EXAM 2

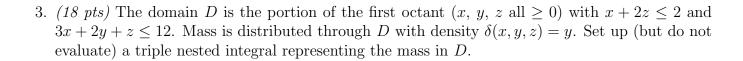
Math 212, 2020 Summer Term 2, Clark Bray.

Name:	Section:	Student ID:
GENERAL	RULES	
YOU MUST SHOW ALL WORK AND EXPLAIN A		G TO RECEIVE CREDIT.
No calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpaş	ges are in effect or	this exam.
WRITING	RULES	
Use black pen only. You may use a pencil for initial sdrawn over in black pen and you must wipe all erasu	9	
DUKE COMMUNITY STA	ANDARD STAT	TEMENT
"I have adhered to the Duke Community St	andard in comple	ting this examination."
Signature:		-

1.	(24 pts) In this question we consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x,y) = (xy, \sin(\pi xy^2)) =$
	(f_1, f_2) near the point $\vec{a} = (2, 1)$ in its domain.

(a) Compute the directional derivative of f at \vec{a} with velocity $\vec{v}=(3,4)$ directly from the definition.

(b) Compute the same directional derivative from part (a) using the derivative transformation.


(c) In what direction from \vec{a} is the component function f_1 increasing the fastest? And, what is the slope of the graph of f_1 in that direction?

2. $(20 \ pts)$ The quantities E, θ, a, b, x, y, z related to the design of an electric motor are related by the equation

$$E = a^2bx - 3ab^2y + \theta xyz^2$$

(a) In considering one aspect of the motor, with $\theta=\pi,\ a=1,\ b=2,\ x=3,\ y=4,\ z=5$ we view $x,\ y,$ and z as being fixed and the others as variables. Suppose that $\frac{d\theta}{dt}=6$ and $\frac{da}{dt}=7;$ what should $\frac{db}{dt}$ be in order to cause the rate of change of E to be 8?

(b) Now viewing a, x, and y as fixed and the others as variables, suppose we wish to consider the consequences of also fixing E. If we do so, then (using the values noted above) what is $\frac{d\theta}{dz}$?

4. (18 pts) R is the rectangle with vertices at (1,1), (3,1), (1,2), (3,2), and $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation represented by

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Suppose D is the image of R by T. Compute $\iint_D x \, dx \, dy$.

- 5. (20 pts) Let M be the solid defined by $z^2 \le x^2 + y^2$ and $x^2 + y^2 + (z-1)^2 \le 1$.
 - (a) Set up but do not evaluate a triple nested integral in spherical coordinates representing $\iiint_M x^2yz\,dx\,dy\,dz.$

(b) Compute the value of $\iiint_M x^2 yz \, dx \, dy \, dz$ using any method from this course.