lemma 2.9 gives for 6 # 0,

E|NT' Y aj) | = 2N9+ ok (XP(1) — X3(1)) = @N+60)r (6, ) Xg(1)
B

The result is now also immediate for &6 = 0 by monotonicity in 6 of the
left-hand side of (b) and continuity in 6 of the right-hand side. |

Lemma 3.5. Assume that; 4 is measurable with respect 167, ,
E(GﬁL@Tﬁ_) =0, and
IGpl < K1(Tg < £9)

ThenM, = N~! Zﬂ 1(Ty < t)Gg is an #,-martingale and there is a
0 < C < oo so that

E (sup Mf) < CK*X)(1)

s<t
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Proof. Let Jg(t) = 1(Tg < t)Gp. With our assumptions we can follow the
proof of Lemma 3.3 to conclude that Jg(¢) is a martingale. Summing up
these martingales with (a) of Lemma 3.4 to check integrability shows that
M; is a martingale.

To prove the bound we recall that since our martingale has paths of
bounded variation, [M], = Y _,(M; — M,_)*. Using the L? maximal
inequality for martingales with the fact that M 2 — [M], is a martingale that
is null at O gives

E<sup Mf) < CE[M], (3.1)
s<t
Combining this with the formula for [M]; we have

C
E(sup Mf) < mEZ I(Tp < 1)G5
B

s<t

CK?
<

e CEY W(Tp <1, Tp < ¢f)
B
2N + 6
<CK?. N+ r(0, 1) X)(1)

by |Ggl < K1(Tg <¢ g ) and (b) in Lemma 3.4. The result is now immediate
by our convention on constants. O

Recall from Section 2, that Z}' (¢) = % 2,3 I(Tg <t,Tp < g‘g)qb(Bﬁ)gﬁ
and we have assumed ¢ € C g (R%), although the next result only requires ¢
to be bounded and measurable. Lemmas 2.1-2.4 from Section 2 will now
be proved. We restate them for the reader’s convenience.

Lemma 2.1. Z}'(¢) is an.Z,-martingale with

n 2 0 ' ny 2
(Z"(¢)) = (1 —€y) (2 + N)/ X, (¢%)dr
0

and

0 t
(Z*(p) — Z' () =(1 — €x) (2+ N) fo XX (P — X} (pHdr .

Proof. The fact that Z/'(¢) is an 7 ,-martingale follows from Lemmas 3.3
and 3.4(a) (the latter for the necessary integrability). Clearly,

(2", =N 1(Tp <. Tp <) 6° (B )g;
B
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To convert this into (Z"(¢));, we will replace gé by its mean and then the
sum by its compensator. Recalling various definitions we see that

Egy =var(8p) =1 — (Edp)* =1 —¢j,

As in Lemma 3.3 one may readily check that E(g3|77,-) = 1 — ey and
so an application of Lemma 3.5 implies the following is a martingale:

M, =N 1(Tp <t, Ty < 09> (BP){gp — (1 — e3)}

Applying Lemma 3.2 (and Lemma 3.4 (a)) with ¢ (r, ) = 1(r < ¢ /g')qﬁ (Bf )2
we see that

1
Ni=5 Z UTp <1, Tp < ¢5)9°(BP)
2N+9

f Zl{Tnﬁ <r <Tgr <l *(B)dr

is a martingale. Recalling the definition of X"(¢?) and using the fact that
M, + (1 — EIZV)N, is a martingale we have shown

9 t
(Z"(@P) = (1 —€) (2+ N) f X" (¢pHdr
0

For the second assertion note that

1
ZH®) = Z}(@) = 5 D 1Ty =01 < Ty = £)gpd(B)
B

and make minor changes in the above argument. |

We next consider: D”’l(¢>) N(2N+0) Zﬁ I(Tg <t,Tp < gﬁ)¢(B/3)
The following result again only requires ¢ to bounded and measurable. We
will need this generalization for the proof of Lemma 2.3.

Lemma 2.2. For all > 0limy_,«E (sup,_, |D"'(¢) — 6 [y X" (¢)dr|)
=0

Proof. Lemma 3.2 with ¥ (r, w) = 1(r < ;;})d)(Bf,) and (b) of Lemma
3.4, the latter to check integrability, show that the following is a martingale
(note that B = B? when Tep <1 < Tp):
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1
o o
= Nan o) 2 T =1 Th = o)
—l/ D WTwp <1 < Ty, r < g (BPdr
N Jo 5
1 t
= — n By _ n
= e 210 <6 T < o) - |

Using the definition of [M], and reversing the last simplification we have

(M], — X" (¢p*)dr

1 t
Vo T
1 n
= miﬂ: I(Tg <t,Tg < {,g)qbz(Bﬁ)
: ] n\ 42 np
_mfo N;MTM <r <Tgr<¢He°(Bdr

is a martingale, whence (M), = m fot X" (p?)dr.

Using the L? maximal inequality for martingales with the fact that
M? — (M), is a martingale that is null at O gives

E<sup Mf) < CE(M), (3.2)

s<t

Combining this with the formula for (M), and using Lemma 2.9, we get

E<sup Mf) < CE(M)

s<t

t
& a2 6 x0(1)d
t < N(2N+9)”¢”°°/0 e’ Xo(Lydr

Since D™'(¢) — 6 [ X" (¢) dr = 6 My, the desired result follows. ]

The third term from Section 2 that we will consider is:

n N+9 n
D" (¢) = NoON T Zﬁ: 1(Tp <1, Tp < ¢f) [¢(BP + W) — ¢ (BF)]

Lemma?2.3.Forallr >0

Jim E (sup | D2 () — /S Xf(A¢/6)dr‘) =0
—00 0

s<t

Proof. Given z and y in R?, we can apply the one-dimensional Taylor’s
theorem with remainder to f(¢) = ¢(y +t(z — y)) to get
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d
1
PR =) dMNG@—y)+5 Y $GE—E=y) (33)

i=1 I<i,j=<d

where ¢; and ¢;; denote partial derivatives and v is a point on the line
segment from y to z. Using this result, taking conditional expectation, and
recalling that the vector Wy is independent of # 7, with E (Wé) = 0 and

EWLW] = 0 fori # j we have

1 & .
E(¢(B" +Wp) = ¢(B) | 71,-) = 5 D du(BHEWL) + Ry (@)

i=1
1 2
Ri@=3E( Y [i@) - ¢yBH] Wyw) |71,
1<i,j<d
Since [v; (@) — B’| < N='/? and |W§| < N~/ for each i, and ¢ € Cj it
follows that
RN ()] < C(NTVH2 . (N~1/2)? (3.4)

Now as N — 00, VN Wé converges to a uniform distribution on [—1, 1]
which has second moment 1/3, so if we let Vg¢p = o (BP + Wpg) — ¢ (BP)
then

1
E(Vgop | F1,-) = (6 + w) N7'A¢(BP) + RS () (3.5)

where ny — 0 as N — oo. Applying Lemma 3.5 with
Gp = 1(Tp < &) {Vsd — E(Vpo| 7 1,-)}
and K = ¢N~1/2 (¢ is certainly Lipschitz continuous) we see that
M, =N""Y " 1(Ty <1)Gg

B
is a martingale with

2 C o

E(supM?) = =X0()
s<t N

Using the martingale M, with (3.5) we can write

n,2 N+6 n,3 n,2
D, (@) = N + 0 -M; + D; (¢)+Et (@)

. N+6 (1 !
D (@) = 5N <5 +nN) NI =0, Ty < g Ap(BY)

B

n N+9 - n

B @) = 5 N7 D 1T < 1. Ty < G R} @)
B
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To handle E;' ’2(¢) we observe that (3.4) and (b) in Lemma 3.4 imply

E(sup|E;"2(¢>)|> < %r(@, HXg(1) — 0

s<t
as N — oo. For D"*(¢), we note that Lemma 2.2 (which only requires the
boundedness of A¢) implies
) — 0

w3 N+6 /1 .
E(sup prigy - X L0 (— + rm) / X" (Ad/6)dr
s<t 0

N 6
The result is now an easy consequence of the above estimates and Lemma
2.9. O

We turn our attention now to the fourth and final term:

E"N($)
1
= < D2 ajOhy | $ (B + W) LB + Wj & supp(Xy 1)) — ¢ (B”)]
B
where aj(t) = 1(Tp <1, Trp < ¢f) andhy = 1(8g = 1) — (N +6)/(2N +
0).
Lemma2.4. Forallt >0 limy_« E (sup,, |E*'(¢)]) =0

Proof.Lemma 3.5 implies that E;' gp)isa martingale. To apply Lemma 3.5
here, first condition the 8 summand with respect to 7 15— V 0 (Wp). Using
the L? maximal inequality, (3.1), and the trivial comparison (a + b)* <
2a% + 2b%, we have

E(sup |E:’*1(¢)|2) < CE(E"™" (¢

s<t
_ n 2
< CE<N 2 a0 {87 + Wp) — o (B}
B
+¢*(BP)1 {Bﬂ + Wi e supp(X’%ﬂ__l)}]) (3.6)
Since any ¢ € C 2 is Lipschitz continuous and |W/§| < N~/2

(6(B + Wy) — p(BM)? < CWjl? < %

Using (b) of Lemma 3.4, and ag (1) < ag (1), it follows that the first term in
(3.6) is bounded by
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E<N_3Za2(t)>SN_1Cr(9,t)X8(1)_>() as N — oo
B

The second term in (3.6) is more complicated because we have to show it is
small by showing that the indicator function is small, i.e., it is O most of the
time. The proof of Lemma 2.4 will be completed once we establish Lemma
2.5. Section 4 is devoted to that task.

4. Upper bounds for the collision term

This section is devoted to the proof of Lemma 2.5. To begin we note that
when a collision occurs, some particle § gave birth at the time of its death,
T, onto a site occupied by at least one other particle y who must have been
born earlier and is still alive. In symbols, the expected value in Lemma 2.5
can be bounded above by

E[NT'Y 1Ty <t.Tr, < Ty <T,. B  + Wy = B" # A} | (41)
B.y
Define the o -field of all events in the family line of « strictly before T, plus
the value of 7, by
Ho = U(ta|n1v 80{|mv €alm> Wa\m m < |05|) \% G(ta)

Conditioning on #'g,, = #'g V A, we can rewrite (4.1) as

1
E(N’1 ; WTp <t, Ty <Tp < Ty}ml{BV - Bl e WN}) (4.2)

where /'y = [-N"12, N=1/2]19 0 7y — {0} is the set of neighbors of 0,
and Y (N) = |/ | is the number of neighbors. Here note that the inequality
T, < Tg < T, implies that y is not a strict descendant of B and so on this
A g,,-measurable set we have

P(Wﬂ € '|Jf5’y) = P(Wﬁ € )

The reader should note that BY — B? € .#"y implies that in particular that
BP £ A, BY # A,i.e., B and y are alive in the branching random walk.
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Our final bit of notation before getting down to the work of doing the
estimates is to let

be the indicator of the event that 8 and y are alive at time r in the branching
random walk X° and they are neighbors. With this notation, we can use
Lemma 3.2 with ¢ (r) = nbrg ,, (r) (and with (a) of Lemma 3.4 to justify
integrability) to rewrite (4.2) as

’ 1
N / (2N +6) Y —— E[nbry, (r))dr
0 o W(N)

C t
S /O %E[nbrﬂ,y(r)]dr (4.3)

To estimate E[nbrg,, ()] we need to consider the time and location of the
most recent common ancestor of 8 and y. The simplest situation is when

Bo # vo-
Lemma 4.1. There is a constart < C < oo so that for allr > 0

E| Y. mbrgy () | < C& - NXGDP - [1+4(N +60)r]™
B.y:vo#Po

Before tackling the proof of this result we need some preliminaries.
Let VV be the random walk that with probability 1/2 stays put, and with
probability 1/2 takes a jump uniformly distributed on N''/2.4"y. We multiply
by N'/2 here so thatas N — oo, V.Y converges to V,,, that with probability
1/2 stays put, and with probability 1/2 takes a jump uniformly distributed
on [—1, 11¢. The local central limit theorem for V,, implies that

P(V,el[-1,11)~Cm™ % as m— oo

The next result which is (4) in Section 2 of Bramson, Durrett, and Swin-
dle (1989), gives an upper bound that is uniform in N. It comes from a
concentration function inequality of Kesten (1969).

Lemma 4.2. There is a constanf independent oV so that ifim > 0 then

PVN ex+ -1, 11" < CU 4+ m)~¥?

To convert the discrete time estimate in Lemma 4.2 to continuous time,
we will use the following easily proved fact about the Poisson distribution.



Super-Brownian motion in two or more dimensions 339

Lemma4.3. Letp > 0. There is a constart < C, < oo so thatifr > 0
then

oo )\m
e = (4m P < C(1+ 1)
m!

m=0

Proof of Lemma 4.3.The trivial inequality (1 + m)~? < 1 and standard
large deviations results for the Poisson distribution (see e.g., Ex. 1.4 on page
82 of Durrett (1995a)) imply that

A2 e 22 o A
oA —p A e
Ze m!(1+m) 52@ m!Se

m=0 m=0
for some ¢ > 0. The desired result follows since we have
A A\ 7 A A\ 7
-2 -p - -2 -
de —(+m) 5(1+2> e m!5<1+2> O
m>A/2 m>A/2

Proof of Lemma 4.1.Wheni # j,

> > Elnbrg, (r)]

B:Bo=i y:yo=J
<Y Y P(Tup<r<Tp.BP#A T, <r <T, BY #A)
B:Bo=i y:vo=J

x P(N'2() =50+ Vil € =1L 1Y) @44

Breaking things down according to the values of |8| = £ and |y| = m, we
can write the last sum as

i\ 2N + 6 ¢im!

-P(N'*(x; —x) + VN, e [-1,11%) 4.5)

The first factor gives the probability of no death along each line. The second
and third the number of choices for 8 and y . The fourth gives the probability
that both 8 and y are alive at time r.

Changing variables to n = ¢ + m and m and recalling >, _,n!/
(n —m)!m! = 2", we may convert (4.5) into

i (ZN + 26 )” 20N+ Q2N +0)r)"

= 2N +6 n!
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P(N'"2(x; —xi) + VN e [—1, 119) (4.6)

Doing some arithmetic and then using the upper bound in Lemma 4.2 we
see this is no more than
o n
Ce2r Ze72(2N+2(~))r (22N +20)r) (1 +n)~97

n!
n=0

< Ce® (1 +4(N +0)r)~4?

by Lemma 4.3. This bound holds for each pair of values i and j. Multiply-
ing by the square of the number of initial particles, {N X)(1)}?, gives the
desired conclusion. O

To state the bound for the more difficult case in which yy = By, we need
to define

I(u) :1+fu(1+x)d/2dx
0

This will often be compared with ¥/o(N) = ¥ (N)/N, so we note now that
the definition of ¥ (N) and a little calculus show that there are constants
0 < ¢ < C < oo so that

cYo(N) = I(N) < Cypo(N) for N =1 4.7

If yo = Bo, B A y denotes the most recent common ancestor of 8 and y, i.e.,
the unique ancestor of y and 8 which maximizes |8 A y|, and if By # Yo
setB Ay =10

Lemma 4.4. There is a constart < C < oo so that

E[ " 1680 = yo) by, ()| = Ce (NXJ(D) - 1N +6)r)
B,y

Before we get involved in the details of the proof of Lemma 4.2, we will
do the

Proof of Lemma 2.5.Using Lemmas 4.1 and 4.4 with (4.3) we may bound
the expectaion in Lemma 2.5 by

e29r

d
(11 4N +0)yryarz "

Cy(N)™' - {NXJ(D)? /
0

+Cy (N (NXJ(1)} / e I (2(N + 0)r)dr
0
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Changing variables s = 1 + (4N + 40)r, dr = ds/(4N + 40) in the first
integral and using a trivial bound on the second which has an increasing
integrand we see the above equals

1 1+(4N+40)t
Ce* (X)) - ol / s72 s
0 1

+Cre® - (X0(1)} - L I(2(N + 0)t)
T o)
The integral is bounded by I ((4N + 46)t), so the desired result follows
from (4.7) (recall our convention about constants C). m|

Proof of Lemma 4.4.Note that By = o, Bf — BY # 0, Tpp <1 < Tp,
and T, <r < T, imply y A Bisnot @, B,or y. Letk < |B| A|y| be
such that 8 A y = Blk = ylk. Let £ > 1 be such that |y| = k + £. On
{Tup <r < Tg, B® # A} we have

E[ > Iy <r<T,.BY — B e 'y} 4y

Vll;?‘izik
< e—(2N+9)(r—ka)((2N +0)(r — Tau))“!
- -1
N+o ' )
-(2N+9> 2 ce -+

The first factor on the right-hand side reflects the fact that there must be
exactly £ — 1 more generations in the y line at time r. The second that
there can be no deaths along the way. The third, 2°~!, gives the number of
y with the properties stated in the sum. The fourth comes from Lemma 4.2.
Summing the last result over £ > 1 gives

E Z Ty, <r <T,, BY — Bf ¢ A'y}|#p

viBAy|=k,
lyI=k

< oo 3 BV 2 . 0 T (1 4 e — 1y

=1

(4.8)

Using Lemma 4.3 now, it follows that (4.8) is at most

Ce” [14+2(N +6)(r — Ty)] "
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Summing over 0 < k < |B| we have that on {Tg < r < Tg, BP #£ A} that

E[ > UTnmy <r=<T,.B" =B e Ay} #p | <Ce"H(B.7)

v:v0=Po
4.9)
-1

where H(8,r) = YN [1 4+ 2(N + 6)(r — Tgp)179/2. Since r > Typ we
have
1BI—1

H(B.r) < Y [1+2(N +0)(Tnp — Tp)1 ™ = H(B)
k=0

Summing over 8 we see that

E[ > 1(80 = yo)nbrg.,, (r)
By

<Ce¢”E Z WTyp <r < Tp, BP # AYH(B) (4.10)
B

To estimate (4.10) we will break the sum down according to the value of
|B| = m. (Note that by the remarks at the beginning of the proof we must
have m > 1.) Let &1, &, ... be independent mean 1 exponentials, and let
'y, =& + -+ &,. To explain our choice of notation, observe that ',
has a gamma(m, 1) distribution. Using our new symbols, we can bound the
right-hand side of (4.10) (through a now familiar argument) by

or 0 - 2(N+0) "
Ce {NXO(l)}n;< N ) em((2N + 6)r) @.11)

where

m—1
en () = E<1 (T <u < Ty} D 1+ — Fk+1]—d/2> (4.12)
k=0

To check the indexing of the I'’s here, note that for k > 0, Tg is the time
of the (k + 1)th death along the line of descent of 8.

Evaluating (4.12) and then the sum in (4.11) is a simple (though some-
what tedious) exercise about the rate one Poisson process. To make the
result available for later use, we recall ey = 6/(2N + ) and the function
I defined prior to Lemma 4.4, and state
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Lemma4.5. Forallu >0 > > (14 ey)"en(u) < 3e“~1(u)

Setting u = (2N + 6)r in Lemma 4.5, and using (4.10)—(4.12) gives
Lemma 4.4. Thus we can complete its proof by doing the
Proof of Lemma 4.5.We begin by biting off a small part of the problem.
The reason for doing this will become clear when we tackle the main piece.
When k =m — 1, T, = I’y and the term in the sum is 1742 = 1. Let

fm(u) =Pl <u< l_‘m+1) and é\m(u) =e,(u) — fm(u)
Summing this contribution of the k = m — 1 term for m > 1 we have

o0
D (4 en)" P(Ty < < Tipyy)

m=1
m

> u
= Z (1+ey)"e™ - < exp(uey) (4.13)
m=1 ’

To begin to tackle the main piece we note that

"1232 m—2—k y_k B (x +y)m72

= 4.14
(m—2—k)! k! (m —2)! ( )
k=0
Summing over m > 2 now we have
— ¥* 2 (x+y)(1+ey)
x+y)(1+e
Z<1+eN) Z(m T = e’ Y 15)

Using the fact that I',, — I'y41 (=x) and I';+; (= y) have independent gamma
distributions, one can write

m—2
E<unn<u<nﬁg§:u+rm—ng”ﬂ>

k=0
m—2 00 00
_ Z/ / l{x + y < u}e—u-i-x-‘ry(l +)C)_d/2
k=0 0 0
m—k—2 k
X e_xx— -e_yy— dxdy (4.16)
m—k—2! ¢ &

Summing the last estimate and using (4.15) gives

o u u—x
Y (4en)"epu) < / dx / dy e (14x) "2 (1 pey)?
m=1 0 0

4.17)
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The inside integral is e ™ [~ dy e ITe)(1 4 ep)? < V(1 +ey) <
2e"N | so the right hand side of (4.17) is bounded by

2eMeN / (1+x)"9?dx (4.18)
0

Adding (4.18) to (4.13) gives the desired result. |

Later to estimate second moments of the collision term, we will need an
estimate for

m—1 2
gn() = E{ 1Ty <u < Tpyg) (Z[l + T — Fk+1]—d/2> (4.19)
k=0

The methods are similar to the proof just completed, so we will give the
proof here.

Lemma 4.6. There is a C such that for all u > 0

Y 0+ en)"gm(u) < C5" 1)

m=1

Proof. We may assume 6 > 0 (so that ey > 0) because the result for 6 < 0
clearly follows from the result for & = 0. Reversing the order of the first m
increments we can be write

2
m—1

gn()=Eq Ul <u < Ty} [ A +T)™"2
j=0

Writing the square as a double sum and counting the diagonal twice, the
above is at most

2E( > NIy <u <D} A+T) 201 —Tp~"?

0<j<k<m
Multiplying by (1 4 €x)™, summing over m and doing some rearrangement
gives

o]

Y U +en)"gn) <2E | Y (14+TH ™2y (14T~
m=1

J=0 k=j

X Y (L+ey)" 1T, <u < I‘m+1}> (4.20)

m>k
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To bound this we begin with the inner sum. On {I"; < u} we can change
variables i =m — kand I'] = I'y4; — I’y to get

Fl,...Fk>

=(1+ey)'E (Z(l +en) U <u—Ty <T7,}

i>1

E(Z(l +en)" Ty < u < Ty}

m>k

Fl,...Fk>

< (1 4 EN)keeN(u—Fk)

Since I'} is independent of Iy, .. . I', the above equals

(1+en) Z(1+e Yie~w= ro @ —T%)" Fk)

i=1
< (1 +ep)e e,

where we have used the hypothesis €y > 0 in the last inequality. Using this
in (4.20) and isolating the k = j and j = O terms we have

D (4 en)"gn() <26 | Y (1+ey) E{IT; <uw)(1+T,)}
m=1 j=0

+ Z(l +en) E{1(T < w)(1 4+ T~}

+Z Z(1+eN>k

j=1k=j+1

X E{1(Ty <u)(1+T) (1 + T~} |4.21)

Since 1 + I'; > 1, the first sum on the right is smaller than the second.
To bound the second sum in (4.21) we note that

D+ e E {10y < u)(1+ )™}

:1+Z(1+6N) / (k_l)'(l—kx)_d/zdx

1+(1+eN)e"fo (1+x)"9?dx (4.22)
0

IA

again using €y > 0 in the last inequality. Using the fact that I'j (= x) and
't —TI'j(=y) have independent gamma distributions, we see that the double
sum in (4.21) is
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/ dx/ dyl(x +y <u)(1+x)"921 4+ x 4 y)~9/?
0 0

1 k—j—1

o, X7 y
x Z e >(j_1)!(k_j_1)!(1+eN)’< (4.23)

O<j<k

Using analogues of (4.14) and (4.15) now with the fact that x + y < u, we
see that the double sum in (4.23) is smaller than (1 + €y)e““V. Replacing
(1 4+ x 4+ y)"¥2 by (1 + y)~%? and enlarging the domain of integration,
(4.23) is bounded by

(1+6N)£’MEN/ dx/ dy (1 +x)72(1 4+ y)™4? < 2e"¥ [ (u)* (4.24)
0 0

Combining (4.21)—(4.24) gives Lemma 4.6. O

5. Collisions between distant relatives can be ignored
In this section we will refine the bounds in Lemmas 4.1 and 4.4 proving

the claim in the section’s name. Imitating (4.2), we can bound the collision
term for unrelated individuals by

Jo(r) =

Y WIp<t.Ty<Ty<T, B —BF eyl

Nw(N)ﬂ%%#m

(5.1)
If we start with all the particles in one neighborhood then this term will
not be small. Thus to have E Jy(t) — 0, we must assume that the particles

are sufficiently spread out in the initial distribution. The next result gives a
simple sufficient condition.

Lemma5.1. If X8’N converges tX, in Mp(RY) whereX is an atomless
measurethen for anyr > 0, E(Jy(#)) —> 0asN — oo.

Proof. As we converted (4.2) into (4.3), we can bound E (Jy(t)) by

C /t Z
_— E[nbrg , (r)ldr
VN Jo e,
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The bound on this that results from Lemma 4.1 is

O,N 2
o INXo” (DI / [1+4(N +0)r]*dr (5.2)
Y (N) 0
This is almost good enough by itself, but clearly we need to get a better
estimate for small (i.e., O(1/N)) values of r for which we will use the
atomless assumption below.
Repeating the computations in (4.4)—(4.6) we see that if i # j

> > Elnbrg, ()]

B:Bo= lV Yo=Jj
Z (2(1\/ + 0)) 20N 10 (22N + 6)r)"
- 2N +6 n!
P(Nl/z(x] —x) + VN e[-1,11% (5.3)

Using Lemma 4.2 to bound the last probability, then integrating over [0, ],
and summing over i # j, we see that the contribution to Jo(¢) fromn > N
is at most
S n
(VXY P o f S ey QEN T2 e g,
° v(N) Jo & n!
N—d/2 t
< (INXJVN ()P = | ¥ dr (5.4)
V(N) Jo
The lastintegral is bounded by C. So considering the two possibilities: d > 2
in which case ¥ (N) ~ CN, and d = 2 in which case ¥ (N) ~ CN log N,
we see that (5.4) — 0as N — o0.
The contribution to Jy(¢) from n < N can be bounded by

YN Jo = =

D PN —x) + V)Y e [-1,11%)
i#]j
Changing variables s = 2(2N + 0)r, dr = ds/2(2N + 0) in the integral,
and then noticing the gamma density e~*s" /n! has total mass 1, we see the
above is no more than

N

1 C
W(N) 2N +6 DY PN —x)+ VY e [-1L11Y)  (55)
n=0 i#j
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This quantity is easy to estimate in d > 2. Using the fact that ¥ (N) ~ CN,
and then using Lemma 4.2, we have that (5.5) is less than or equal to

N
(X0Y X XYY ey e =yl = ep Yo +m™"
n=0

N
vl Y carm 5.6)

n=eN/2—1

where in the second term we have used the fact that if [|x; — x;[| > € it
takes at least e N'/2 — 1 steps of VN to get to N'/2(x; — x;) + [—1, 1]%.
Since {(x, y) : ||x — y|| < €} is a closed set, the limsup of the first term as
N — oo is bounded by

C(Xo x Xo) ({(x,y) : lx =yl <€}

Since we have supposed that X has no atoms, the above expression is small
if e is. Now in d > 2 the second term in (5.6) tends to O for any € > 0, since
the sum converges.

(5.5) offers more resistance in the borderline case d = 2. Using ¥ (N) ~
CN log(N), and then Lemma 4.2, but decomposing things into three pieces
now, we see that (5.5) is at most

N
C 0,N o,N —
e (K07 X X0 )({(m):||x—y||se}>;<1+n>1
C N/(og N)?
t— 2 N PNy —x + VY e -1 1))
OBN poeN ot iy >e
C N
—— {xgM (D)) 1+n)~"! 5.7
T ioem K0 Y, +m (5.7)

n=N/(log N)3+1

Again the limsup of the first term as N — oo is bounded by
C(Xo x Xo) ({(x, y) : lx — yll < €})

which is small if € is. Bounding the sum of (1 4 n)~! by the integral of x !
we see that the third term is no more than

c 0.N
@WMOmWMM%M+O

To handle the second term in (5.7) we will use a standard estimate for
“small” large deviations of random walks.
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Lemma 5.2. There are constants< dy, ¢, C <oo so thatif0 < z/n < &,
then

P(IVN| = 2) < Cexp(—cz*/n)

Proof.If S, = n; + - - - + n, where the n; are i.i.d. real random variables
with mean O and |n;] < 1 a.s., and 6 > O then

P(S, > 2) < e (Eexp@n))"

A Taylor expansion shows that E (exp(6n1)) < 1+ ¢?16%/2. Using this fact
and the inequality with 6 = z/n leads to

_Z2
P(S, > 2z) <exp (—[1 — e50/2]>
n

Apply this to each coordinate of V¥ and their negatives to obtain the desired
result. |

1/2

Turn now to the second term in (5.7). Let z = (log N)n'/“ and use the

fact that n > € N'/? — 1 in the second sum in (5.7) to see that
z=n(og N)/n'* < n(log N)/(eN'? — 1)1/? < §yn

for large N, so the conditions of Lemma 5.2 hold. Plugging in the chosen
value of z

P(IVN|| > (log N)n'/?) < C exp(—c(log N)*) = CNcleVN

To convert this into the result we need for (5.7) note that n < N/(log N)*
implies

z = (log N)n'? < N'2/(log N)'/* < —N'/? |

€
-2

so it follows that if ||x; — x;|| > € then
P(N'"*(x; —x) + V) e [-1,1]9) < CN—cleV

This is more than enough to send the second term in (5.7) to 0. This com-
pletes the estimation of (5.5) in the case d = 2 and we have established
Lemma 5.1. m|
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We turn now to the more difficult task of estimating the probability of
collision for lines with B8y = 4. If we fix an amount of time 7 then we can
define the collisions of related particles more distantly related than t by

J(@, 1) =

Y WIp<t.Ty <Ty < Ty}
Ny (N) B.v:Bo=vo

UTgn, <Tg—1}- 1{B” — BP € 4y} (5.8)

When ¢t < t itis impossible to satisfy all the conditions inside the sum, so
J(@,t)=0.

Lemma 5.3. There is a constart < C < oo, depending ot and 6 (ac-
cording to our usual conventigrso that for allt < ¢
C{X(()),N(l)} Q2N+0)t

E(J(t, < —
(D) = Yo(N) QN+6)7

dy (14 y)~"?

Proof. As we converted (4.2) into (4.3), we can bound J (¢, ) by

ol AP LU M G L | T

B,v:Bo=vo

Now By = yo, BY — B %0, Tpp < r < Ty, and Ty, < r < T, imply that
BAyisnotd, B,ory.Let0 < k < |B|A|y|besuchthat BAy = Blk = y|k.
By conditioning on g and using Lemma 4.2 we can bound (5.9) by

1B]—1
C '
lﬁ(N)/ ZZE I{Tﬂ\k<r—T,Tnﬂ<r§Tﬂ’Bﬂ¢A}
0
B k=0

(Bl =k El Y W(Txy <r <T,, BY £ A)|#y | | dr
vy AB=Blk
(5.10)

The conditional expectation is just the expected number of children at time
r of the particle y|(k + 1), and so by Lemma 2.9 it is ¢’ < ¢/?l'. Using this
and then evaluating P(B? # A), we bound (5.10) by

Celflt t N+6 1B

v Jo ;<2N+9>
1Bl—1

X Z(|,B| — k)_d/zP(ka <r—1,Tg <r <Tg)dr
k=0

5.11)
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Letting £ = |B|, using our standard Gamma random variables I',,, and
recalling ey = 0/(2N + 60), (5.11) can be written as

Cel?l 0,N /t = Vi — —d
ANXN (1 § 1+ § 0 — k)42
() {(NX," (1)} A (I +en) ( )

=0 k=0
X P(Tyor < QN +6)(r — 1), Ty < N +6)r < T dr  (5.12)

If £ = k + 1 the last probability is just

PTr1 <N+ —1) < 2N +0)r <Tiq2)

Q2N+0)(r—1) 1k
:f e—x_ . ex—(2N+9)r dx
0 k!

If £ > k + 1 we have to integrate out the value of I'y — I'y4; = y and the
result is

@N+6)(r—1) Kk peN+Or—x k=2
/ dxe " dye™ M x+y—QN+8)r
o k! J, € —k—2)!

Interchanging the order of summation, setting j = ¢ — k — 2, which runs
from —1 (for £ = k + 1) to oo, and using the above expressions, we can
write the double sum in (5.12) as

o0

QN+0)(r—r) xk
e—(2N+0)r/ dx E (1 +EN)k+lk'
O .

k=0

Q2N+0)r—x o0 ) y]
1 +f dy Y (I+en)/'=(+27*| (5.13)
0 — J:

Doing the sum over k, estimating the sum over j using Lemma 4.3, and
then absorbing the extra (1 + €y)? into the C we bound the above by

Q2N+0)(r—r1)
Ce—(2N+9)r/ dx ex(l+eN)
0

2N+0)r—x
.[1 + f dy e’ eV (1 4 y)_d/2i| (5.14)
0

A little calculus (left to the reader) shows that

Lemma 5.4. There is a constartt < C < oo so thatifp > —1/2

1+ /Z ey(l+'7)(1 + y)_d/2 dy < Cez(H-n)(l + Z)—d/z
0
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Using this with z = 2N + 0)r — x, and n = €y, we see that (5.14) is no
more than

QN+0)(r—1)
Ce—(2N+9)r / ex(1+eN)
0

x eIHemI@N+Or—x (1 4 (N + 0)r — x}) "2 dx

Changing variables y = (2N + 6)r — x, we may bound (5.13) by

@2N+0)r
Ce” / (14 )~ dy
2N+0)t

Inserting the last result into (5.12), we have an upper bound

v (N) QN+0)7
which easily converts into the bound given in Lemma 5.3. O

6. Convergence of the collision term

The goal of this section is to analyze the limiting behavior of the collision
term

N +6
K'($) = —

NN +6) Z“g(t)db(Bﬂ + Wp)I{BF + Wy € supp(X;;_l)}

B

where ag () =1(Tg <1, g“g > Trp) is 1 if the particle was once alive in
X" but died before time t. More specifically we will commence the proof
of Lemma 2.6 which we now restate as Theorem 6.1. Recall from (2.12)
that our test functions ¢ belong to C 2 .

Theorem6.1.Forn =1,2andany0 <t < o0
lim E (sup K/ - [ baxi@ar
— 00 s<t 0

We really do mean X! in the above and not X" . Of course Proposition 1
and the ordering of the X"’s (see (2.8)) show the difference is unimportant.
To prove Theorem 6.1, we will slowly change K (¢) into the integral. We
first outline the main steps in a sequence of Lemmas and then will provide
the proofs in this and the next four sections. In the first step, we tidy up
the expression a little replacing ¢ (B? + W) by ¢ (B#). We also make a

):O (6.1)
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more significant change by replacing the collision events themselves by
their conditional probabilities given the information available just before
the displacement occurred. Recall that

Ny =[-N"2 N2 nzy— {0}

denotes the neighbors of 0 in our lattice 2y and ¥(N) = |A"y]| is the
number of neighbors. Let

vn(B) =B : Ty, < Ty < Ty, B =B € Ay, ' > Try}| (62)

be the number of neighbors of B? occupied in X" at time Tg—. Writey < B
if y is an ancestor of § and use y < g if it is a strict ancestor. For future
reference note that the conditions 7, < Tg < T, and B” — Bf £ 0
eliminate y < Bor 8 < y.

We define our first modification of the collision term by

Kn,l — ﬂ Vp— l(ﬂ)
(@) Z (D¢ (BP) =~

2N +6

Lemma 6.1. Foranyn > 1 and any0 < ¢ < oo

[lim E(sup|1<"(¢> K:’»l(¢>|) =

s<t

The collision term K;' - (¢) counts the number of occupied sites, v,_(8),
for each particle B who died before time . Lemmas 5.1 and 5.3 imply that
most of the the collision term comes from close relatives. To say how close
these relatives are, we look at the conclusions of Lemma 5.3, and introduce
a sequence of cutoffs Ty defined by the requirements that:

(i)ind > 2, Nty — oo and Ty — O.
(ii)ind =2,y =1/logN . (6.3)
Our next goal is to show that collisions involving two individuals more

distantly related than ty in time can be ignored. To say this in symbols, we
let

nbrf , = UTpy < Ty <T,, B =B € /'y, &) > Ty}

We then can define the interference term for close relatives by

n, 1 n
K"2(¢) = SNTh Xﬂ:aﬂ(z)m B?) W anrﬁy W(Tynp > Tp — )

where we recall that y A § is the most recent common ancestor of y and
and T, \p = —o0 if yy # Bo.



354 R. Durrett, E.A. Perkins

Lemma6.2. Foranyn > 1and0 <t < o

A}im E(sup |K;”1(¢) — K‘?’2(¢)|) =0

s<t

Most of the work for this has already been done in Section 5. However,
notice that

vn—l(IB) =< Z nbr};;;,l

14

since the left-hand side counts multiply occupied sites only once.
Our next step is to replace the requirements g > 774 and ;;_1 > Ty
by the condition

tp>Tg—tv., BP#£A, 7'>Ty—1y, B #A

and define

1 1
W(N) 2N +6

XY Wl <Tp <T,,BY =B e /'y, g7 > Ty — 1,

K7 (¢) =

Y eBHUT < 1,85 > Ty — )
B

Ty/\/g > Tﬂ — ‘L'N} (64)

Lemma 6.3. Foranyn > 1 and0 < ¢ < oo

Jim E(sup K2 () — K;’~3<¢>|) =0

s<t

To prepare for the next step, we note that X ,1 <X 12 <X ? Thus, when
n=1or2

{¢g > Tp — 5}771 >Tp — N, Tynpg > Tg — v}
= {{;Aﬁ >Tg —tn, Tyrp > Tp — T}
= {é‘é > T/g — TN, T)//\/S > Tlg — ‘L'N}

At this point, we are finally ready to convert K ,”’3(¢) into an integral. Let

1
Fﬂ(r)=— I{T]/Aﬂ>r_TN9Tny<r§Ty,BV_B/3€J‘/‘N}
Yo(N) <
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Here, Yo(N) = ¥ (N)/N is introduced to make this O(1). Note from the
above that forn = 1 or 2

KO = Son T D Ty < 1,85 > Ty — tn ) (BY) Fy(Tp)
B

=K (¢)

This motivates the definition of

1
Gi@) = D UTap <7 < Tp G5 > r = tw)@(B_,,) Fy(r) (65)
B

Note that B? has been replaced by the position of its family line at time
(r — t,)T. More importantly Fg(Ts) has turned into Fg(r), and passing
from the Poisson process to its compensator via Lemma 3.2 has removed
the factor of 1/(2N + 9).

-

Lemma6.4. Forn = 1 and2,and any0 < ¢ < o0

Let Z(s) ={a: Tpe <s < T, g“o} > s} be the particles alive at time s
in X'. The contributions to the sum in G/ (¢) from the various particles in
o/ (r — ty), are independent, so it is natural to let

lim E <sup

N—o0 s<t

K™(9) — /0 Gr@)dr

{a)y ={B:B = Top <r < Ty B #A} (6.6)

be the set of descendants B of « that are alive at time r in the branching
random walk, and use our new notation to write

1
Gi(@9) =~ > (B ) Za(r)

a€d(r—1ty)

where Z,(r) = Z,Be{oz}, Fg(r). Comparing with

1
X = ; WTap <r <Tp. 0 >r —y)o(Bl_,, )
1
=5 2 ¢Bilah

aed(r—1y)

suggests that we define b = EZ(ty)/E|{1};,]| (here 1 € I labels the first
individual in generation 0) and consider
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1
GI@) —biX[ @) =+ Y. $Bi_0) Y (Fp()—b) (67)

a€Ad(r—1ty) Belal,

By computing the variance of the last difference, we will conclude that

) =0

1
X} (¢) = Niﬂjl{rw <r<Tp. ¢ >r}p(Bf) .

Lemma 6.5. Forany0 <t < oo

lim E
sim £ (sup

fo GI(¢) — by X, " (§)dr

Recalling now that

we see that it remains to remove the superscript ’s from b5 X" and com-
plete the proof of the limit theorem for the collision term. This is a two-step
procedure.

Lemma 6.6. limy_. b; = by.

Lemma 6.7. For anyr < oo

f S XM (@) — XN ) dr

0

) =0

Theorem 6.1, and hence Theorem 1, is an immediate consequence of
Lemmas 6.1-6.7 (technically one also needs the trivial bound
supy sup, ., E(Xrl(|¢|)) < oo from Lemma 2.9). The proofs of Lemmas
6.1-6.7 will keep us occupied until the end of Section 10. The rest of this
section is devoted to proofs of the first two of these lemmas.

Proof of Lemma 6.1.Let Kt”’o be defined as K" but with ¢(B?) in place
of ¢(BP + Wp). Let

lim E (sup

N—oo s<t

ny =sup {lp(x +y) —px)| 1y € [-N2 N2

-1/2

Any ¢ € C} is Lipschitz continuous, so ny < CN~Y?2 — 0as N — oo. If

we let
hy = {BP + Wg € supp(X7, )}

be the indicator of the event that the support of X™ is hit by the birth at time
Tg we can write
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A

C
E(squ K] (¢) — Kt"’o(fﬁ)\) ~E > ag(tmnh
t< 8

v - C(XJ(D) + X0(D?)  (6.8)

A

by Lemma 2.5.
To estimate the difference between K;' O and K ! ‘! now, we note that, as
in the proof of Lemma 2.3,

E(hg_l }?Tﬂ*> _ v:p(ljifﬂ))’

so Lemma 3.5 implies that the difference

K9
1+ e
1 _ vn—l(ﬂ)
_ n B n—1 _
=N+ ;“ﬂ(”‘w ){hﬂ Y (N) }

is a martingale. To estimate the right hand side note that (i) the squares of
the jumps of M, are smaller than 1\7—2||<;s||§o{hg—l — V1 (B) /Y (N)Y?, (ii)
aj(t) < af(r), and (iii) since 2~ € {0, 1}, var(hy~") < ER}~'. So we
have by the L? maximal inequality, (3.1),

M,

— K"'(¢)

(6.9)

E(sup M) < CE[M],

<CNE(D ag®) llgl2, hy
B
C
= 1815 (XD + X5(1)%) (6.10)

by Lemma 2.5. The desired conclusion now follows from (6.8)—(6.10) and
the inequality

C
< NE(K,"’O(|¢|)) —~ 0as N — 00

E (sup Km0

— =1
s<t 1+6/N D
(the last by Lemma 2.5 again) |
Proof of Lemma 6.2. Let

Vm,r(ﬁ) = HBV : Tny < Tﬁ = Ty, BY — B'B € Ny, ;;ﬂ > Trry»

TﬁAy > Tﬂ — ‘L’N}|
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be the number of neighbors of B? occupied in X™ by close relatives of 8
at time Tj. To bridge the gap between K|"' and K;"* define

Vn—1, r(ﬁ)
¥ (N)

K (g) = Zaﬁm ¢(BF) L0

2N +6

Lemmas 5.1 and 5.3 imply that for any ¢ < oo

hm E <sup

K 9) - IZ?*l(qs)D =0
s<t
To estimate the contribution to the collision term from births onto multiply
occupied sites, we recall that ag (t) = {Tp < t, B® # A} is the event that
B was once alive in the branching random walk X° but died before time ¢,
and let

1
Jl(r>=N2ﬁj ,mwv) nbrj ,

y:v0=Po

x Z Ty < Tp < T,, B* = B} 6.11)
aFy,00=Yo

The motivation for this definition is that |[K" ' (¢) — K> (¢)| < J1(t)*|¢ |l so-
To check this observe that if there are k > 2 close relatives of B? at one site

Y e o BB . - - (k=D (B
BY neighboring B” then the left-hand side contributes at most AN Oy )
k(k—D]¢lloo

N

but the right contributes at least . The latter inequality comes from
the fact that the definition of J;(¢) in addition weakens the requirement of
close relatives from that of having a recent common ancestor and of being
alive in X" or X"~! to just being related and alive in X°.

To estimate E J;(¢) we will have to sum and integrate over all the possi-
bilities. The first step is to use the symmetry of (¢, y) and suppose without
loss of generality that « A B < y A B, i.e., that the « line did not split
off from the B line after the y line did. Just to keep on top of things the
reader should note that there are two somewhat different sub-cases of this
situation: (@A) a A B <y AB,or(b)a A B =y A B.In words, (b) says that
the most recent common ancestor of & and y occurs after their common
line of descent joins 8.

To tackle (6.11) we begin with the inside sum and break things down
according to the value of k so that y A @« = y|k = «lk, noting that the
indicator functions involving S ruleouta Ay = o or y andsok < |x|A]y].
Let #7 , be the o-field generated by all the branching events, and the
random walk events for the lines 8 and y only, but omitting the value of the
jump W, ., (which might have moved the « or the y line). Then we have
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C
o __ py o o —d/2
P(B* =B’ |#% ) < —wav)('“' k) (6.12)

To prove this we use Lemma 4.2 to conclude that
P(VN{B* — B*(Tyy)} — VN {B” — BY(T,;)} € [—1, 11| #% )
< C(la| = k)~

and observe that the probability the missing W, ., will have the exact value
needed to make BY = B“ is at most 1/ (N).

In order to use (6.12), we want to take the conditional expectation of
(6.11) with respect to #7 ,,. Unfortunately, nbr%’y is not measurable with
respectto #7y .. This problem is easy to fix. Let B (resp. BY)bethe position
BP (resp. B”) with the value of W, Ay subtracted if it appears in the sum.
Clearly,

nbrh , < YTry < Tp < T,, VN(BF — B) € [-3,3]'}  (6.13)

and the right hand side is #7; , —measurable.

Modifying (6.11) using (6.13) then taking the expectation of the con-
ditional expectation of the summands in (6.11) with respect to #% by We
have

EJi(t) < —EZ ag(t)

z/z(N)
x Z Ty < Ty < T, VN(B? — BY) € [-3,3])
7:¥0=Po
> (el = loe A YD) P 1(Tea < Tp < Tu)
Wil wN)
a:aFy,ao=yo

(6.14)

To evaluate the inside sum we break things down according to the value of
k sothat y Aa = y|k = a|k, and the value of £ = |«| — k — 1. Since there
are £ births in the « line after it splits from y, there are 2¢ choices for o
and each of them is alive with probability {(N + 0)/(2N + 0)}*. Recalling
there must also be exactly ¢ arrivals in the relevant rate (2N + 6) Poisson
process, we arrive at

Ef D

aFEY,a0=Vo

W(N)(Iozl la Ay (T < Tp < T)|#



360 R. Durrett, E.A. Perkins

rl—1

°° N+6\°
< sz< + ) (1+¢)"2
k=0 £=0 2N +6 Y (N)

[(Ts — T,i) 2N +6)]°
£!

x exp[—(Tp — T, ) (2N + 0)]

lyl-1

3 (1 + (Ty = T, @N +26)) 7 explo (Ty — Ty
k=0

=

Vv (N)
by Lemma 4.3. Plugging this into (6.14) we may bound E J;(¢) by

C
WE;I{Tﬂ <1}

x > Iy, <Tp < T,,VNB* - B") € [-3,3]%)

y:v0=Po
lyl-1

Y (L + (Tp — T, ) (2N +20)) /2 (6.15)
k=0
Using Lemma 3.2 to change from the Poisson jumps to their compensator
(this introduces a factor of 2N + 6), and putting back in the variable Wg,,
left out of Bf and BY, we see the above is at most

C t
L E/O Xﬁ: WTnp < r < Tg)

x Y Iy, <r <T,,VN(B* - B") € [-5,5])
7:¥0=Po
lyl-1
: Z (14 (r = T,p) (2N +20))"2 dr
k=0

If we sum over B first and condition on #,,, and then use (4.9), we see that
the above is at most

c
Y (N)?

1
E/ > UIp, <r <T, B" #A)
0
Y
2

lyl-1
X { Z I+ @ —T,)RN+0) ™t dr  (6.16)
k=0

Recalling there are {N X{(1)} choices for yy, then breaking things down
according to the value of m = |y|, and using the reasoning we applied to
(6.14), we bound the above by
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n{ N+6\"
w<N>2{NX°“)}f 202 (2N+9>

x E {1{rm < QN +60)r < Tt}

m—1 2
(Z(l + (2N +0)r — rkH)—d/z) :|dr

k=0

Using Lemma 4.6 and (4.7) it follows that the above is no more than

" (N)Z{NXO(D} f Yo(2N + 6)r)’dr

C

< W{ng(l)} - 1Yo((2N + 6)1)

Recalling that ¥ ((2N + 0)t)/¥(N) < C/N it follows that
EJi(t) < %Xg(l) — 0

and the proof of Lemma 6.2 is complete. |

7. Proofs of Lemmas 6.4 and 6.5

For the moment we will skip Lemma 6.3, closing the loop with the proof of
that result and the closely related Lemma 6.7 in Section 10.

Proof of Lemma 6.4.Recall that ¥o(N) = ¥ (N)/N,

Fg(r) = HTyy <r =T, Typg >r — 15}

b
Yo(N)
1{B” — B? € vy}

1
GH@) =+ ) WTap <1 < Ty 5y > r = (B, ) Fp(r)
B

and the collision terms of interest, K ,2’3 =K tl’3. Our first observation is that

1
K,1’3(¢) = m Z T <1, 5,31 > Tp — TN}¢(Bﬁ)Fﬂ(T/3)
B

is closely related to
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1
Gr(@®) = 5 D UTap <7 < Ty, &g > r = tp (B Fp(r)
B

In particular, Lemma 3.2 (see also Lemma 3.4(a)) implies that
t
M, = K3 (¢) — / G.(¢)dr isamartingale (7.1)
0

To bound the size of this martingale we note that the above Lemmas also
imply

1 t
(M)tzm/o Xﬂ:l{Tnﬂ <’”§Tﬂv§ﬂl >r — 1y}
x ¢ (BP)? Fg(r)* 2N + 0)dr

From the formula for (M);, and very crude bounds, we get

T
EM)r < ClotE [ B[N 1Ty <r <7387 2 )
0
B

2
X |:N" > Hyo=Bo.Tey <r < Ty, B # A}} dr
14

In the second equation, we have weakened the survival conditions to being
alive in the branching random walk, so the above is at most

T
CllpIZ.X0(1) / E (X°(1%] X3(1) = N~'6,) dr
0
< Clola Xy - T/N* (7.2)

The last inequality is immediate from Lemma 2.9 and Holder’s inequality.
The L? maximal inequality, (3.2), now shows that

E (sup M?) < Clgl3Xo()T/N* .
t<T

It remains to estimate the difference between the two G integrals. To
this end we note that

E(IGI(¢) - G, (@)]) < %E(;lmﬁ <r<Tpgh>r—

x|p(Bf) —p(BL_, |- Fﬂ<r>> (7.3)

Plugging in the definition of Fg(r) then taking the conditional expectation
with respect to # g (recall its definition from the beginning of section 4),
the above is no more than
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C
D UTwp <r < T} |[¢(BE) —p(B]_, )]
Y (N) { -

xE| Y WT,, <r<T, B"—Bfe mN}‘%ﬁ }
7 v0=Po

Note that we have eliminated g“,; > r — 7y and replaced 1{T), ng > r — v}
by 1(y0 = Bo). By (4.9), the above is bounded by

C
Y UTwp <r < Ty} [¢(BS) — ¢(B]_, )|
) [ g

Bl—1
x > (1+@N+6)(r - T,gk))‘d/z}
k=0

Our next step is to condition on
Hg = 0 (tgm, Spym *m < |Bl) V o(tp) ,

the information about the branching events in the family line of g plus the
death time of 8. Breaking things down according to the value of m = ||
and then according to the values of the times Tg; the above is at most

0 m{ N+6\"
—w(m (NX} (1)}22 (2N+0> E(Z,®) (7.4)

where ® = E(|¢(B) — ¢(BL_, | )IlA%),

(r—tn

m—1

Zp=UTp < @N+0)r < Ty} Y (14T = Tig)
k=0

and the I',, are the gamma random variables introduced in the proof of
Lemma 4.5. Using the Cauchy-Schwarz inequality we conclude

E(Z,®) < (Ex2)" (E®?)" (7.5)

We have supposed that ¢ € C 2, and hence is Lipschitz continuous, so

)’ < CE|Bf - ‘<C
B ’ (r r)‘*" =(CTy

(7.6)

Using (7.5) and (7.6) we see that (7.4) is smaller than
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Cty’ e N+6\"
NXy(1 2"
S VX >}m§:j1 N
m—1 2 172
x {El T, < @N +0)r < Tpp} (Z 1+, — rk+1)d/2>
k=0
Using Lemma 4.6 now, and (4.7) we see that the above is bounded by
Ccrl2
N_INXJ(D)} - I(2N 4+ 6)r) < Cty* XN (1) = 0
Y (N)
This completes the proof of Lemma 6.4. |

Proof of Lemma 6.5.We begin by recalling formula (6.7):

1
GI@) =X, @) =+ >, #Bi_y) Y, (Fp() —b) (O.7)

acd(r—1y) Belal,

Plugging in the definition of Z, (r) from Section 6 we get

1
Gl = DX @) =& D $B_y0) (Za() = Bille)]) (7.8)

€A (r—1tyN)

If we condition on #,_,,,, then a simple argument using the Markov prop-
erty and our basic independence assumptions shows that the individual sum-
mands in (7.8) are independent. The definition of b, now implies that their
(conditional) means are 0. Here we use an obvious translation invariance to
see that on {@ € ./ (r — Ty)},

P((Zo(r), {a}i]) € | Fr—1y) = P((Z1(zn), {1}, € 1) (7.9)
To show that the difference in (7.8) is small we will compute the variance

of this random sum. For this it is clear from the above independence and
equivalence in law that the following two lemmas will be needed.

Lemma 7.1. There is & < C < oo so thatEZ7(ty) < C(tN).

Lemma 7.2. There is a0 < C < oo so that for anys > 0, E|{1},]> <
C(1+sN).
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The second result is a standard fact about critical branching processes
and again is a corollary of Lemma 2.2 in Bramson, Durrett, and Swindle
(1989). Before entering into the somewhat lengthy details of the proof of
Lemma 7.1, let us check that it, and Lemma 6.6, will be enough to finish
the proof of Lemma 6.5. Conditioning the sum in (7.8) on & ,_.,, we have
from the above observations that if » > 7 then

CHOBIASON

_ gl
<=0

E(l/(r — )| - E{(Z1(zv) — b1}, D)) (7.10)

Combining Lemmas 7.1, 7.2 and 6.6 (the latter to show that {5} remains
bounded as N — 00) and using the fact that we have chosen Nty — oo
we have

E{(Z\(tn) — bj[{1}sy)*} < CN1y
so the expression is (7.10) is bounded by
CtvllZE (N~ (r — tv)]) < CTallpIZ EX)Y, (1)
< Ctyll9l3,Xg (1)

by Lemma 2.9. From this it follows that

T

T
/ E|GT () — bi X ()ldr sf (EIGT(¢) — biX ! (@¢)2)""* ar

CoPlplloo(XY ANV T  (7.11)

A

—0as N - o

To handle the integral from O to T we note that if » < 7 then
Gl@) =N UTnp <r < Tp. g5 > r — Ty} (B Fp(r)

B
XM =N WTup <r <Tp. &) > r — tylp(BY)
B

Using some trivial inequalities and then the definition of Fg(r), we have
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/ E|GL(¢) — by X" ()| dr
0
< |I¢>||oo/ N(ngX}”(l)JrEG:(l))dr
0

< ¢ llocb] / EXO(1)dr
0

w [ #1loo
+/0 E(N%(N) Xﬂ: UTwp < r < Tp}

> Iy, <r<T, B —Bfe M})dr
7 v0=HBo
Using Lemmas 2.9 and 6.6 on the first term and Lemma 4.4 and (4.7) on
the second, the above is bounded by

Cllglloa Xy (HTy — 0 (7.12)
Combining (7.11) and (7.12) we see that the proof of Lemma 6.5 will be
complete when we do the (independent!) proofs of Lemma 6.6 in Section 8
and Lemma 7.1 in Section 9. The latter result concerns the second moment
EZ(s)?, so we will first compute the mean E Z;(s), which is needed to
prove Lemma 6.6.

8. Mean of the interference term

We claim that for ¢ € &/ (r — ty),
1

Zor) =Y ——
") Yo(N)

UTwp <r <Tp, Tyy <r <T,, BP—BY € 1y}

B>a y=a

8.1)
To see this note that for « € /(r — ty) and 8 > « the condition
T,rg > r — Ty (appearing in the definition of Fg(r)) holds iff y > «
(which appears in the definition of Z,(r)). For this equivalence, observe
that 7),rg > r — Ty implies T}, \g > T, and since y A B and « are both
ancestors of 8 this forces y A B > « and so y > «. The converse impli-
cation is obvious and (8.1) now follows from the definitions of Z,(r) and
Fg(r). If B = y, then B — B” ¢ 4"y and so (8.1) with r = 7y (clearly
1 € «7(0)) implies that

Yo(N)EZ(Ty)

=E|Y) Y Wlp<tw<Tp Ty <ty<T, B =B €4y}
B=1y=1y#p
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Note that for a fixed 8 and y in the above sum if « = S A y then the
following are mutually independent o -fields:

Hy, 0ty o <’ <B), oty :a <a' <),
o(B" —BP), 68y i <o’ <Bora <o <y)

Breaking things down according to the value of « = 8 A y, using the above
independence, and conditioning on 4 = o (ty, 84 : @’ € I) A #, and then
on #, shows that

Yo NEZi(ty) = E1Y " > T, <1y, B* # A

k=0 o:|la|=k, a>1

00 00 N+9 1+L+m
2y Y X ()
=0 m=0 B>a,|B|=k+14+L y>a,|y|=k+14+m
Br+1=0 Vir1=1

'P(Tnﬁ_Ta<TN_Ta§T,3_Ta|°%ﬂa)

'P(Tny_Tot<TN_Ta§Ty_Tot|=}fa)

P@Wﬂﬁy—é%e[—Lud—mD] (8.2)

Starting at the bottom of (8.2), if W¥ is uniform on N'/2 . 'y, VN is
an independent random walk that with probability 1/2 stays put and with
probability 1/2 takes a step uniform on N'/2. 1"y, then

P(N'?(B" — B?) e [-1, 11" — {0})
=P(WN+ VY, el-111Y—{0})

Combine this with the usual Poisson process formulas for the probability 8
and y are alive at time Ty, to equate (8.2) to

o0 N + 0 14+€+m
E{Y Y WIu<tw.B*#A}-2 2:}: “”(2N_F6)

k=0 o:|a|=k, a>1 £=0 m=0

y (2N +0)(ty — )™ o~ 2CN+0) Ty —T,)
£!'m!

(WN+@meL4JW—wn}
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Recall ey = 6/(2N + 6). Changing variables from (£, m) to (n, m) where
n = {4+ m, gives

A+en)EY. Y T, <tv.B*# A} ZZ(22NN1209>

k=0 a:|a|=k, a>1

n! CN AN =T onioe 1)
(n—m)!'m! n!
xP(WN + VN e[—1,11" - {0})} (8.3)

Summing () over m from 0 to n gives 2". A little arithmetic turns the sum
over n into

20N —T) Z (4(N + 9)(TN —Tu)"
X e74(N+9)(1N7Tu)P(WN 4 VnN c [_1’ 1]d _ {0}) (84)

Let 7 (1) be a Poisson random variable with mean u that is independent of
Wy and (V.Y : n > 0}, and let

hy@) = P(WY + VN e[-1,11Y —{0})
Using our new notation we can write (8.4) as
XTI (AN 4+ 0)(ty — Ty)) -

Plugging this into (8.3) we see that (8.3) equals

(l +EN)E {Zl{TO‘ < Ty, B“ 7& A} X eZ@(rN—Ta)
a>1

hy(4(N +6)(Ty — Toz))} 8.5)

Using Lemma 3.2 and Lemma 3.4(a) for integrability, we may convert the
above to

(1+€N)E/TN{21{TT[& <rSTa’Ba#A}
0

a>1

Oy (4N +6)(ty — 1)) - (2N +60) }dr
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Summing over « gives all the individuals alive in the branching process at
time r, so using Lemma 2.9, we have shown

Yo(N)EZ,(tN)

™
= (14 ey) ™ / 20N (AN +0)(zy — 1)) - 2N + 0)dr
0

We can simplify our calculations by noting that (~ indicates the ratio ap-
proaches 1 as N — o0)

Vo(N)EZ (Tn) ~ / N hy(4(N +6)(ty — 1)) - 2N +260)dr
0

1 4(N+0)tn
= / Iy (s)ds (8.6)
0

where in the second step we have changed variables s = 4(N +60)(ty —r).

Let W be uniform over [—1, 1]¢ and Vz(s) be an independent contin-
uous time random walk that at rate 1/2 takes a step uniform on [—1, 114.
Elementary weak convergence arguments show that

Lemma8.1. If sy — s < cothen asN — oo,
hy(sy) = h(s) = P(W + Vg € [—1, 11%)

We now wish to interchange the limit as N — oo and the integral over
s in (8.6). In d > 2 this is easy to justify. Lemma 2.4 in Bramson, Durrett,
and Swindle (1989) gives

Px+VY¥ el-1L.11Y) <c+n 8.7)

Since the right hand side is independent of x, the same bound holds when
WY is put in place of x on the left. This gives us the domination we need
tolet N — oo in (8.6) and conclude that if Nty — oo and Ty — 0 then

1 0
A}lm W()(N)Ezl(‘L'N) = EE/ P(W + Vﬂ(‘y) € [—1, l]d) ds
— 0 0

Ind > 2, (N) ~ 2¢N so ¥o(N) — 2¢. For the right-hand side, we
note that the continuous time random walk V() stays in each state for an
exponential amount of time with mean 1/2 before moving, so, recalling the
definition of {U,} in Section 1 prior to Theorem 1, we can rewrite the last
formula as

lim EZ(zy) = 2-d Z PU, €[-1,11%) = by (8.8)

n=1
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Things are a little more delicate in d = 2 since the limiting integral is
divergent. Fortunately, much of the work has been done in Lemma 4.6
of Bramson, Durrett, and Swindle (1989). Here | B| denotes the Lebesgue
measure of B.

Lemma 8.2. If s — 00, x,/(s/2)!/? = x,andN — oo then for any Borel
setB with |B| < oo and|dB| =0

(s/2)* PV, € x,+ B) — |BIn(x)

where rix) = (2/3)~%? exp(—3|x|?/2) is the normal density with vari-
ancel /3.

The # /2 comes from the fact that in Bramson, Durrett, and Swindle (1989),

what they call X takes jumps at rate 1 while our V:Z 5 takes jumps at rate

1/2,so weneed to setn = s/2, M = N in their Lemma 4.6.
Lemma 8.3. If sy — oo thenhy(sy)/h(sy) — 1.

Proof. Use the classical local central limit theorem to see that
(sn/2)Ph(sy) — 29n(0) (8.9)

(Problem 1 in Section 10.4 of Breiman (1968) and a simple calculation will
suffice.) Note that by conditioning on W & [1, 1]¢ and using Lemma 8.2
and (8.7) to integrate out the conditioning, we get

(sn/2)*hy(sn) — 27n(0) .

The result follows. O

Combining this with Lemma 8.1, one can conclude easily that

Lemma8.4. Letn > 0. If N is large thenay(s)/h(s) € [1 —n, 1 + n]
forall s > 0.

Proof.Let n > 0 and suppose that there is a sequence of exceptions sy, to
the inequality. There is either a subsequence converging to a finite limit or
the sequence converges to co. In the first case we contradict Lemma 8.1, in
the second we contradict Lemma 8.3. |

From Lemma 8.4 it is immediate that

4(N+0)ty 4(N+0)Ty
/ hy(s)ds ~/ h(s)ds (8.10)
0 0

that is, the ratio approaches 1 as N — oo. To compute the right-hand side,
we use (8.9) (with d = 2) to get
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h(s) ~ (s/2)~ ' 4. 2rn/3)7! = ;—2 as s — 00
N

Ind =2,y =1/logN and ¥o(N) ~ 4log N, so (8.6), (8.10), the above
asymptotic estimate, and the trivial bound A (s) < 1 imply thatas N — oo

1 1 4(N+0)/log N 12
EZ(ty) ~ /

3
- = —ds > — (8.11)
4logN 2 Jioglogn TS 21

Formulas (8.11) and (8.8) give the asymptotic behavior of EZ;(ty) for
d =2 and d > 2, respectively. To complete the proof of Lemma 6.6 now,
we note that by Lemma 2.9 and the fact that 7y — 0,

E|{l};,| =™ — 1 (8.12)

as N — oo. Therefore from (8.8), (8.11) and (8.12) we see thatas N — o0,

. EZi(zy)

=——""7 5 b
4T E1) ¢

and Lemma 6.6 is proved.

9. Second moment of the interference term

In this section we will prove Lemma 7.1. We will use 8 ~ s to indicate that
T <s <Tg, BP # A. Using this in (8.1) we can write

Yo(N)*Zi (ty)*

4
= > (]‘[ B ~ ‘L’N}) (B — B € ¥y, B — B € 1y}
B1.B2,B3,B+ \i=1

9.1

where each B; has 8;(0) = 1. To suppress nuisance terms later it is useful
to note:

(1) Since all the B; are alive at time s we cannot have B; < B;.

(i1) Since 0 € A"y we must have 8| # B, and B3 # Bs.

(>ii1) From (i), (i1), and B;(0) = 1 it follows that |8;| > 1 for all i.

There are several cases in the estimation of (9.1) depending on the rela-
tive relationship of the the g;. To sort these out we need some notation. For
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a finite set A of possible individuals let
(A B) =max{ly AB|:y € A, yo = Bo}

with max J = —oo. In words, t(A; B) is the number of the last generation
in which B had an ancestor in common with some individual in A. For
J =1,2,3,let R; be the contribution to the sumin (9.1) from By, B, B3, Ba
with ({81, B2, B3}, B+) = |B; A Bal. The contributions we have defined
overlap but the terms in the sum are nonnegative so
3
Yo(N)’E (Z1(ty)’) < ) ERi =2ER, + ERs 9.2)
i=1
where in the second step we have used symmetry to conclude ER; = ER».
To estimate the right-hand side of (9.2) we have to do each of the four
sums in (9.1). To structure the proof we will divide this section into the
corresponding subsections.
a. Sumoverpg,. For j = 1,2, 3, we let

R;(B1, B2, B3)
= Y t{rBi o B ) = 18 A Pl 1(BP — B € )
Ba

and note that conditioning on #1253 = #'g vV H'g, V Hg,,

3

ER; = Z (]‘[1{,9,. A fN}) I{BP' — B> ¢ ¥}
Br.B2,B: \i=1

XE(R;(B1, B2, B3)|# 123) 9.3)

Breaking things down according to the value of k = |B; A B4| and using
Lemma 4.2, we have that E(R;(B1, B2, B3)|#123) — 1 is at most

51t |Bal—k—1
N +06
CY S tfelpr B ki ) = 185 A Bul = ] (ZN—:@)

k=0 Ba4,1Bs|>k

x(|Bal — k)% P (Trp, < v < Tp,| #123) (9.4)

Here the 1 corresponds to the term B4 = B; (which contributes if j # 3)
and we have used (i) to justify |B4] > k. If u(y) = 2N +0)(=nv — 1)),
then on {8; ~ Ty} the above is no more than

1Bj1—-1

N +6 [Bal—k—1
C ; ﬁ4%>k1{r({ﬂ1,ﬁz,ﬂ3};ﬂ4) = |B; A Bal = k} <2N+9)
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ydrn | g LB
(1Ba] — k — D!

Letting £ = |B4] — k — 1 and taking into account the number of possible S,
we may bound the above on {8; ~ Ty} by

1Bil—1 oo
2N +26 dn e WBIEE
C 0)~4/2 | pmuBilky 2T
ZZ<2N+0>(+) ¢ 1

k=0 ¢=0
1B;1—

Z O(ty— Tﬂflk)(1+u(ﬁ/|k)) d/2

SVHB; Ty) < CHB,, ) 9.5)

x(1Bsl —k

| /\

by Lemma 4.3 and a definition given after (4.9). We can combine (9.4) and
(9.5) to get

1B ~ )E (Ri(B1, B, )| #13) < 1+ CHBjow)  96)
Note. It is tempting to use H(B;, Ty) < H(B;) and H(B;) > 1 to simplify
the right hand side to C H(f;) but that upper bound does not work well in
(9.8).
b. Sum on B;. Using (9.2), (9.3), and (9.6), then conditioning on #, =
Hp N Hp,

Yo(N)2EZ (ty)?
< CE{ZZI(,Bl ~ Ty, B ~ Ty, BP — BP € /!/N)

B B
Jflz)

) o

Using symmetry we can replace 1(83 ~ ty) in the first sum by

x [E<Z 1(Bs ~ Ta)[1 + CH (B3, 7))
B3

+[1+CH (B, t3)]- E(Z 1(Bs ~ )
Bs

H{Bs ~ v, T({B1, B2} B3) = |2 A Bsl}

and put another factor of 2 into the C. To deal with the right-hand side of
(9.7) we let
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Ri(Br B = Y 1(Bs ~ o, t(Br. )i B3) = 15 A Bsl) - HB)
B3
081, ) = 1By ~ T T(Br. Bal: By) = I, A Bl
Bs
for j = 1, 2. Separating out the possibility of B3 = B, first, and plugging in
the definition of H (83, ty), we see that E(R»(B1, B2)|#12) is bounded by

[B21—1 N+0 |83 —k—1
HB)+ Y Y 1B, Bk B3) = B2 A Bl =k>( )

s 2N 46
|B3]—1
X{E[l{Tnm <tv S Tg) Y [+ uBsl NI %12i|
j=k

k=1
%”12] DI IE M(,lej)]_d/z} (98)
j=0
where we have used the fact that for j < k, B3| = B2|J.
Introducing ¢ = |B3| — k — 1, changing variables i = j — k, and using
our standard gamma random variables I';,, defined in the proof of Lemma
4.5, the first term in the set braces in (9.8) is at most

+ E|:1{Tm33 <1y < Tlg3}

¢

E<1{Fl < @N +0)(ty = Tpp) < Tega} Y (14T — md/z) 9.9)
i=0

Using the usual Poisson reasoning with the trivial bound £ < |8;]|, and

recalling the definition of H(f,), we see that the second term in the set
braces in (9.8) is bounded by

—"032"‘)”(’8 z'k) H(B) 9.10)

Using (9.9) and (9.10) in (9.8), and countmg the number of 83’s for each ¢,
we have

[B2]—1 oo ¢
2N + 26
ERy(B1, B #12) < H(B)+ Y Ej(—zNie)

k=0 £=0

X{E (1{F4g < (2N+0)('L’N — Tﬁ3|k) < FZ-H}

£
x Y (14T, — F,~>—d/2> o-waty HP2I" H(ﬂz)}

yal
i=0

©.11)
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Recalling the notation ey (u) from (4.12) we see that the first term in set
braces in (9.11) is at most 2e,((2N + 60)(tny — Tp,x)). Here the factor 2 is
used to handle the i = 0 term which doesn’t appear in the sum defining
e¢(u). Doing the sum over £ now and using the above and Lemma 4.5, with
the trivial bound T, > 0, we see that the first term in set braces in (9.11)
when summed over £ and k contributes at most

ClBa| - I((2N + 0)tn) (9.12)

The second term in set braces in (9.11) when summed contributes at most

[B2l—=1 o0

> Yt ey)fer (ﬁ 2"‘) ———H (B

k=0 £=0
|B2]—1

= " explenu(Blk) H(Bo) < CIBIH(B)  (9.13)
k=0

sinceey = 0/(2N+0)andu(Bylk) < (2N +6)ty. Using (9.12) and (9.13)
in (9.11), then recalling |8;| > 1 by (iii), we have

E(Ry(B1, B2)|#12) < ClBal - {I(2N +0)ty) + H(B)}  (9.14)

Our next step is to consider Q ;. With H(f3, Ty) in R; being replaced
by 1in Q;, the analysis is much easier. Imitating (9.8) we write for j = 1, 2

18;1-1
EQ;(Br Bl =1+ D 31w, Ba): B) = 16; A Bsl = k]
;{V:(ii-;] |sl—k—1
X<2N+0> P(Trp, <ty < Tg,|#'12)

Introducing ¢ = |B3] — k — 1, we see the above is at most

1Bi1-1 oo

2N+29 _u(ﬁj‘k)u(ﬂj”{)e
1+ §§<2N+0> — =ClIB;| 9.15)

since Ou(B;lk)/(2N + 0) < Oty, and (iii) tells us that |8;] > 1.
(9.14) and (9.15) handle the first term in square brackets in (9.7). To take
care of the second term there, we note that

E( Y1~ | | < E(QiB1 B+ 0281, )| 12)

B3
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so using (9.15), H(B, tv) < H(B,) and H(B,) > 1 we have

E(Z 18y ~ 2wl + CH (B, rN)]‘%n) < CUBII+ 1Bl - H(B2)
B3

(9.16)
Using (9.14) and (9.16), we see that (9.7) is bounded by
CE {ZZ 1(B1 ~ v, B ~ v, B — B € 1y)
B B
x [1B2] - {I(2N +6)ty) + H(B)} + (181l + 1B2]) - H(,Bz)]}
9.17)

Having summed over g4 and then S5, our third step is to
C. Sum overg,. If we condition on #» = #g, in (9.17) then we will be
left with two types of terms:

R(B) =) 1B~ v, B — B € /y) - |B]
Bi

Q(B) =) 1(B1 ~ 1y, B —BP € .1y)
B

Using our new notation, E((9.17)|#,) is no more than

CE{Z 1(B2 & ) [H(B2) - E(R(B2)| A 2)
B2

+ 182l - (1(2N +60)ty) + H(B2)) - E(Q(,Bz)lffz)]} (9.18)

(4.9) implies that
E(Q(B)|#2) < CH(B2) 9.19)

To cope with the extra factor of || in R(B;), we note that, adapting the
proof of (4.8), one can easily show

[B2]—1 o0
ER(B)IA2) <C D> (L4 14k - (L + 1)
k=0 ¢=0 '
5 2N +26 e_u(ﬂzlk)u(ﬁ2|k)€
2N +6 2!
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Dividing the suminto (a) £ > k, where £ +1+k < 2({+1),and (b) £ < k,
where £ + 1 + k < 2k < 2|8;|, and then using Lemma 4.3 on each piece,
we see that the above is less than or equal to

18211 [B2]—1
C Y (U+uBalk)'™ 2+ Clpal Y (L +u(Balk) ™"
k=0 k=0

The second sum is at most H (8,). For the first we use (1+u(8,]k))! =4/? < 1,
which holds ind > 2, and H(f,;) > 1 to get

E(R(B2)|A2) = Clp2|H(B2) (9.20)

At last, we are ready for the fourth and final step.
d. Sum ong,. Using (9.19) and (9.20) we see that the mean value of (9.18)
is at most

CE[ Z 1B ~ V) |Bal (H(B)I (2N + 0)ty) + H(B2)?) ] 9.21)
B2

Breaking things down according to the value of £ = | ;| we may bound the
above by (recall the notation e, and g, from (4.12) and (4.19))

00 J4
c> 2 N+tON, k 1(Ty < @N +0)1y < Tpr)
—" \2N +¢

£—1
x [l«zN + e)rm(z (14T~ Fk+1)—d/2>

k=0
-1 2

+ (Z (I+T¢— F1<+1)_d/2) }
k=0

= C Y (1 + e (I(@N +0)Tn)e( N +0)y)
=1
+8:(2N +0)7y)]

Letv = (2N +6)ty and write ) e 4 for the above sum when £ is restricted
to A. If £ < 3v, then £(1 + ey)* < Cv, and so Lemmas 4.5 and 4.6 imply

> <C-v-I@w)? <CNty - I(N) (9.22)
£<3v
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Using the trivial bound I'; — 'y, > 0, we see that

£
Y =CY (Uten L e SH@E+ = CIW) Y ar)

{>3v £>3v {>3v

where a;(v) = (1 + ey)le 03 /L1 If N is large, apy i (v)/as(v) < 1/2
for all £ > 3v, so

> aw) < 2a3,() > 0

£>3v

exponentially fast as v — oo by standard large deviations estimates for the
Poisson distribution. (See e.g., page 82 of Durrett (1995a).) From the last
result it follows that

1(v) Z a;(v) < C (9.24)

£>3v

Combining (9.24) with (9.22) and recalling v = (2N +0)ty, it follows that
(9.21), and hence wo(N)zE(Zl (ty)?) (recall (9.7)), is at most

C(1+ I(N)>tyN) < CI(N)*tyN

Now use (4.7) to obtain the conclusion of Lemma 7.1. O

10. Proofs of Lemmas 6.3 and 6.7

First consider Lemma 6.3. In the definition of aj(r) we implicitly used the
fact that {5 = T for some k to see that

1(6g > Tup) = 155 = Tp)
The same reasoning for y shows that
1(Tﬂy < T;S =< T}/v ;;,171 > Tny) = 1(Tny < T,B =< Ty’ g;}il = T;S)

Hence in the definition of K% we can replace the conditions {E > Trg,
¢! > Ty, with ¢f > Tg, 7' > Tj. Taking differences and replacing y
by § we therefore have

sup | K2 (¢) — K (9)|

s<t

- B
< (2N+9)W(N)%|¢(B )|
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x1{Tp <t,Tps <Tg < T5, B — B’ € Wy, Tsnp > T — v}
< [Hep > Tp—tn. g7 > Ty — v} — 1{g) = Tp. 7' = Tp)}]

Use Lemma 3.2 (and Lemma 3.4 (a) for integrability) to bound the mean
value of the above by

Il

t
E/ UTws <r < Ty, Tys <r <Ts, B> — BP € 4y,
YN oﬂ; i o

Tspp > 1 — rN}[l{gg >r — 1Ty, ;(3"*1 >r—1Ty)
—¢p =87 = rY]dr
which is anicer form since B and § play exactly symmetric roles. Subtracting
and adding 1(¢g > r, {(3”7] > r — ty) and using symmetry, we see that in

order to demonstrate Lemma 6.3, it is enough to establish for all m > 0,
that

1 t
—E/ DU Tup <r <Tp. Tps <r <Tp. B — BP € Ay,
v Jo 45
Tsng > — TN, {f € [r — vy, rl}dr — 0 (10.1)
as N — oo. Since Tg > r and Bf # A imply g“g > r a.s. this is trivial for

m = 0.
To start to work on m > 1 we introduce

1
Ip(r) = —— WTws <r < T, B — BP € Ay}
Here we divide by vo(N) to make Ig(r) be O(1). Note that T5,g > r — Tn

implies 8o = By and so to establish (10.1) it is enough to show

Lemma 10.1. Foranym > 1,asN — oo

1 t
NEfo Xﬁ:l {Tup <7 < Ty, 0} €[r —y.r], BP # A)

x (Ig(r) + 1)dr — 0

Here, the +1 is not needed for Lemma 6.3, but is included for the

Proof of Lemma 6.7 .Recalling the definitions given in Section 6, and using
the fact that our test functions ¢ € Cj are Lipschitz continuous, and Ty,g < r
iff T, < r a.s., we have
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E (/ X1 () — X:<¢>| dr)

< ||¢||/ 1{Tn,3 <r<Tggyelr—ty.rl, BP # A}) dr

+cf (N Z WTwp <r <Ts B® # A} BS — B! |A 1)dr
B

The first term tends to 0 by Lemma 10.1. For the second term, condition on
F (r—ry)+ and use the Markov property and Lemma 2.9 with ¢ (x) = |x| A 1
to see that if BN (¢) is the continuous time random walk in Lemma 2.9 then
the second term is at most

CX(’)V(I)/ ¢’ dr E|BY (ty) — BY(0)| < CX) (1)/Tv
0

Combine these last two observations with the fact that Ty — 0 to complete
the proof. |

It remains then to do the

Proof of Lemma 10.1.Now if 8 is alive in the branching process at time r
but has ;/g" € [r — ty, r]), then there is ai < |B] so that

Tgi >r — 1y, BP' e supp(X" N(Tg—)), epi =BG + 1)

In words the last condition says that at time Tg|; the B line experienced the
dispersal event and collided with a particle already present in X"~ !. Let y
denote the index of one of the particles with which g collides at time Tg);.
Using Dg ; as short hand for the awkward eg;; = B(i + 1), and reading the
symbol as “there was a displacement in the family line of 8 at the death of
Bli,” we can bound the quantity of interest in Lemma 10.1 by

1B]—1
N/ EZI{Tﬂﬂ<r<T,3,Bﬂ7éA}Zl{Dﬂ,,T,3|l>r—tN}

x Z 1{ wy < Tgy < T, BPIH! = BV} [I,f,(r) +1]dr (10.2)

The first step in bounding this is to let #'g, = #'g VvV A, recall

lo|—1
H@) =Y [l+@N+6) (T —Tuy)] " |

j=0

and generalize the proof of (4.9) to show
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Lemma 10.2. On{Tp < r} N {T,, <},
E(Ig(r)| #p,) < € HEB) +HY
T go(N)

Proof. Recall that « ~ r means T, < r < T, and B® # A. On
{(Trp <r, Tyy <r}fora=pory,set

Igo(r) = Y 1 {s~rB —Bf ey,

1
Vo) s 0=00)

T({B, v} 8) = la A 8l}

Since either 8 or y must split off from & last (it can be a tie if the § lineage
branches off before the 8 and y lines separate) we have

E(Ig(n)| #py) < E(Ipp(r) 1 #py) + E (I, ()| #4.)

where the second term can only contribute if 8y = yy. Thus it suffices to
show that for « = 8 and « = y that

C
E(Igo(r) |#py) < —— H()

= Yo(N)
Break things down according to the value of t({8, y},8) = |a A | =
k € {0, ..., ||}, isolate the case § = « first, and then observe that when

8 #a,86 ~randT,, <rimply |§| > k. This gives

Yo(N) - E (I.a(r)| #p.y)
||

<1+ Y 1B yEd=k=lans)

k=0 8,|8|>k
XE(I(Tws <7 < Ts, B # A)

P(B’ = B € Wy Hpy v HF)| Hpy)

where A5 = o (tspn, Ssym : m < |8]) V o (t5) is the o-field generated by the
branching events in the family line of §. Let u(a |k, r) = 2N +60)(r — Ty k)
and note that for the k¥ = |«| term to contribute in the above sum we must
have T, < r. Using Lemma 4.2 now and setting £ = || — k — 1, we may
bound the above by

»3 ¢ /2 X +u(a|k,r)+€
1+ ZZ(I +en)t - C(1 4 0)~U2 . gmulalkr) T
k=0 ¢=0 !
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Using Lemma 4.3 now with the trivial inequalities u(al|k,r)™
> 2N + 0)(Tro — O[‘,C)Jr (from our original hypothesis on 7;,), and
u(alk, r)* < (2N + 0)r, the above is bounded by

lel -1 —d)2
1 + Cesv@N+Or [Z (1 + 2N +0)(Trg — Ta\k)) + 1}
k=0
and the desired result follows from the definition of H («). m|

Conditioning (10.2) on #g ,,, using Lemma 10.2, and throwing away
the event Dg);, we see that (10.2) is at most

1I-1
C t
N/ EY W(Tpp <r <Tp. BP £ M) Y 1(Tpyi > Trp — Tv)
O .
B i=0
X Y W(Twy < Tgi < T, B = B7)

Y
x [1+vo(N) " (H(B) + H(y))] dr

Doing the integral over » now and recalling tg = Tg — T we may bound
the above by

1811
C
NEZt,gl(Tnﬂ <t,BP £ A) Y 1Ty > Tap — )
B i=0
X ) WTny < Tyy < T, B = BY)

Y
x [1+vo(N) ™ (H(B) + H(y))]

To get rid of the g, we condition on the random variables generating #'g ,,,
but without #g, and note that if y is not a descendant of 8 (which we may
assume in light of the condition 7, < Tg; < T,) then this information is
independent of 75. We thus may conclude that the above is no more than

[Bl—1
C
mE{ Z 1(Tnp < t, BP # A) Z 1(Tgy > Top — )

B i=0
x Y 1(Tzy < Ty < T, BP"* = B7)
14

X [1 4 Yo(N) ' (H(B) + H(V))]} (10.3)
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Let # %’y be # g, but without the information about the value of W#I'. Since
at most one of the ¢ (N) values of W can make a perfect hit
of B”, and none will hit unless the source of the birth, Bf! is a neighbor
of B”, we have

. . 1 .
P(Bﬂ|z+1 — B”| /fjsy) — W 1 (Bmz _ B’ ¢ JVN)

To use this, we condition (10.3) on Jf%y to see that it is bounded by
1811

C
mE{ Z 1(Tys <1, BP # A) Z 1(Tpi > Tup — )
B i=0
1 i
X Z 1(Tyy < Tgi < T,) - Wl(Bﬂ' — B € A'y)

14

x[1+Yo(N) "(H(B) + H(y))]}

Our next step is to break things down according to the value of k = |8 A Y|
(set || = —1) which must be less than i, and condition on .7 g V.7, where
T ¢ = 0(togm : m < |a|) is the information about the branching times in
the line of «. Using Lemma 4.2, the last display is bounded by

1Bl 1811

¢ N+6
NZ‘W(N)E{;l(TmSSt) (2N+9) ;1(7}5! >Tm3—‘[N)

i—1
x> Y Wy < T <T) - (lyl — k)

k=—1y,lyABl=k<|y|

N6\t HB)+H(y)
* (2N+0) '[HW“ (109

To bound the right-hand side of (10.4), we will handle the H (8)/vo(N)
and 1 4+ H(y)/v¥o(N) terms in the last square brackets separately, and call
the resulting sums (10.4a) and (10.4b). For the first we will condition on
A g and break things down according to the value of £ = |y| —k — 1. We
set Tgx = 0if k = —1. Then

an N+

E( > Ty <Tou<T)Uyl -0~ (m) A p
yily ABl=k<ly|

o0

<Y (U +en) @+ 1)"2P(Ty < @N +0)(Tpy — Tpu) < Tesr)
£=0

By the usual Poisson reasoning, this equals
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— N4y Ty T LN +0) (T = Ty)l*

dd+en)E+n e 7

£=0
< Ce@Tﬂ\,‘ (1 + (2N + 0)(Tﬂ|l - Tﬂlk))

—dJ2

by Lemma 4.3. Plugging this bound in we see that (10.4a) is no more than

N0 \PIE
N2¢(N) {ZI(TT[/S <t) (2N +0) Z I(Tﬂ‘i > Tﬂlg —1TN)

i=0

i—1

H(B) o —d)2
X JoN) -kgl (1+ Q2N 4+ ) (T — Tpp)) }

Breaking things down according to the value of £ = |8| — 1, writing out the
definition of H (), and introducing our standard gamma random variables,
we bound the above by

(NXY(DYE D 1(Teyr < 2N +6)1) (1+ey) ™!

x Y UTis1 > Tepr = @N +0)1w) Y (1+Tigy = Tieg) ™
i=0 k=—1
1 - —d)2
X ; (1+ Tt — Tjpr) (10.5)

Bounding (10.5) is a Poisson process exercise, which we will attend to
later, so we turn now to the other piece of (10.4). To handle (10.4b), we
begin by interchanging the order of summations to get

C H(y)
k| 2Ty =0 [

lyl—1 [yl
N+6
x Syl —k) d”(zNie) S T =n

k=—1 B.|1Bny|=k<|B]
1B1-1
N+6 )'ﬂ' !
X ( > UTwy < Tpi < Ty Tg > Tup — ) { (10.6)
2N +9 i=k+1

Conditioning on 2, and introducing £ = |B| —k — 1, j =i —k, ux =
2N + 0)(Try — Tpp), and vy = 2N + 0)(T, — Tgy) (if k = —1 then
Tgx = 0 as above), we have
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N 46 Akt
E( > 1<Tnﬂ§,)<2N+9)

B.1BAy|=k<|Bl

1Bl1—1
X Z I(Tﬂy < Tﬂ‘i < Ty, T,Bli > Tnﬂ — ‘L'N)| Jf;,)

i=k+1
1

o0
< Z +en)' Y Py < QN +0)tu < T <,
j=1
Iy—T; <@2N+0)ty)
Introducing x = I'j and y = I, — T';, and putting the case j = £ into the
second term, we may bound the previous display by

//1(x+y§(2N+9)t, Uy <x < v, y < 2N +6)ty)

, -1 i1 yZ—j—l o
[Z(”GN) LG y}d’“dy {10-n
w1
/1(x<(2N+9)t Up < x <vk)Z(l—|— en)’ = o dx
Using the identity
‘izi i1 yt=i-l (x + y)t2
— (-DI¢—j-D! € —2)!

we can rewrite the double sum in square brackets in (10.7) as

=2
Z(1+ N)(f( +y;)‘ —x—y SCveeN(x-i-y) SC

if (x +y) < (2N + 60)t. Evaluating the single sum in the same way, and
throwing away the first restriction on x we see that (10.7) is at most

C// L(up <x < v,y < (2N +0)ty)dxdy
+Cf 1(up < x < v)dx

Recall that vy — uy = 2N + 0)t,,, where 1, = T, — T, is the lifetime of
y, and that our choices in (6.3) imply that (2N + )Ty — 00, to bound the
above by

C(2ZN +0)ty - 2N +0)t,
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Using the last inequality, we see that (10.6) is bounded by
C H
B} (T, < 1) [1+ (y)]
N2y (N) > Yo(N)

lyl-1 un N o )
X k;l(|)/| —k) <—2N +9) 2N +0)ty - 2N _|_9)tV] (10.8)

As before one can condition on everything but 7, and use E2N +0)t, = 1
to get rid of that term. Breaking things down according to the value of
¢ = |y| — 1, separating out the contribution from |y | = 0 and noting that
H(y) =0if |y| = 0, using Zf{:_l(l + £ —k)~4? < Cyy(£), and filling
in the definition of H(y), we see the above is bounded by

CIN

N (NXp(1)} - (1 +EY (14 ex) 1(Tesr < 2N +0)1) Yo(6)

£=0

1 < .
X{H oy 2o+ T = T dﬂD (109)

i=0

It remains to show that the quantities in (10.5) and (10.9) approach 0 as
N — oo. We begin by eliminating the contribution from large £. Standard
large deviations estimates for the sum of exponential mean one random
variables (see Section 1.9 of Durrett (1995a)) imply that

Lemma 10.3. If A > 0 is chosen large enough then for aill

' ( > Hle < @N +0)1) - (1 +ey) ”) =Cp27"

{>AN

Using this result with the trivial fact that m < n implies I', — I';, > O,
shows that the contributions to (10.5) and (10.9) from £ > AN approaches
0 as N — oo. To estimate the contributions from ¢ < AN, we begin with
a simple estimate

Lemma 10.4. If p > 0 there is a constant’, so that ifm > p then
EA+T,)"=<C,A1+m)"?

Proof. By a simple application of Jensen’s inequality we may assume p is a
positive integer. Clearly, E(1 4+ 1I",,) 7 < E(I',,) 7. Integration shows that

0 (m —1)! (m —1)!

m—1

<C,(1+m)” 0
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Let (10.9b) denote the part of (10.9) that comes from £ < AN. Recall
ey = 6/(2N + 6) and hence (1 + ey)4" < C. Using Lemma 10.4 now,
and throwing away the indicator of 'y ; < (2N + 0)¢, we see that (10.9b)
is bounded by

Cty
xNa AN 14+¢—i)" 2
o o (D} Yo(AN) - Z[ WN)B +e—i)” }

The quantity in square brackets is bounded and y(AN) < Cyy(N), so the
above is at most CrNX(])V(l) which approaches 0 as N — oo, and so (10.9)
also approaches 0 as N — oo.

Let (10.5b) denote the part of (10.5) that comes from £ < AN.Recall that
Yo(N) = ¥ (N)/N. Discarding the indicator function of I'y;; < (2N +0)¢t
as above, we may bound (10.5b) by

e i—-1 ¢

Nsz(N)z X' (1) - E[ Y3 Y 1T — T < @N +6)1y)

£=0 i=0 k=—1 j=0

_ —d)2
x (14 Tip1 — Tip) ™2 (14 Tpy — Tjp) / } (10.10)

To attack this we will use the fact that if X is an indicator function (so
X? = X)and Y and Z are nonnegative, then two applications of the Cauchy-
Schwarz inequality imply

E(XYZ) < {EX}/Y{EY?Z*}'/?

< {Ex}l/Z{EY4}1/4E{Z4}1/4

This, together with Lemma 10.4, shows that (10.10) is at most

X %il’(re 1 —Tip1 < 2N +0)wy)'?
N2 A2 +1 — Li+l1 = N
N wO(N) =0 i=0
i—1 l
x> (I+i—kb™2> A +e—j)=?

k=—1 j=0

The sums over j and k are each smaller than Cvo(AN) < C'to(N), so the
above is bounded by

CXN 1
( ) ZZ P(TCo_; < (2N +0)y)"/? (10.11)
£=0 i=0
To deal with this probability, note that a standard large deviations result for
sums of exponentially distributed random variables (again see Section 1.9
of Durrett (1995a)) implies
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Lemma 10.5. There are constant® < y, C < oo so that ifm > 2n then

Py, <n) <Ce

From this it follows that if £ < AN then

4
Z P(T; < 2N +0)t\)? < 22N 4+ 0)ty + AN - Ce Vv CN+O™/2
i=0

Using this in (10.11), then doing the sum over ¢, which gives a factor of
AN, we end up with an upper bound of

Ctn X (D[ty 4+ e VENTOW/2] 5 gas N — oo .

This shows that (10.5) approaches 0 as N — oo and so completes the
proof of Lemma 10.1 and hence the proofs of Lemmas 6.3 and 6.7. This
finishes our treatment of the interference term and hence the proof of our
convergence theorem, Theorem 1.

11. Lower bound on the critical value

Let6 < b, and let & denote the rescaled contact process starting from a sin-
gle particle at the origin. Fix ¢ > 0 and let Z, be the discrete time branching
random walk in which individuals in Z,_; give birth to independent copies
of & and hence multiple occupancy of sites is allowed. We view Z,, as an
integer-valued measure on R?. It is easy to couple &,, and Z, so that Z,
dominates &,;. Here note that particles in the contact processes underlying
Z, only have an offspring suppressed if they jump onto a site occupied by
an offspring of the same parent in Z,_; and there is no such ancestral re-
striction in the suppression of & offspring. If E|§,| < 1, for N sufficiently
large, then the subcritical Galton-Watson branching process Z,, (1) dies out
for large n a.s. and so the same holds true for &,,. Recall 8. is the critical
value of B for which there is positive probability of survival as ¢t — oo for
the contact process starting with a single occupied site. Thus, to prove the
lower bound half of our asymptotics for the critical value in Theorem 2, it
suffices to show

Lemma 11.1. ASN — oo,

E(NXY()|XY = N718)) — e@0" <1

Proof.Let XV (i), i < N bei.i.d.copiesof XV starting from X)) = N5,
and let YN = YN XN(i). Then YN differs from X starting at 8 in that
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jumps onto an occupied site are suppressed only if the two colliding particles
descended from the same ancestor at # = 0 and hence multiple occupancies
are allowed. This in fact simplifies the proof of the main convergence result
(Theorem 1) as Lemma 5.1 is no longer needed since By # 3 is now
incorporated into the killing term K,. As this is the only place the non-
atomic nature of X is used we can drop this restriction, allow Yy = &, and
conclude

Y™ converges weakly to X., super-Brownian starting at &

and with drift 6 — b,

This, combined with the fact that E(Y¥(1)%) < E[X}"™N (1?1 Xg" = 8]
stays bounded as N — oo (see Lemma 2.9), shows that

limy_o E(NXN(D|XY = N718) = limy_oo E(YN (1))

= E(X;(1)) = et |

12. Upper bound on the critical value

Throughout this section we assume 8 > b,. To prove the existence of a non-
trivial stationary distribution and hence derive upper bounds on the critical
value, we will use a rescaling argument to compare the long range contact
process with oriented percolation. To establish the connection we begin by
introducing the lattice on which percolation takes place:

Lo ={(m,n) €Z* :m +niseven,n > 0}

LetT > 0andL = /T € N.Let] = [—L, L]? be the cube of radius L, and
lete; = (1,0, ..., 0) be the first unit vector. It will be convenient to assume
Le, € 7y and so we will only consider N satisfying N'/2*1/4 ¢ Nifd > 3,
and for d = 2 replace (log N)'/? by its integer part in the definition of %y
and throughout the convergence theorem. This will ensure that Z¢ C %y
and in particular Le; € Zy.

Given a realization of the contact process &, and a site (m, n) € ¥y we
will say that m is “occupied” at time n if the contact process when restricted
to I,, = 2Lme, + I, and translated in space to be a function on I, lies
in a set H of “happy” configurations. In words, the set will be chosen so
that (i) if m is occupied at time »n then with high probability m + 1 and
m — 1 will be occupied at time n + 1, and (ii) the events that cause (i) to
occur are determined by the behavior of the contact process modified so that
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particles which land outside of 2Lme; + (—K L, KL) x R4~ are killed,
for some fixed natural number K. The set H will be defined below but for
now we note that the configuration which is 0 on 7 is not in H while the
configuration of all 1’s on [ is.

More formally, we will check the comparison assumptions on p.140 of
Section 4 of Durrett (1995b). Let (0,§) (x) = &(x +y) denote the translation
(or shift) of ¢ by y and oy H = {0, : £ € H}. Foreachy > 0and K € N
we introduce
(CA), k:Foreach & € H there is an event G¢, measurable with respect to
the contact process with killing outside (—K L, K L) x R % [0, T, and
with P(G¢) > 1 — y, so that on G¢, &7 liesin 057, H and in o_;,. H.

Here we consider rescaled &’s which are therefore subsets of %, or
equivalently {0, 1}-valued functions on &y, and identify & with the measure
XN (&) wich assigns mass 1/N to each site in €.

Legal scholars may have noted that page 140 of Durrett instead says
“measurable with respect to the graphical representation,” while in this
paper we have used a branching process construction. However, it is easy
to see that the construction used here has the property that if the space time
boxes are disjoint then the subprocesses that result from the contact process
restricted to these boxes are conditionally independent given their initial
conditions. This is enough so that we can repeat the proof of Theorem 4.3
given in Durrett (1995b) in our new setting, and conclude that if

Xn=1{m:(m,n) € Lo, &1 € UZLmelH}’

then x,, dominates an 2 K -dependent oriented percolation process (see (4.1)
of Durrett (1995b)), W,,, with initial configuration Wy = xo and density at
least 1 — y,i.e., W, C x, foralln > 0.

If, for a fixed value of Ky, we can check (CA), g, for all y > O then
taking é(} (x) = 1 (which is in H and hence assures that xg is the entire
integer lattice) and using Theorem 4.2 in Durrett (1995b) gives

liminf P(O € x,) >0
n—oo

From this and the fact that the configuration which is 0 on [ is not in H it
follows that the upper invariant measure &, must be nontrivial. If not, then
£l =0and

- =

POex,) <PE,r(x) >0forsomex €l) — 0

Thus to complete the proof of the upper bound in Theorem 2 it suffices to
check the comparison assumption.

Intuitively, to verify (CA), g, for the long range contact process, we
will first verify (CA), )2 k, for the limiting super-Brownian motion with
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drift & — b; > 0 and then use our convergence theorem to conclude that if
0 > b, then (CA), g, holds for the contact process for large N. The set of
configurations H that we will choose for the super-Brownian motion X, and
for the rescaled contact processes X, are those that have enough mass and
are not too concentrated. Specifically, u € H if there is a subconfiguration
with corresponding measure v < p withv(I¢) = 0,v(l) = Jy,and Q(v) <
qo, where Q is a quadratic form defined in (12.7) below, Jy is a natural
number selected in Choice 3 below and ¢ is a constant selected in Choice
4 below. Clearly H does not contain the configuration of all 0’s. Moreover
as we will be able to choose ¢ as large as we like and after the choice of Jj
(see Choice 4 below), it is clear that H will contain configuration of all 1’s.

To check the comparison assumption we have to choose our constants to
make the construction successful with high probability. To begin, we note
that the limiting super-Brownian motion with drift & — b, has

E(X7(I)| Xo = 8,) = PT P (Br € I) (12.1)

where B; is a Brownian motion with variance 1/3 per unit time. Easy cal-
culations with the transition probability of Brownian motion show that

liminf inf P,(By € I;) = n > 0 (12.2)

T—oo xel
This brings us to the first of several choices of parameters we will make.

Choice 1.If & > b, we can pickl’ > 1 large enough so that = /T € N
and

inf E(Xr(I)| Xo=13:) =5 (12.3)
xe

To achieve a finite range of dependence in our dominated percolation pro-
cess, we need to impose a cutoff in space. In Bramson, Durrett and Swindle
(1989) this was done by considering a modified contact process in which
particles are killed if they move out of a finite strip. However, having worked
for nine sections to prove the convergence of the rescaled contact process
in the full space to super-Brownian motion, we do not want to repeat the
proof for processes with killing outside of a strip, or ask the reader to believe
we can do so. Thus we will take an approach that only requires use of the
convergence theorem on the whole space. Let X N be the Nth rescaled con-
tact process modified so that particles born outside of (—K L, KL) x R?~!
are immediately killed. Now the number of particles that are lost from the
contact process by this truncation is at most the number that are lost in the
dominating branching process X ?’N (with “drift” 0).

The latter loss is easy to estimate. Let )_(?’N be the Nth branching ran-
dom walk, modified so that no particles are allowed to be born outside of
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(=KL, KL) x R, For this it is well known, see, e.g., Sections 2 and 6
of Bramson, Durrett, and Swindle (1989), that the counterpart of Lemma
2.9 with killing. Namely

E(NXVI)|XgN = N7'8,) =T P(BY € 1) (12.4)

where l_?tN is the random walk that takes jumps uniform on /"y atrate N 46,
and is killed (i.e., sent to the state A) when it leaves (—K L, KL) x R?~1.
Using the L? maximal inequality on the first component of BY it is easy to
see that

Choice 2.If K = K, € N=? is large enoughthen for allN > 1
supe?TP(BY = A) < 1 (12.5)

xel

Having fixed our time horizon 7" and our spatial truncation width Ky, our
next step is to make the success probability high by using initial measures
with large total mass. We do this both for our branching random walks X%V
and super-Brownian motion X.

Lemma 12.1. There is 80 < C < oo so that for all natural numberd
) If X3V (1) = J and XN (1€) = 0 then

P(xXy" = XPMYRH =2J) < C/J .

(b) If Xo(I) = JthenP(Xr(I)) <4J)<C/J.

Proof.(a) An easy calculation using (12.4) with R? in place of ; and (12.5)
shows that

E((x7" = X7")RD) = X" (D
Turning to second moments, we have
E((x3" = X3™) (RN
=EINT?)Y Y 1@ >T. 50 >T)

B~T y~T
Xl(Bf’ B! ¢ (-KL,KL) x RY~! for some s, s’ < T)]

The contribution from indices satisfying y # fBo is at most
[E((X (%’N —-X (%’N )(R%))]?. The contribution from indices satisfying By =
is trivially bounded by
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ENZY Y 1=l >T.5) > T)

B~T y~T

0
— Xg,N(Rd) |:N_1€0T + <1 + ﬁ) 9—1(829T _ eeT)} ,

where we have used a well-known expression for the second moment of a
branching random walk in the last line (see Lemma 2.2 of Bramson, Dur-
rett and Swindle (1989)). The above calculations bound the variance of
X2Y — X9V (R by C(T) X" (RY). The result now follows by Cheby-
chev’s inequality.

(b) This follows by a similar Chebychev argument using (12.3) to get a
lower bound on the mean, and the fact that the variance of X (/) is bounded
by a constant times the initial mass (see Proposition (2.7) of Fitzsimmons

(1988)). |

With Lemma 12.1 in mind and leaving lots of room for errors to accu-
mulate, we can now make

Choice 3.Let C be as in Lemmd2.1, « = y/100 and pick a natural
numberJ, large enough so that'/ Jy < «.

In order for the contact process to be successful at avoiding extinction
with high probability, it is not sufficient that the initial number of particles
is large. Consider for concreteness the situation in d > 3. In this case the
neighborhood /"5 has O (N) particles. If we let the initial state consist of
all the sites in one or more neighborhoods x + /"y then the mass lost due
to births onto occupied sites will result in a devastating decrease. Since we
will not need to know the details, we leave it to the reader to figure out how
much mass is lost and how quickly. To avoid this problem, we let

log(1/llzllec)  for0 < [lzfloc <1
_ 12.
t@ {o ifz=00r||zfle > 1 (12.6)
define the quadratic form
060 = [ [ w@n i@y ey =) (127)

and then consider initial conditions for the contact process that are supported
in I, have X(’)V(I) = Jy, Q(Xév) < M, and, of course, at most one particle
per site. Note that we have set £(0) = 0 to avoid the infinities on the diagonal
x = y when we are dealing with point mass measures.

Using our convergence theorem now with Lemma 12.1 and our choice
of Jo we have



394 R. Durrett, E.A. Perkins

Lemma 12.2. LetM > 1. If N > No(M), X' (I°) = 0, X)) (I) = Jo, and
Q(X}) < M then

P(XY () < 4Jp) <2«

Proof. If not, then there is a subsequence of integers N; 4 oo and asso-
ciated initial conditions Xév * where the probability exceeds 2. Since the
measures X, (I)V “ have support in / and total mass Jj there is a weakly conver-
gent subsequence. The limit must be atomless by Fatou’s lemma, the bound
on Q(Xév ), and the lower semicontinuity of £. Our convergence theorem
shows that (recall /; is defined to be open)

P(Xr(1) = 4do) = limsup P(X}' (1) < 44y ) = 20

k— 00

which contradicts (b) of Lemma 12.1 and the choice of Jj. O

Lemma 12.3. LetM > 1.1f N > N;(M) thenforallx) with X (I°) = 0,
XY (I = Jo,and (X)) < M we have

P(XY (1)) <2Jp) <3«

Proof. As noted above we can bound the amount of mass lost in the contact
process by the mass lost in the branching process, so (a) of Lemma 12.1
implies

P (X7 — X)) =2J4y) <C/Jy

The desired result now follows from Lemma 12.2 and the choice of Jy,. O

Having imposed the condition Q (X (])V ) < M on the initial condition, we
are now obliged to show that with high probability it holds at time 7". To do
this it is enough to show the following result for the dominating branching
random walks X?’N .

Lemma 12.4. For any natural numbey thereis a0 < Cr; < oo andN,
so thatifN > N, then for all X0 with X" (R?) < J we have
EQ(Xy™) < Cry

This should motivate the final
Choice 4.Pickgo > 1 large enough so that' ;,/qo < .
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To verify (CA), k,, for & € H choose v < & as in the definition of H
(considering & as a measure) and let G be the event that, starting with v, our
modified contact process with killing, XV, satisfies Q(X¥) < qo, X¥ (I}) >
Jo, and )?ITV(I_I) > Jo. Here we choose N > Ni(qo) V N2(Jp) so that
Lemmas 12.3 and 12.4 are available with M = gy and J = Jy, respectively.
This modified contact process uses the same exponential variables to jump or
die as the full contact process X starting from £ and so it is readily seen that
the modified process is dominated by X" By using the collection of sites in
XY as our choice of v < X¥, we therefore see that £ € 027, HUG 1., H.
Finally Lemmas 12.3 and 12.4 show that

P(GY) < P(X{ (1) <2JolX) =v) + P(X{(I_y) <2J|X{ =)

+EQXNIXY =v)/q0
<6a+Cry/q <Ta <y

and so (CA), g, holds. Thus the last detail is to complete the

Proof of Lemma 12.4.Using B ~ T as shorthand for 7,5 < T < Ty and
BP #£ A, we have

N2 EQX3M)=E Z 1(B~T,y ~T) £(B" — B?) (12.8)
By

First consider the 8 and y with 8y =i and yp = j where i # j. Imitating
(4.4)—(4.6) we can write (recall ey = 62N +0)~1)

Z Z E((B~T,y ~T) - L(B" — BF))
B:Bo=i y:vo=j

o
—(AN+20)T (4N +20)T)" E

pr ¢(x; —x;i + N2V N)

=) (1+ey)e
n=0

(12.9)

where V¥ is the random walk that stays put with probability 1/2 and with
probability 1/2 takes a jump uniformly distributed over N'/2.1"y.

For all z € Zy we have £(z) < Clog N so large deviations results for
the Poisson distribution imply

> n
(ClogN) - Z (1+epn)" - e—(4N+20)Tw 0
n=2(4N+20)T n!

as N — oo (12.10)
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For the sum over n < 2(4N + 20)T note that (1 + ey)" < Cy, so that part
is bounded by

o

B (4N +20)T)" B

Cry e <4N+29>T—n! Et(x; —x; + N~'2vN)
n=0

= ~1/2
=CrE¢ (xj —x;+ N7V VnAE(4N+29)T))

where 7 (1), u > 0 is a Poisson process with rate one.
Let T, be the time of the first jump of 7 (#). Using (8.7) we can estimate
(recall T > 1)

P(Ty < TN +0), VNunsoor — Vi' €x +[—1,1]9) < CN™9?

Since P(T; > T(2N +6)) < e~ CN+9T considering value of the first jump
shows

—1/2y/N
P(N v, (AN+20)T) —

Ve

< — 12.11
0= Ny Y
Since £ is constant on {x : ||x|l.c = ¢} and decreasing for 0 < ¢ < 1, the
maximum value of E£(x;—x;+N —172 Vﬁ( AN +29)T)) subject to the constraint
on the probabilities in (12.11) can be bounded by

c / / 0y — 0y )y ()

where juy is the uniform distribution on the points of % in [—1, 1]¢. This
easily gives

E¢ (xj —x;i + N—1/2V7£é(4N+29)T)) < C/[ 1 1]Mﬁ(y —x)dxdy (12.12)

We note that as usual the value of C changes from line to line in the above.
Summing over i and j now gives

El Y 1B~T,y~T) B —B|=<Cr(d+{NX;" (DY)

B.v:Bo#vo
(12.13)

Turning to the terms with 8y = yp, we let « = B A y and note that as
£(0) = 0, we take B # y and so k = || < |B| A |y| in the above sum.
Let £ > 1 be such that |8] = k 4+ £ and m > 1 be such that |y| = k + m.
Arguing as in Lemma 4.4, we have
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E Z 1(B~T,y ~ T)(B" — B)|#,

B.v:BAy=a
|Bl=k+¢, |y |=k+m

(N +0)(T = T+
€ —Dlm —1)!

x [EC(NTV2VN 1T < T, T, < &0

< (1 + GN)E—1+m—16—2(2N+9)(T—TO,)(

Summing over the possible values of ¢ and m, changing variables n =
£ + m — 2, and noting

n+1 1 on

Z(n—m+1)!(m—1)!zﬁ ’

m=1

we have

E 1(B~T,y ~T)(B" — BF)|#,

=

4 ey)le UNOTT) (4N + 29}2‘(7" —T)"

1
1

B.y:BA
o0

<>
n=0

x [EC(N"VPVN) (T, < T, T, < &)

Asin (12.10), large deviations results for the Poisson distribution imply that
the sum over n > 2(4N + 26)T is bounded by CeNN(T,<T,T, < ;0?)
for some ¢ > 0. Continuing to reason as in the case By # yy we see that the
sum over n < 2(4N + 26)T is bounded by

Cr EC(NT'PV v ianr-1,y) = CrEL(VN(T — 1))
Repeating the proof of (12.11) now shows that

P(?N(T ~T,) = x) < % - (1 + (4N +260)(T — Ta)>_d/2

Again maximizing with respect to this constraint on the probabilities, gives
E¢(VV(T - T,)

<C ) Wlxllo < (T = T)' L)Y (N) ™!

XEL 4
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(1 4+ 4(N +20)(T — T,)" % + ¢((T = T,)"?)
<CA+«T —-Ty)

Summing over & now gives

E[ Y 1B~T.y~T)sB" - B
B.v:Bo=v0

<Cr(1+E() 1T <T. T < g1 + 6T — T,)

o

It follows from Lemma 3.4(b) that the above equals

T
Cr (1 +f NXSN (1) - (14 6(T —5) - 2N + 9)ds>
0

< Cr(14 N*XxgM (1))

Combining this with (12.13), we have the desired bound on (12.8). This
completes the proof of Lemma 12.4. |
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