Part I: 6 points each, do all 6 questions

1. State and prove the alternating series test for convergence of series. You may assume the comparison test.

2. Find a solution of the form \(u(t) = \sum_{k=1}^{\infty} u_k \sin(kt), \ \{u_k\}_{k=1}^{\infty} \subset \mathbb{R}, \) to the equation
\[-u''(t) + u(t) = 1, \quad \text{and} \quad u(0) = u(\pi) = 0. \]

3. Let \(\{q_n\}_{n=1}^{\infty} \) be an enumeration of the rational numbers in \([0, 1].\) Let \(t_n(x) = 0 \) for \(x \in [0, q_n) \) and \(t_n(x) = \frac{1}{n^2} \) for \(x \in [q_n, 1]. \) Set \(h(x) := \sum_{n=1}^{\infty} t_n(x). \) Prove \(h \) is continuous at every irrational number.

4. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be \(C^3. \) Prove
\[\lim_{r \to 0} \frac{1}{2\pi} \int_0^{2\pi} \left(f(a + r \cos(\theta), b + r \sin(\theta)) - f(a, b) \right) d\theta = \frac{f_{xx}(a, b) + f_{yy}(a, b)}{4}. \]

5. Let \(\{x_n\}_{n=1}^{\infty} \) and \(\{y_n\}_{n=1}^{\infty} \) be two bounded sequences of real numbers. Prove or give a counter example: \(\limsup_{n \to \infty} (x_n + y_n) = \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n. \)

6. Let \(\{f_n\}_{n=1}^{\infty} \subset C([0, 1], \mathbb{R}) \) be a monotone increasing sequence of continuous functions which converges pointwise to a continuous function \(g. \) Prove \(f_n \to g \) uniformly.

Part II: 10 points each. Do all 6 questions.

1. Let \(g : \mathbb{Z}^2 \to \mathbb{R}. \) For which \(p \) does the inequality \(|g(k)| \leq c(1 + |k|)^{-p}, \forall k, \) imply \(\sum_{k \in \mathbb{Z}^2} g(k) < \infty? \) Justify.

2. Let \(\phi : \mathbb{R} \to [-1, 1] \) be \(C^1. \) Let \(\{a_k\}_{k=1}^{\infty} \subset \mathbb{R}. \) Set
\[b(x) := \sum_{k=0}^{\infty} a_k \phi(kx). \]
Suppose that \(b \) is discontinuous at \(x = 1. \) Prove \(\limsup_{k \to \infty} k^2 |a_k| = \infty. \)

3. For each \(p \geq 1, \) define complete normed vector spaces \((l_p, \|\|_p) \) consisting of sequences \(s = \{s_k\}_{k=1}^{\infty} \) such that \(\|s\|_p := \left(\sum_{k=1}^{\infty} |s_k|^p \right)^{1/p} < \infty. \) One can show (but don’t today) that if \(v \in l_1 \) and \(a \in l_p, \) then the new sequence \(v * a \) defined by \((v * a)_k = \sum_{j=1}^{\infty} v_j a_{k-j} \) lies in \(l_p \) with \(\|v * a\|_p \leq \|v\|_1 \|a\|_p. \) Suppose that \(\|v\|_1 \leq \frac{1}{2}. \) Let \(f \in l_p. \) Show that there exists \(a \in l_p \) such that
\[a + v * a = f. \]

4. Let \(f : \mathbb{R}^4 \to \mathbb{R}^2 \) be given by \(f(x, y, z, w) = (2e^x + y^2 - 3, y \cosh(x) - 4x + 2z - w). \) Then \(f(0, 1, 2, 3) = (3, 2). \) Show that there exists a smooth function, \(g(z, w), \) defined near \((2, 3)\) such that \(g(2, 3) = (0, 1) \) and \(f(g(z, w), z, w) = (3, 2). \) Compute \(dg(2,3). \)

5. Let \(X \) denote the space of continuous functions from \([0, 1] \to \mathbb{R}. \) Let \(B_0(R) = \{ f \in X : \max |f(x)| \leq R \}. \) Is \(B_0(R) \) compact for \(R < \infty? \) Justify.

6. Prove that given \(f \in C([0, 1], \mathbb{R}) \) and \(\epsilon > 0, \exists \{a_j\}_{j=0}^{N} \) (\(N \) depending on \(\epsilon, f) \) such that
\[|\sum_{j=0}^{N} a_j e^{ix} - f(x)| < \epsilon, \forall x \in [0, 1]. \]