1. (20 pts) We consider here the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=\frac{x y^{2}-x^{3}}{x^{2}+1}$. (A) Show that f is continuously differentiable. (B) What is the most immediate argument to show that f is also differentiable? (C) Use the most efficient argument to compute the unit directional derivative of f at the point $(1,2)$ in the direction from there toward the point $(5,5)$. (D) In what direction from $(1,2)$ is f increasing the most quickly?
2. (20 pts) Suppose f and g are differentiable, with $f(x, y)=(u, v)$ and $g(u, v)=(s, t)$, and $f(3,2)=(5,3)$, and $J_{f,(3,2)}=\left(\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right)$ and $J_{g,(5,3)}=\left(\begin{array}{ll}5 & 2 \\ 2 & 3\end{array}\right)$. (A) Compute $\frac{\partial s}{\partial y}$. (B) Bob says he would like to hold s constant and compute $\frac{d y}{d x}$; give an appropriate argument to help Bob as best you can.
3. (15 pts) The solid domain D is defined by $x+y+z \leq 3, x \geq 0, y \geq 0, y+z \leq 2, y \leq z$. Write $\iiint_{D} e^{x} d V$ as a triple nested integral (but do not evaluate!).
4. (25 pts) The ball B is centered at the origin with radius 3. The solid domain D is the part of B above both $y=z$ and $y=-z$. We are interested in computing the integral $I=\iiint_{D} z d V$. (A) Use a rotation as a change of variables to relate I to an integral over a new domain Q that would be more convenient for use with spherical coordinates. (B) Write the integral over Q from (A) in spherical coordinates, and compute I.
5. (20 pts) The curve C is the first quadrant portion of the circle centered at $\overrightarrow{0}$ of radius 3 . (A) Write a single variable integral (but do not compute!) representing $\int_{C} x^{2} d s$. (B) Use symmetry to show that $\int_{C} x^{2}-y^{2} d s=0$ and thus $\int_{C} x^{2} d s=\int_{C} y^{2} d s$. (C) Use the result of (B) and the fact that $x^{2}+y^{2}$ is constant on C to compute $\int_{C} x^{2} d s$ without directly computing the single variable integral from (A).
