Numerical Solution of Hyperbolic Partial Differential Equations


Numerical solution of hyperbolic conservation laws. Conservative difference schemes, modified equation analysis and Fourier analysis, Lax-Wendroff process. Gas dynamics and Riemann problems. Upwind schemes for hyperbolic systems. Nonlinear stability, monotonicity and entropy; TVD, MUSCL, and ENO schemes for scalar laws. Approximate Riemann solvers and schemes for hyperbolic systems. Multidimensional schemes. Adaptive mesh refinement. Prerequisite: Mathematics 561, 563, or consent of instructor. One course. 3 graduate units.

Curriculum Codes