# Jayce Robert Getz

- Assistant Professor in the Department of Mathematics

**External address:**225 Physics, Duke Mathematics Department, Durham, NC 27708-0320

**Office Hours:**

Hours vary

### Research Areas and Keywords

##### Algebra & Combinatorics

##### Analysis

##### Geometry: Differential & Algebraic

##### Number Theory

Automorphic representations and arithmetic geometry.

Langlands Functoriality in Nonsolvable and Relative Settings awarded by National Science Foundation (Principal Investigator). 2014 to 2018

Getz, J, and Goresky, M.* Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change.* Springer Science & Business Media, March 28, 2012.

Getz, JR, and Hahn, H.* An introduction to automorphic representations with a view towards trace formulae.*. (Textbook)

Getz, JR. "A four-variable automorphic kernel function." *Research in the Mathematical Sciences* 3.1 (December 2016).
Full Text

Getz, JR, and Herman, PE. "A nonabelian trace formula." *Research in the Mathematical Sciences* 2.1 (December 2015).
Full Text

Getz, JR, and Klassen, J. "Isolating Rankin-Selberg lifts." *Proceedings of the American Mathematical Society* 143.8 (April 6, 2015): 3319-3329.
Full Text

Getz, JR, and Hahn, H. "A general simple relative trace formula." *Pacific Journal of Mathematics* 277.1 (2015): 99-118.
Full Text

Getz, JR. "Nonabelian Fourier transforms for spherical representations." *arXiv* (2015).

Getz, JR, and Hahn, H. "Algebraic cycles and tate classes on hilbert modular varieties." *International Journal of Number Theory* 10.1 (February 1, 2014): 161-176.
Full Text

Getz, JR. "Invariant four variable automorphic kernel functions." *arXiv* (2014).

Getz, JR, and Hahn, H. "ALGEBRAIC CYCLES AND TATE CLASSES ON HILBERT MODULAR VARIETIES." *International Journal of Number Theory* 2 (2013): 1-16.

Getz, JR. "An approach to nonsolvable base change and descent." *Journal of the Ramanujan Mathematical Society* 27.2 (2012): 143-211. (Academic Article)

Getz, JR. "Erratum: A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms (Proceedings Of the American Mathematical Society (2004) (2221-2231))." *Proceedings of the American Mathematical Society* 138.3 (2010): 1159--.
Full Text