Arlie O. Petters

  • Benjamin Powell Professor of Mathematics in Trinity College of Arts and Sciences
  • Professor of Mathematics
  • Dean of Academic Affairs of Trinity College of Arts and Sciences
  • Associate Vice Provost for Undergraduate Education
  • Professor of Physics (Secondary)
  • Professor of Economics (Secondary)
  • Bass Fellow
External address: 114 Allen Bldg, Durham, NC 27708
Internal office address: Box 90042, Durham, NC 27708-0320
Phone: (919) 684-3465

Research Areas and Keywords

Geometry: Differential & Algebraic
geometric lensing, black holes, extra dimensions, singularities
Mathematical Physics
gravity, light, geometric lensing, stochastic lensing, black holes, extra dimensions, singularities
PDE & Dynamical Systems
gravity, light, mathematical finance
Physical Modeling
gravity, light, geometric lensing, stochastic lensing, black holes, extra dimensions
Probability
stochastic lensing, mathematical finance
Signals, Images & Data
stochastic lensing, mathematical finance
Topology
geometric lensing, black holes, singularities
  • Mathematical Physics
    Mathematics - tools form differential geometry, singularities, and probability theory
    Physics - problems connected to the interplay of gravity and light (gravitational lensing, general relativity, astrophysics, cosmology)

    My current research in mathematical physics is on gravitational lensing, which is the study of how gravity acts on light. In particular, I utilizing weak and strong deflection gravitational lensing to characterize the geometry of spacetime around black holes, test theories of gravity, and probe the nature of dark matter on galactic scales. I employ tools from astrophysics, cosmology, general relativity, high energy physics, and a variety of mathematical fields (e.g., differential geometry, singularities, and probability theory).

    A mathematical theory of gravitational lensing is presented in the monograph:
    Singularity Theory and Gravitational Lensing (A. O. Petters, H. Levine, and J. Wamsbganss).

    Two layman articles about my research are at:
    Ripple Effect (Scott Huler).
    Prescription lens brings spinning black holes into focus (Ashley Yeager).

  • Mathematical and Scientific Methods in Business Administration

    Mathematical finance with applications
    Entrepreneurship and business innovation in STEM fields (developing world)

    By current business administration activities are three-fold. First, I am co-authoring a text on Mathematical Finance with Xiaoying Dong, who is an Adjunct Assistant Professor in our department and a trader for over 20 years. This book is aimed at first year graduate students from mathematics, economics, physics, computer science, and engineering. Second, at Duke's Fuqua School of Business I supervise the finance concentration research projects of Executive M.B.A. students. These projects cover a variety of topics: company valuations, derivatives, portfolio theory, mergers and acquisitions, etc. Third, I am involved with sustainable business and environmentally friendly applications of Science, Technology, Engineering, and Mathematics (STEM) in a developing-world setting that integrates education and entrepreneurship. These efforts are being piloted in Belize in collaboration with the Petters Research Institute and through my appointment with Fuqua. The overall goal is to research innovative ways to help drive national development through applications of STEM tools.

Education & Training
  • Ph.D., Massachusetts Institute of Technology 1991

  • M.A., CUNY Hunter College 1986

  • B.A., CUNY Hunter College 1986

Petters, AO, and Wicklin, FJ. "New Caustic Phenomena for Caustics in Double-Plane Lensing." Astrophysical Applications of Gravitational Lensing, eds. C.S. Kochanek and J.N. Hewitt (Klumer Academic, Dordrecht) (1996). (Academic Article)

Petters, AO, and Witt, H. "Bounds on Number of Cusps Due to Point Mass Gravitional Lenses with Continuous Matter and Shear." J. Math. Phys. 37.2920 (1996). (Academic Article)

Petters, AO, and Wicklin, FJ. "Caustics of the double-plane two-point-mass gravitational lens with continuous matter and shear." MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 277.4 (December 15, 1995): 1399-1403.

Petters, AO. "Multiplane gravitational lensing. I. Morse theory and image counting." Journal of Mathematical Physics 36.8 (1995): 4263-4275.

Petters, AO. "Multiplane gravitational lensing. II. Global geometry of caustics." Journal of Mathematical Physics 36.8 (1995): 4276-4295.

Levine, H, Petters, AO, and Wambsganss, J. "Applications of Singularity Theory to Gravitational Lensing." J. Math. Phys. 34 (1993): 4781-. (Academic Article)

Levine, H, and Petters, AO. "New Caustic Singularities in Multiple Lens Plane Gravitational Lensing." Astron. Astrophys. 272.L17 (1993). (Academic Article)

Petters, AO. "Arnold's singularity theory and gravitational lensing." Journal of Mathematical Physics 34.8 (1993): 3555-3581.

Levine, HI, Petters, AO, and Wambsganss, J. "Applications of singularity theory to gravitational lensing. I. Multiple lens planes." Journal of Mathematical Physics 34.10 (1993): 4781-4808.

Witt, HJ, and Petters, AO. "Singularities of the one- and two-point mass gravitational lens." Journal of Mathematical Physics 34.9 (1993): 4093-4111.

Pages