EXAM 1

Math 212, 2016 Summer Term 1, Clark Bray.
You have 75 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad

1. \qquad
"I have adhered to the Duke Community
Standard in completing this examination."
2. \qquad
Signature: \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
Total Score \qquad (/100 points)
8. \qquad
9. (6 pts) The current in a river is flowing at $5 \sqrt{2}$ feet per second directly northeast. Bob is in a boat whose velocity relative to the water (boat velocity minus water velocity) that is $3 \sqrt{2}$ feet per second directly northwest. He then aims directly south and tosses a rock at 10 feet per second and hits a tree on the side of the river. What is the (horizontal) speed of the rock when it hits the tree?
10. (8 pts) Is the listing $(1,3,2),(2,4,2),(1,0,3)$ in right hand order, left hand order, or neither? And what is the volume of the parallelepiped defined by these three vectors?
11. (12 pts) Derive the spherical coordinates equation for the sphere of radius 3 centered at $(3,0,0)$.
12. (12 pts) The line L has symmetric equations below.

$$
\frac{x-3}{2}=y+1=2 z-6
$$

and the plane P has equation $3 x-2 y+z=6$
Find the equation for the plane through the origin that is parallel to L and perpendicular to P.
5. (13 pts) The ellipsoid S with equation below can be obtained from the unit sphere by way of any of several sequences of geometric transformations. Identify such a sequence of transformations, including both the transformations and the order in which they are applied.

$$
(3(x-2))^{2}+\left(\frac{y}{4}\right)^{2}+z^{2}=1
$$

6. (12 pts) The surface S is parametrized by $\vec{x}(u, v)=(u-v, u+v, 6 u-8 v)$. Find the function f whose graph is S, and identify the domain and the target of f.
7. (12 pts) Compute the limit below or show that it does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{4}}
$$

8. (13 pts) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and the information below is given:

$$
T\left(\vec{v}_{1}\right)=\binom{1}{2}, \quad T\left(\vec{v}_{2}\right)=\binom{4}{3}, \quad\binom{1}{0}=3 \vec{v}_{1}-2 \vec{v}_{2}, \quad\binom{0}{1}=\vec{v}_{1}+\vec{v}_{2}
$$

Find the matrix A that represents T.
9. (12 pts) A particle is moving with position given by $\vec{x}(t)=\left(t, t^{2}-2 t, 4 t^{2}\right)$. Find the velocity and the acceleration of the particle at the point $(3,3,36)$.

