Robert Calderbank

  • Charles S. Sydnor Professor of Computer Science
  • Professor of Computer Science
  • Director of the Information Initiative at Duke
  • Professor of Electrical and Computer Engineering (Joint)
  • Professor of Mathematics (Joint)
  • Professor of Physics (Secondary)
External address: 140 Science Drive, 317 Gross Hall, Durham, NC 27708
Internal office address: Campus Box 90984, 140 Science Drive, Durham, NC 27708
Phone: (919) 613-7874

Research Areas and Keywords

Algebra & Combinatorics
error-correcting codes, wireless communication, data storage, discrete harmonic analysis, sphere packing, algorithms, data compression, source classification, representation theory
detection and estimation, discrete harmonic analysis
Computational Mathematics
discrete harmonic analysis, algorithms
Number Theory
error-correcting codes, data storage, discrete harmonic analysis, sphere packing, algorithms, representation theory
Physical Modeling
wireless communications, data storage, detection and estimation
error-correcting codes, wireless communications, data storage, detection and estimation, algorithms, data compression, source classification
Signals, Images & Data
error-correcting codes, wireless communication, data storage, discrete harmonic analysis, algorithms, data compression, source classification

Robert Calderbank is Director of the Information Initiative at Duke University, where he is Professor of Electrical Engineering, Computer Science and Mathematics. He joined Duke in 2010, completed a 3 year term as Dean of Natural Sciences in August 2013, and also served as Interim Director of the Duke Initiative in Innovation and Entrepreneurship in 2012. Before joining Duke he was Professor of Electrical Engineering and Mathematics at Princeton University where he also directed the Program in Applied and Computational Mathematics.


Before joining Princeton University Dr. Calderbank was Vice President for Research at AT&T. As Vice President for Research he managed AT&T intellectual property, and he was responsible for licensing revenue. AT&T Labs was the first of a new type of research lab where masses of data generated by network services became a giant sandbox in which fundamental discoveries in information science became a source of commercial advantage


At Duke, Dr. Calderbank works with researchers from the Duke Center for Autism and Brain Development, developing information technology that is able to capture a full spectrum of behavior in very young children. By supporting more consistent and cost-effective early diagnosis, the team is increasing the opportunity for early interventions that have proven very effective.


At the start of his career at Bell Labs, Dr. Calderbank developed voiceband modem technology that was widely licensed and incorporated in over a billion devices. Voiceband means the signals are audible so these modems burped and squeaked as they connected to the internet. One of these products was the AT&T COMSPHERE® modem which was the fastest modem in the world in 1994 – at 33.6kb/s!   


Together with Peter Shor and colleagues at AT&T Labs Dr. Calderbank developed the group theoretic framework for quantum error correction. This framework changed the way physicists view quantum entanglement, and provided the foundation for fault tolerant quantum computation.


Dr. Calderbank has also developed technology that improves the speed and reliability of wireless communication by correlating signals across several transmit antennas. Invented in 1996, this space-time coding technology has been incorporated in a broad range of 3G, 4G and 5G wireless standards. He served on the Technical Advisory Board of Flarion Technologies a wireless infrastructure company founded by Rajiv Laroia and acquired by Qualcomm for $1B in 2008.


Dr. Calderbank is an IEEE Fellow and an AT&T Fellow, and he was elected to the National Academy of Engineering in 2005. He received the 2013 IEEE Hamming Medal for contributions to coding theory and communications and the 2015 Shannon Award.


Education & Training
  • Ph.D., California Institute of Technology 1980

  • M.S., Oxford University (U.K.) 1976

  • B.S., University of Warwick (England) 1975

Wang, L, Carlson, D, Rodrigues, MD, Wilcox, D, Calderbank, R, and Carin, L. "Designed measurements for vector count data." Advances in Neural Information Processing Systems (January 1, 2013).

Duarte, MF, Jafarpour, S, and Calderbank, AR. "Performance of the Delsarte-Goethals frame on clustered sparse vectors." IEEE Transactions on Signal Processing 61.8 (2013): 1998-2008. Full Text

Jacobvitz, AN, Calderbank, R, and Sorin, DJ. "Coset coding to extend the lifetime of memory." Proceedings - International Symposium on High-Performance Computer Architecture (2013): 222-233. Full Text

Nokleby, M, Bajwa, WU, Calderbank, R, and Aazhang, B. "Toward resource-optimal consensus over the wireless medium." IEEE Journal on Selected Topics in Signal Processing 7.2 (January 1, 2013): 284-295. Full Text

Carson, WR, Chen, M, Rodrigues, MRD, Calderbank, R, and Carin, L. "Communications-inspired projection design with application to compressive sensing." SIAM Journal on Imaging Sciences 5.4 (2012): 1182-1212. Full Text Open Access Copy

Wu, Y, Jia, T, Calderbank, R, Duel-Hallen, A, and Hallen, H. "Enabling code diversity for mobile radio channels using long-range fading prediction." IEEE Transactions on Wireless Communications 11.12 (2012): 4362-4371. Full Text

Jacobvitz, AN, Calderbank, R, and Sorin, DJ. "Writing cosets of a convolutional code to increase the Lifetime of Flash memory." 2012 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012 (2012): 308-318. Full Text

Duarte, MF, Matthews, TE, Warren, WS, and Calderbank, R. "Melanoma classification from hidden Markov tree features." ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (2012): 685-688. Full Text

Harms, A, Bajwa, WU, and Calderbank, R. "Rapid sensing of underutilized, wideband spectrum using the Random Demodulator." Conference Record - Asilomar Conference on Signals, Systems and Computers (2012): 1940-1944. Full Text

Calderbank, R, and Jafarpour, S. "Finding needles in compressed haystacks." ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (2012): 3441-3444. Full Text


Zoltowski, MD, Qureshi, TR, Calderbank, R, and IEEE, . "Channel Estimation for MIMO-OFDM using Complementary Codes." 2009.

Calderbank, R, Howard, S, Jafarpour, S, and IEEE, . "A Sublinear Algorithm for Sparse Reconstruction with (2) Recovery Guarantees." 2009.

Chi, Y, Calderbank, R, Pezeshki, A, and IEEE, . "Golay Complementary Waveforms for Sparse Delay-Doppler Radar Imaging." 2009.

Souvik, D, Thangaraj, A, McLaughlin, SW, and Calderbank, AR. "Linear-time decodable secrecy codes for binary erasure wiretap channels." January 1, 2005.

Ashikhmin, A, and Calderbank, AR. "The first order space-time reed-muller codes." January 1, 2005.

Diggavi, S, Dusad, S, Calderbank, AR, and Al-Dhahir, N. "On embedded diversity codes." January 1, 2005.

Calderbank, R, Das, S, Al-Dhahir, N, Diggavi, S, and IEEE, . "A novel full-rate full-diversity STBC with application to WiMAX." 2005.

Das, S, Al-Dhahir, N, Diggavi, S, Calderbank, R, and IEEE, . "Opportunistic space-time block codes." 2005.