Ezra Miller
 Professor of Mathematics
Professor Miller's research centers around problems in geometry, algebra, topology, combinatorics, statistics, probability, and computation originating in mathematics and the sciences, including biology, chemistry, computer science, and medical imaging.
The techniques range, for example, from abstract algebraic geometry or commutative algebra of ideals and varieties to concrete metric or discrete geometry of polyhedral spaces; from deep topological constructions such as equivariant Ktheory and stratified Morse theory to elementary simplicial and persistent homology; from functorial perspectives on homological algebra in the derived category to specific constructions of complexes based on combinatorics of cell decompositions; from geodesic contraction applied to central limit theorems for samples from stratified spaces to dynamics of explicit polynomial vector fields on polyhedra.
Beyond motivations from within mathematics, the sources of these problems lie in, for example, graphs and trees in evolutionary biology and medical imaging; massaction kinetics of chemical reactions; computational geometry, symbolic computation, and combinatorial game theory; and geometric statistics of data sampled from highly nonEuclidean spaces. Examples of datasets under consideration include MRI images of blood vessels in human brains, vein structures in fruit fly wings for developmental morphological studies, and weather data.
Pages
Current Graduate Students

Ashleigh Thomas (08/2013  Present)