1. (24 pts) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by $f(x, y)=\left(x y^{3}, y e^{x}, x+y\right)=\left(f_{1}, f_{2}, f_{3}\right)$. (A) Show that f is differentiable. (B) Compute $D_{\vec{v}} f(\vec{a})$ with $\vec{a}=(0,2)$ and $\vec{v}=(1,3)$. (C) Considering the surface with equation $z=f_{2}(x, y)$ at the point where $x=0$ and $y=2$, in what direction is z increasing the fastest, and how steep is the surface in that direction?
2. (20 pts) The functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ are defined by $f(x, y)=(x y, x+y)$ and $g(x, y)=\left(2 x y, x^{2}-x y, x^{3}\right)$. (A) Without composing these functions directly, find the Jacobian matrix for the composition $h(x, y)=(g \circ f)(x, y)=\left(h_{1}, h_{2}, h_{3}\right)$ at the point $(1,2)$. (B) Does the curve with equation $h_{2}(x, y)=h_{2}(1,2)$ allow for viewing y as a function of x near $(1,2)$?
3. (16 pts) The region R is the tetrahedron with vertices at $(0,0,1),(0,0,2),(1,1,0)$, and $(-1,1,0)$. Mass is distributed through R with density $\delta(x, y, z)=1+\sin (x y z)$. Write (but do not evaluate) a triple nested (iterated) integral representing the mass in the region R.
4. (24 pts) In $u v w$-space, the line segment S goes from $(0,0,0)$ to $(1,2,3)$. The solid M has horizontal $(w=c)$ cross sections that are disks of radius 2 with their centers all on S. The image of M by the linear transformation $L(u, v, w)=\left(u-\frac{1}{3} w, v-\frac{2}{3} w, w\right)=(x, y, z)$ is a right cylinder R in $x y z$-space whose axis is the z-axis. (A) Compute the Jacobian determinant of L. (B) Compute $\iiint_{M} u d u d v d w$.
5. (16 pts) The hyperbolic paraboloid H has equation $z=6+2 y^{2}-x^{2}$. The solid ellipse E in the $x y$-plane is described by $x^{2}+4 y^{2} \leq 4$. A potato chip is in the shape P that is the part of H sitting above E. (A) Write (but do not yet evaluate) a double nested (iterated) integral representing the area of P. (Bonus (10 pts):) Compute the area of P.
