1. (20 pts) We consider here the points $\vec{a}=(1,0,0), \vec{b}=(0,1,0), \vec{c}=(0,0,1), \vec{k}=(3,3,6)$. (A) Find the magnitude of the vector \vec{d} represented by the arrow with tail at \vec{a} and head at \vec{k}. (B) Find a vector \vec{p} perpendicular to the plane P containing $\vec{a}, \vec{b}, \vec{c}$. (C) Find the equation of the plane Q that is parallel to P and contains \vec{k}. (D) Find $\vec{d} \cdot \vec{p}$ as part of a computation of the distance from \vec{k} to P.
2. (20 pts) (A) Identify a standard curve of high school algebra and an explicit, ordered sequence of geometric transformations on it by which you can produce the surface S with equation $4 x^{2}+z^{2}=e^{2 y-3}$. (B) Cross sections of S parallel to one of the coordinate planes give ellipses; identify which coordinate plane this is.
3. (20 pts) (A) The surface S has equation $x e^{y}+y^{2} z=z^{3}$. Find functions f, g, and h, along with their domains and targets, for which S is the graph, a level set, and an image (respectively). (B) Parametrize the curve that is the intersection of S with the cylinder $y^{2}+z^{2}=9$.
4. (20 pts) T is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3}, and we know $T(1,4,2)=(3,2,5), T(0,1,2)=(1,0,1)$, $T(0,0,1)=(1,1,1)$. (A) Find the matrix representing T. (B) Find the matrix representing $T \circ S$, where S reflects vectors through the plane $x=y$.
5. (20 pts) Compute directly from the definition the directional derivative $D_{\vec{v}} g(\vec{a})$, where $\vec{a}=\overrightarrow{0}, \vec{v}=(2,3)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $g(x, y)=\left(x e^{y}, y \sin x\right)$.
