EXAM 2

Math 212, 2020 Summer Term 1, Clark Bray.

Name: Solutions	Section:	Student ID:
GENERAL RULES		
YOU MUST SHOW ALL WORK AND EXPLAIN ALL CLARITY WILL BE CONSIDERED IN GRADING.	REASONING	TO RECEIVE CREDIT.
No calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpages are in effect on this exam.		
WRITING RU	ULES	
Use black pen only. You may use a pencil for initial sketches of diagrams, but the final sketch must be drawn over in black pen and you must wipe all erasure residue from the paper.		
DUKE COMMUNITY STANI	JARD STATI	EMENT
"I have adhered to the Duke Community Stand	ard in completi	ng this examination."
Signature:		

1. (10 pts) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(x,y) = (x+|y|,y). Is f directional linear at the origin? Prove or disprove.

On
$$x=0$$
, $f(o,y)=(|y|,y)$. If it were to exist we would need

$$\frac{\partial}{\partial y}\Big|_{(o,o)} f(x,y) = \frac{\partial}{\partial t}\Big|_{t=o} (|t|,t)$$

$$= (\frac{\partial}{\partial t}\Big|_{t=o} |t|, \frac{\partial}{\partial t}\Big|_{t=o} t)$$
But $\frac{\partial}{\partial t}\Big|_{t=o} |t|$ does not exist. So at (o,o) f is not partial differentiable, and thus not directional linear.

2. (10 pts) The function $g: \mathbb{R}^2 \to \mathbb{R}^1$ is differentiable, and for the vectors $\vec{v} = (1, 2)$ and $\vec{w} = (0, 2)$ we know the directional derivatives $D_{\vec{v}}g(\vec{a}) = 5$ and $D_{\vec{w}}g(\vec{a}) = 3$. Find the Jacobian matrix $J_{g,\vec{a}}$.

$$\frac{\partial}{\partial x} = J_{g} e_{1} = J_{g} (\vec{v} - \vec{w}) = D_{g} - D_{g} g = 2$$

$$\frac{\partial}{\partial x} = J_{g} e_{1} = J_{g} (\vec{v} - \vec{w}) = D_{g} - D_{g} g = 2$$

$$\frac{\partial}{\partial x} = J_{g} e_{2} = J_{g} (\frac{\vec{w}}{2}) = \frac{1}{2} D_{g} g = \frac{3}{2}$$
Then
$$J_{g, \vec{a}} = \left(\frac{\partial g}{\partial x} (\vec{a}) + \frac{\partial g}{\partial y} (\vec{a})\right) = \left(2 - \frac{3}{2}\right)$$

3. (10 pts) Suppose that x and y are the usual functions of the polar coordinates r and θ , and w is continuously twice differentiable function of x and y. Find a fully simplified expression for

$$= (L \cos \theta)(M^{xA}M + M^{x}M^{A}) - (L \sin \theta)(M^{x}M + M^{x}M^{x})$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{xx}(L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(L \cos \theta))$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(M^{x}(-L \sin \theta) + M^{x}(-L \cos \theta))M$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \sin \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \cos \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{xx}(-L \cos \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{x}(-L \cos \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{x}(-L \cos \theta) + M^{x}(-L \cos \theta))M + M^{x}(-L \cos \theta)$$

$$= (M^{x}(-L \cos \theta) + M^{x}(-L \cos$$

4. (10 pts) The function $f: \mathbb{R}^3 \to \mathbb{R}^1$ is continuously differentiable, and we know that at the point \vec{a} we have $\nabla f(\vec{a}) = (2, 1, 0)$.

On the level set passing through \vec{a} , decide which of $\frac{\partial x}{\partial y}$ and $\frac{\partial z}{\partial x}$ must exist and compute if possible.

$$\frac{\partial f}{\partial x}(\vec{a}) = 2 \neq 0 \text{, so } \times \text{ is a differentiable function}$$
of y and z locally, and
$$\frac{\partial x}{\partial y} = -\frac{\partial f}{\partial y} = -\frac{1}{2}$$

$$\frac{\partial f}{\partial z} = 0$$
, so z need not be a function of x and y locally.

5. (15 pts) The domain D is bounded by the surfaces $x - 2y^2 - z^2 = 0$ and $x + y^2 + 2z^2 = 12$, and mass is distributed through D with density $\delta = e^x$. Set up, but do not evaluate, a triple nested integral representing $\iiint_D e^x dV$.

$$X_1 = 2y^2 + z^2$$

$$X_2 = |2 - Y^2 - 2Z^2$$

$$3y^2+3z^2=12 \implies y^2+z^2=4$$

Slicing with dydz on the outside, we have

$$\iint_0 e^x dv = \int_{-2}^2 \int_{-\sqrt{4-z^2}}^{\sqrt{4-z^2}} \int_{2y^2+z^2}^{\sqrt{2-2z^2}} e^x dx dy dz$$

6. (25 pts) The ellipsoids in xyz-space have equations $x^2 + y^2 + 4z^2 = 4$ and $x^2 + y^2 + 4z^2 = 9$. The solid region between these two ellipsoids is R. Compute the integral over R of the function $g(x,y,z) = x^2 + y^2 + 4z^2 - x - 1$. (Hint: Use a change of variables to turn the domain into a more convenient shape.)

$$\frac{\partial (x,y,z)}{\partial (x,y,z)} = \frac{\partial (x,y,z)}{\partial (x,y,z)} = \frac{1}{2}$$

$$\frac{\partial (x,y,z)}{\partial (x,y,z)} = \frac{1}{2}$$

$$\iint_{R} g(x,y,z) dxdydz = \iint_{0} (x^{2}+y^{2}+4z^{2}-x-1) \left| \frac{\partial(x,y,z)}{\partial(u,y,w)} \right| dududw$$

$$= \iint_D \left(u^2 + v^2 + w^2 - w - 1 \right) \left(\frac{1}{2} \right) du du dw$$

$$A = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{2}^{3} \frac{1}{2} e^{4} \sinh d\rho d\theta = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{1}{10} e^{5} \sinh \frac{1}{10} e^{-2} d\theta d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \frac{211}{10} \sinh d\theta d\theta = \frac{844\pi}{10} = \frac{422\pi}{5}$$

$$B = -\frac{1}{2} \iiint u \, du$$
, consider reflection through the VW -plane, $R(u,v,w) = (-u,v,w)$.

$$f(u,v,w) = u$$
 has old symmetry because

$$f(R(n,n,m)) = f(-n,n,m) = -m = -f(n,n,m)$$

And D is symmetric through the same plane.

$$C = -\frac{1}{2} \iiint_{0} 1 \, dV = -\frac{1}{2} \left(v \, dv \, dw \, e \, f \, D \right)$$

$$= -\frac{1}{2} \left(\frac{4}{3} \pi \left(3 \right)^{3} - \frac{4}{3} \pi \left(2 \right)^{3} \right)$$

$$= -\frac{38 \pi}{3}$$

So the integral is

$$A+B+C = \frac{422\pi}{5} - \frac{38\pi}{3}$$

7. (20 pts) The plane P has equation 3x - 2y + 5z = 1, and the surface S is the part of P with $0 \le y \le 1$ and $0 \le z \le 2$. Compute the integral over S of the function f(x, y, z) = y.

We parametrize using
$$X = \frac{1+2y-5z}{3}$$
 to get
$$\begin{pmatrix} X \\ Y \\ z \end{pmatrix} = \begin{pmatrix} (1+2y-5y)/3 \\ y \\ y \end{pmatrix} \Rightarrow X_{M} = \begin{pmatrix} 2/3 \\ 1 \\ 0 \end{pmatrix}, \ \vec{X}_{N} = \begin{pmatrix} -5/3 \\ 0 \\ 1 \end{pmatrix}$$

$$\Rightarrow \vec{N} = \begin{pmatrix} 1 \\ -2/3 \\ 5/3 \end{pmatrix} \Rightarrow |\vec{N}| = \frac{\sqrt{38}}{3}$$

Then
$$\iint_{S} y \, dS = \int_{0}^{2} \int_{0}^{1} y \, \|\vec{n}\| \, du \, dv$$

$$= \int_{0}^{2} \int_{0}^{1} \frac{\sqrt{38}}{3} \, \mu \, du \, dv$$

$$= \frac{\sqrt{38}}{6} \int_{0}^{2} (\mu^{2})_{n=0}^{n=1} \, dv$$

$$= \frac{\sqrt{38}}{8}$$