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Abstract

It is possible to construct a figure in 3 dimensions which is combinatorially

equivalent to a regular icosahedron, and whose faces are all congruent but not

equilateral. Such icosamonohedra can be convex or nonconvex, and can be

deformed continuously. A scalene triangle can construct precisely zero, one,

or two convex icosamonohedra, and each occurs. Demonstrated here are two

explicit convex examples, the first of which is the unique such object constructed

from scalene right triangles, proving a conjecture of Banchoff and Strauss.

1 Introduction: Monohedra

A monohedron is essentially a 3-polyhedron whose faces are all congruent. The fol-
lowing conventions allow for more precision in certain cases where adjacent faces are
coplanar. A polyhedron is bounded and 3-dimensional, but not necessarily convex
(e.g. for Corollary 5.2). Each polyhedron P in this paper is endowed with a polytopal
subdivision [Z, Example 5.2] of each of its facets, although these are often trivial. The
terms facet and ridge will refer to maximal and 1-dimensional cells of the unsubdivided
boundary complex of P . These are to be distinguished from the faces and edges of P ,
which will refer to maximal and 1-dimensional cells of any of the facet subdivisions.
In the sequel, congruences are not required to preserve orientation.

Definition 1.1 With the conventions above, a polyhedron P with its facet subdivisions
is called a monohedron if all of its faces are congruent to a single face T . P is said
to have protoface T .

Monohedra, particularly convex monohedra, have been objects of interest since
ancient times, when the five Platonic solids were first described. Three of these solids
have triangular faces, and it would seem natural to attempt a classification of convex
monohedra with equilateral triangular faces; yet this elementary task was published
only in 1947 by B. L. van der Waerden and H. Freudenthal [FW]. The step taken here
is to forgo the requirement that the faces be equilateral.

In particular, this paper deals with scalene icosamonohedra: monohedra com-
binatorially equivalent to the regular icosahedron with scalene triangular protoface.
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Figure 1: (i) Tricoloring at a vertex and (ii) Schlegel diagram of the icosahedron.

Combinatorial issues are dealt with in Section 2, giving rise to the coordinatization
for an icosamonohedron in Section 3. Then, through continuous deformation from the
regular case, the question of which triangles may be used to construct icosamonohe-
dra (particularly convex ones) is examined. A measure of uniqueness is demonstrated
in Theorem 4.2, alongside a subtle asymmetry concerning the interaction of combi-
natorics and geometry in determining how a triangle can be used to construct an
icosamonohedron. Two explicit convex scalene icosamonohedra are constructed in
Sections 5 and 6. The first has right triangular protoface, and although this scalene
right icosamonohedron (Section 5) was discovered by Banchoff and Strauss [BS], their
conjecture of its uniqueness is proven here for the first time. The example presented
in Section 6 is entirely new.

2 Tricolorings

In order to be able to construct any scalene icosamonohedron, it must be possible to
color the edges of a regular icosahedron in such a way that each face has its three
edges colored differently; each color then represents the length of the edge to which it
is assigned. Such a labelling is called a tricoloring.

Proposition 2.1 There exists a tricoloring of the icosahedron. Furthermore, all tri-
colorings of the icosahedron are combinatorially equivalent.

Proof: Using only the rule that each triangle is tricolored, it is easy to check that
the pattern in Figure 1(i) is forced at each vertex of the icosahedron. Note that
triangle (∗) in Figure 1(i) is oriented differently from the rest. Every vertex contains
exactly one such triangle, and we call this triangle the minority triangle at that vertex.
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Figure 2: The two attempts to give orientations to the faces of an icosahedron.

Furthermore, we may assume by symmetry that the central triangle T1 in Figure 1(ii)
is the minority triangle of vertex A. Because B contains T1 and a triangle T2 of
opposite orientation, either T1 or T2 is the minority triangle of B.

If T2 is the minority triangle at B, we examine (in order) the orientations of all
triangles contained by vertices B, C, D, E, F , and G which are forced by the rule
that each vertex contains exactly one minority triangle. Then vertex H is forced to
have two triangles of one orientation and two of another, as in Figure 2(i). If T1 is the
minority triangle at B, we find by the same process that either T3 or T4 of Figure 2(ii)
is the minority triangle at H . Neither choice leads to a contradiction; in fact, a choice
of tricoloring for T1 and minority triangle at H determines uniquely a tricoloring of the
entire Schlegel diagram. In particular, there are at most two tricolorings, namely the
two shown in Figure 3. However, after reflecting and switching the dashed segments
for the dotted ones, we see that these two diagrams are combinatorially equivalent,
proving the proposition. �

3 Coordinatization of Icosamonohedra

The regular icosahedron may be thought of in coordinates as the convex hull of the
twelve points

P1(τ,−1, 0) P2(τ, 1, 0) P11(−τ,−1, 0) P12(−τ, 1, 0)
P3(0, τ,−1) P4(0, τ, 1) P9(0,−τ,−1) P10(0,−τ, 1)
P5(−1, 0, τ) P6(1, 0, τ) P7(−1, 0,−τ) P8 (1, 0 ,−τ)

,

where τ = 1+
√

5

2
. Edges such as P1P2 which intersect coordinate axes will be called

axial segments, and may be referred to by the axis that they cross, so that P1P2 is an
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Figure 3: Two candidates for tricolorings of the icosahedron.

x-axial segment. Due to symmetry of the regular icosahedron, we may take D, E, and
C from Figure 2(ii) to be P2, P4, and P6 respectively (superimposing Figures 2(ii)
and 3(ii)), thus fixing a tricoloring and coordinatization as in Figures 3(ii) and 4.
Half-turns about any of the coordinate axes fix this tricoloring (this is much easier to
see on a 3-dimensional representation, but Figure 4 helps).

Any Euclidean motion ϕ of R3 which induces a symmetry of a tricolored regular
icosahedron also induces a symmetry of any convex icosamonohedron P with that tri-
coloring, by the rigidity theorem of Cauchy [L, p. 60]: Two 3-polytopes with congruent
and similarly situated facets have equal dihedral angles. Indeed, the action of ϕ on the
tricolored regular icosahedron induces the desired correspondence between the facets
of P and those of ϕ(P ). In particular, half-turns about coordinate axes have this
property. It follows that in any convex icosamonohedron, each axial segment remains
parallel to the appropriate coordinate plane. In fact, if we let Vi on an icosamonohe-
dron correspond to Pi on the regular figure, we may (by Proposition 2.1) coordinatize
any convex scalene icosamonohedron (if it exists) by using only nine variables with
nine constraints. The vertices are then:

V1(xx,−yx,−zx) V2(xx, yx, zx) V11(−xx,−yx, zx) V12(−xx, yx,−zx)
V3(−xy, yy,−zy) V4(xy, yy, zy) V9(xy,−yy,−zy) V10(−xy,−yy, zy)
V5(−xz,−yz, zz) V6(xz, yz, zz) V7(−xz, yz,−zz) V8(xz,−yz,−zz)

.

In order for these to determine an icosamonohedron, we require all edges of the
same color as the ℓ-axial segment to have length 2eℓ, where ℓ ∈ {x, y, z}. Thus, with
di,j denoting the distance from Vi to Vj, we have the equalities

d1,2 = d2,3 = d4,6 = 2ex, d3,4 = d4,5 = d6,2 = 2ey, d5,6 = d6,1 = d2,4 = 2ez,

whence (d2,3)
2 − (d2,4)

2 = 4e2
x − 4e2

z ⇒

xxxy + zxzy = e2

x − e2

z ; (1)
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Figure 4: Tricoloring and parametrization of the icosamonohedron.

(d4,5)
2 − (d4,6)

2 = 4e2
y − 4e2

x ⇒

xyxz + yyyz = e2

y − e2

x ; (2)

(d6,1)
2 − (d6,2)

2 = 4e2
z − 4e2

y ⇒

yxyz + zxzz = e2

z − e2

y ; (3)

2(d2,3)
2 + 2(d2,4)

2 − (d1,2)
2 − (d3,4)

2 = 4e2
x − 4e2

y + 8e2
z ⇒

x2

x + y2

y − 2yxyy = e2

x − e2

y + 2e2

z ; (4)

2(d4,6)
2 + 2(d4,5)

2 − (d3,4)
2 − (d5,6)

2 = 8e2
x + 4e2

y − 4e2
z ⇒

y2

y + z2

z − 2zyzz = e2

y − e2

z + 2e2

x ; (5)

2(d6,2)
2 + 2(d6,1)

2 − (d1,2)
2 − (d5,6)

2 = −4e2
x + 8e2

y + 4e2
z ⇒

x2

x + z2

z − 2xxxz = e2

z − e2

x + 2e2

y ; (6)

(d1,2)
2 = 4e2

x ⇒
y2

x + z2

x = e2

x ; (7)

(d3,4)
2 = 4e2

y ⇒
x2

y + z2

y = e2

y ; (8)

and (d5,6)
2 = 4e2

z ⇒
x2

z + y2

z = e2

z . (9)

In view of Figure 4, we may assume that xx, yy, and zz are ≥ 0. Furthermore, it
is clear from the tricolored Schlegel diagram Figure 3(ii) that an icosamonohedron
collapses to a line segment if one of the edges has length zero. We therefore assume
henceforth that exeyez 6= 0.
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Figure 5: (i) The space of triangles. (ii) The space of triangles with the numerically
determined border between triangles that give convex and nonconvex icosamonohedra.

4 Deformation

Whether or not a triangle can be used to construct an icosamonohedron depends, by
homothety of the icosamonohedron, only on the similarity class of the triangle. The
set of similarity classes of triangles is the image of a closed region in the quotient of
the real projective plane by an action of the symmetric group S3 permuting a given
set of coordinates. To view the set of triangles, we use an affine representation of this
subset: for any ordered triple (A, B, C) representing the edges of a triangle, we find
a similar triangle (ex, ey, ez) = 1

A+B+C
(A, B, C) with ex + ey + ez = 1. Imposing the

triangle inequalities on ex, ey, and ez yields a triangular set of points in the positive
octant part of the plane ex + ey + ez = 1, depicted in Figure 5. Each scalene triangle
is represented in this region six times, by taking permutations of ex, ey, and ez. The
right triangles are defined by the cones e2

x + e2
y = e2

z, e2
y + e2

z = e2
x, and e2

z + e2
x = e2

y,
whose intersections with the plane ex + ey + ez = 1 are hyperbolas, also shown in
Figure 5.

The original motivation for the propositions proven in this paper stems from two
numerical computer searches looking for convex solutions to the equations (1)–(9)
parametrizing icosamonohedra. The first search was conducted by Banchoff and
Strauss in 1979 [BS], while the second search was completed by the author in 1993
using Mathematica [M]. Both searches were accomplished by starting at the equilat-
eral triangle (1

3
, 1

3
, 1

3
) and moving outwards along rays in the space of triangles, solving
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(1)–(9) numerically for icosamonohedral solutions until nonconvexity was detected.

When the original search was conducted, a faulty symmetry assumption was
made—namely that all orderings (ex, ey, ez) of the edges of a triangle induce con-
gruent solutions to (1)–(9) via a rotation of the axes or a reflection. Consequently,
only one-sixth of the space of triangles was searched (it happened to be a sixth that
contained the right-triangle solution), and the other part was missed. After the author
discovered the error, which is intimately related to the chirality of Lemma 4.1, the
second search revealed that the apparent boundary of the set of triangles giving rise
to convex solutions is a set of curves, illustrated in Figure 5(ii). Note that the curves
have symmetry of order three, not six.

Consequently, the two distinct types of boundary curves in Figure 5(ii) intersect in
two different kinds of points, each repeated three times. One kind of intersection point
lies on a hyperbola representing right triangles, while the other kind does not. The
object corresponding to the former is the unique icosamonohedron constructed from
scalene right triangles, and is discussed in Section 5. Its existence was established by
Banchoff and Strauss [BS], who described it synthetically (i.e. without coordinates—
see the remark after Corollary 5.2). Its uniqueness, however, which is a manifestation
of the subtle asymmetry (in fact, achirality) in the equations, is proven here for the
first time. The other intersection point (see Section 6) was first found when the 1993
numerical search was conducted.

Before stating the main result of the paper (Theorem 4.2), we prove a lemma.

Lemma 4.1 A tricolored regular icosahedron is chiral (cannot be superimposed on its
reflection), and has symmetry group Z2 × Z2, even if two of the colors are set equal.

Proof: Since half-turns about the coordinate axes in R3 fix any tricoloring by Sec-
tion 3, it suffices to treat the case where two colors are set equal (stricly speaking,
this is no longer a tricoloring). Chirality comes from the edges colored by the mi-
nority color, whose two connected components form a (piecewise linear) double helix,
which is chiral. Furthermore, any symmetry of that double helix is a symmetry of the
rectangle which is the convex hull of the minority-colored axial segments. Chirality
then implies that no nontrivial symmetry can restrict to the identity on this rectangle,
whence there can be at most four symmetries of this double helix. �

In what follows, an icosamonohedron will be called tricolored if its edge graph has
a tricoloring with all edges of the same color having the same length. Although scalene
icosamonohedra are automatically tricolored, it was indicated to the author by Branko
Grünbaum that it is necessary to exclude isosceles cases such as [G, Figure 28].

Theorem 4.2 Let T be a triangle.

i. At most two noncongruent tricolored convex icosamonohedra have protoface T .
If T is isosceles then there is at most one. If T is obtuse, then there are none.
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ii. For T sufficiently close to regular, the number of tricolored convex icosamono-
hedra with protoface T is precisely two if T is scalene or one if T is isosceles.

iii. Unless T is equilateral, the symmetry group of any tricolored convex icosamono-
hedron with protoface T is isomorphic to the Klein 4-group Z2 × Z2.

Proof: Let T have edges {ex, ey, ez}. The result of Section 3 is that every convex
tricolored icosamonohedron has a parametrization by equations (1)–(9). Therefore, T

can yield at most six such icosamonohedra: one for each permutation of {x, y, z}. It is
easy to check, however, that cyclic permutations of {x, y, z} induce cyclic permutations
of equations (1)–(3), (4)–(6), and (7)–(9), and that any solutions thus obtained are
congruent via a rotation with axis (1, 1, 1) that cycles the coordinate axes. Thus there
are at most two congruence classes of solutions for each triangle. Moreover, if two of
ex, ey, and ez are equal, then transposition of the equal pair obviously induces the
identity on (1)–(9). Finally, if T has an obtuse angle which is (say) opposite the x-axial
segment, then the angle sum at vertex V6 is larger than 2π, so any icosamonohedron
with protoface T will fail to be convex locally at V6. This proves (i ).

The existence part of statement (ii ) comes from an application of the Implicit
Function Theorem [R, Theorem 9.28]. Equations (1) through (9) are all of the form
fi(X) = gi(Y ) where fi : R9 → R and gi : R3 → R. Define hi : R12 = R9 × R3 → R

by hi(X, Y ) = fi(X) − gi(Y ). Let

(h1, . . . , h9) = H : R12 → R9 and (f1, . . . , f9) = F : R9 → R9.

The icosamonohedral solutions are the level set {W ∈ R12 | H(W ) = 0}. Suppose
that H(X0, Y0) = 0 for some X0 ∈ R9 and Y0 ∈ R3, and that the derivative (i.e.
Jacobian matrix) F ′(X0) is nonsingular. Applying the Implicit Function Theorem to
H implies that X0 = G(Y0), where G is a differentiable function defined on some open
set in R3 containing Y0 and satisfying H(G(Y ), Y ) = 0. Thus, if Y0 gives the (ordered
triple of) edge-lengths of a triangle, then X0 gives the parametrization of the unique
icosamonohedron built from triangles with (ordered) edges Y0, and points close to Y0

also determine unique parametrizations of icosamonohedra. It is now routine to check
(by hand, even) that F ′ is nonsingular at the regular icosahedron.

For the last part of (ii ), observe that the minority triangle (Section 2) at any vertex
has the same orientation as the minority triangle at any other vertex, whence there are
only 4 minority triangles all told. After switching two edge-colors, which changes the
orientations of the minority triangles, any congruence with the original figure (colors
not switched) must be orientation-reversing. Therefore, it is enough to show that
switching two colors on a tricolored regular icosahedron and then reflecting yields two
figures which cannot be superimposed in such a way that the colors match. Now, the
endpoints of the two dotted components in Figure 4 are the endpoints of the solid
axial segments, which are the middle segments of the five-segment solid components.
Switching solid and dashed segments does not preserve this combinatorial property.

Part (iii ) is a consequence of Lemma 4.1 and the rigidity theorem of Cauchy. �
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Figure 6: Foldouts of a right icosamonohedron. Note that switching the dotted and
dashed segments (i.e. edge-lengths ey and ez) leaves the angle sum at V6 fixed. Those
wishing to build a model of the right icosamonohedron should use the left foldout.

5 The Unique Scalene Right Icosamonohedron

The purpose of this section is the answer (Theorem 5.1) to the question, “Which
scalene right triangles can be used to build a convex icosamonohedron?” As a con-
sequence, a refinement and extension of Theorem 4.2 are obtained in Corollary 5.2.
Assume for the duration of this section that (ex, ey, ez) are the edges of a right triangle
with exeyez 6= 0. By cycling the axes if necessary, assume in addition that

e2

x = e2

y + e2

z. (10)

Suppose that a convex scalene right icosamonohedron exists. Its foldout around
V6 will then be as in Figure 6, so that the angle sum at V6 is exactly 2π. Thus V6

must lie in the relative interior of a ridge, and there are only two ways that this is
possible without inducing coplanarity of all twelve vertices or non-convexity: let V1V5

be a ridge (Case I), or let V2V10 be a ridge (Case II), but not both. In Case I, V1 and
V6 end up with the same z-coordinate, so −zx = zz; but V2V4 remains parallel to V6V5

so that also zx = zy. Therefore, in Case I, −zx = −zy = zz. In Case II, on the other
hand, V2, V4, V5, and V6 all lie in the same horizontal plane, so they have the same
third coordinate; hence zx = zy = zz in Case II.

(The reader wishing to follow through the calculations in this section and the next
would be well advised to examine Figure 4 for geometrical content whenever it is
found that some of the variables or their negatives must be zero or equal.)

Independent of which case is at hand, we have the following. Applying (10) and
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(1) gives xxxy + zxzy = e2
y, so zx = zy (which holds in both cases) yields

xxxy + z2
y = e2

y since zx = zy

xxxy + e2
y − x2

y = e2
y by (8)

xxxy − x2
y = 0

and hence
xx = xy or xy = 0. (11)

Also, since V2V4V5V6 define a rectangle even after folding, we get

xz = 1

2
(xx − xy) (12)

yz = 1

2
(yx − yy). (13)

Furthermore, V5, V6, and V1 always lie in a plane containing the z-axis, so that

(xx,−yx) = k(xz, yz) (14)

for some k ∈ R. (Note that (xz, yz) 6= (0, 0) since ez 6= 0.) If in (11) we assume
xx = xy, we conclude from (12) that xz = 0, which implies xx = 0 by (14), and hence,
by (11) again,

xy = 0 (15)

anyway. It follows by (8) that x2
y + z2

y = z2
y = e2

y so z2
x = z2

y = z2
z = e2

y, and since
zz ≥ 0, we also get

zz = ey. (16)

From this, (7) yields y2
x + e2

y = e2
x, and applying (10) gives

y2

x = e2

z (17)

in all cases. We will need to divide by yx or yz later, so it is necessary to determine
under what conditions they are not zero. If yz = 0 then (14) implies that yx = 0 as
well, and hence ez = 0 by (17). But we have assumed above that exeyez 6= 0, so it
follows that yxyz 6= 0. Lastly, since xy = 0 by (15), equations (2) and (10) imply

yyyz = −e2

z . (18)

5.1 Case I: −zx = −zy = zz = ey

Using (3) we get yxyz − e2
y = e2

z − e2
y, so yxyz = e2

z (and hence yz 6= 0 since ez 6= 0).
But then yxyz = −yyyz by (18), and this implies that

yy = −yx.

Applying (13) now yields yz = yx. Since yy ≥ 0 by the comment after (9), we get

−yx = −yz = yy = ez.

Using this last result in (9) gives xz = 0 and hence xx = xy = 0 by (15) and (12).
The complete solution in Case I is therefore

xx = xy = xz = 0, −yx = yy = −yz = ez, −zx = −zy = zz = ey.

All twelve vertices lie in a plane, and a picture is easily drawn (it is a rectangle).
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5.2 Case II: zx = zy = zz = ey

Note that the subsection title is justified by (16). Using (5) and (10) we get

y2

y = 4e2

y + e2

z. (19)

Equations (3) and (10) imply
yxyz = e2

z − 2e2

y. (20)

Use the comments before (18) to divide the left and right sides of (18) by those of
(20); then square, and substitute with (17) and (19) to obtain the relation

4e2
y + e2

z

e2
z

=

( −e2
z

e2
z − 2e2

y

)2

.

Cross-multiplying gives e6
z = (4e2

y + e2
z)(e

4
z − 4e2

ye
2
z + 4e4

y) and hence 0 = 4e6
y − 3e4

ye
2
z,

yielding ey = 0 or 4e2
y = 3e2

z. Since we assumed that exeyez 6= 0, we conclude that

ey =
√

3

2
ez.

Arbitrarily setting ez = 1 and solving for the remaining variables, we get
(

(xx, yx, zx), (xy, yy, zy), (xz, yz, zz)
)

=
(

(
√

3, 1,
√

3

2
), (0, 2,

√
3

2
), (

√
3

2
,−

√
3

4
,
√

3

2
)
)

, (21)

and equation (10) implies that (2ex, 2ey, 2ez) = (
√

7,
√

3, 2). This proves the main
result of this section, which is a conjecture of Banchoff and Strauss [BS]:

Theorem 5.1 There is a unique nonplanar convex icosamonohedron with scalene
right triangular protoface, and its edges have lengths (

√
7,
√

3, 2), up to scaling.

Corollary 5.2

i. There exists a scalene triangle which is the protoface of precisely one convex
icosamonohedron.

ii. There exist nonconvex scalene icosamonohedra with obtuse, right, and acute
faces.

Proof: The (
√

7,
√

3, 2) triangle satisfies (i ) by the uniqueness part of Theorem 5.1.
For (ii ), use the Implicit Function Theorem as in the proof of Theorem 4.2(ii ), check-
ing invertibility of the Jacobian matrix F ′ at (21) by computer. Any nearby right
triangles will give icosamonohedral solutions to (1)–(9) which must be nonconvex by
Theorem 5.1. Furthermore, F ′ will remain nonsingular at these nearby right triangles,
so that there will be acute triangles near these giving nonconvex solutions. Finally,
any obtuse triangle near (

√
7,
√

3, 2) must give a nonconvex solution by nonsingularity
of F ′ and Theorem 4.2(i ). �
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Remark 5.3

1. There is an isosceles right icosamonohedron appearing in the family of [G, Fig-
ure 28], so the uniqueness in Theorem 5.1 depends on the adjective “scalene” as
well as “right”.

2. The parallel projection of the right icosamonohedron from the direction (0, 0, 1)
is a regular hexagon. The triangle (

√
7,
√

3, 2) shows up in the projection as half
of the rectangular region obtained by intersecting two distinct parallel diagonals
of the hexagon with the main diagonal perpendicular to them.

6 Another Explicit Example

This section is different from Section 5 in that the assumptions we make will not be
about the edge-lengths of the triangle we are using; the assumptions will instead be
concerned with conditions on the nine variables implied by assuming coplanarity of
certain pairs of faces. We will then derive conditions on the edge-lengths which will
imply the existence and uniqueness of the object in question. Let (ex, ey, ez) be the
edge-lengths of a triangle, where again exeyez 6= 0. Dividing by ex, we assume for the
duration of this section that ex = 1.

Theorem 6.1 There is a unique nonplanar convex scalene icosamonohedron which
has (∗) {V1, V2, V4, V6} coplanar and (∗∗) {V4, V5, V6, V10} coplanar.

Proof: Assume the conditions of the theorem. The conditions (∗) and (∗∗) imply that
{V1, V2, V4, V6} and {V4, V5, V6, V10} are the vertices of parallelograms. Thus (∗∗) ⇒

zy = zz,

whence the fact that (∗) implies V1V2 and V6V4 are parallel yields

zx = 0.

This forces V1V2, and hence also V6V4, to be parallel to the y-axis, so

xy = xz.

Now y2
x = e2

x = 1 by (7), and we wish yx > 0. But if yx < 0 then we can have none of
the three possibilities yz < yy, yz = yy, and yz > yy. Indeed the first forces the convex
hull of {V1, V2, V4, V6} to be a rectangle and the angle opposite an edge of length 2ez to
be a right angle, which is impossible since (∗) is not satisfied by the unique nonplanar
convex right icosamonohedron. The equality yz = yy is ruled out because ex 6= 0.
Finally, yz > yy forces V2V6 to be the long diagonal of a parallelogram, whence the
angle opposite it is obtuse, which is ruled out by Theorem 4.2(i ). Therefore

yx = 1.
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The above equalities will be used so often throughout this section that they will not
be referred to explicitly. By (3), we have

yz = e2

z − e2

y. (22)

Since d1,2 = d4,6 = 2, we get
yy = yz + 2. (23)

Equation (1) yields xxxy = 1 − e2
z, and adding twice this result to (6) yields

x2

x + z2

y = 1 + 2e2

y − e2

z (24)

from which adding (5) and subtracting (4) gives 2yy = 2+4e2
y−4e2

z , so yy = 1+2e2
y−2e2

z,
and thus

yz = −1 + 2e2

y − 2e2

z

by (23). Subtracting (22) from this last result gives 0 = −1+3e2
y −3e2

z, implying that

e2

z = e2

y − 1

3
(25)

Replacing this back into (22) and (23) shows that

yz = −1

3
and yy = 5

3
. (26)

Equation (2) now implies that
x2

y = −4

9
+ e2

y,

while (4), (25), and (26) give
x2

x = 8

9
+ e2

y.

Multiplying the previous two results gives the same left-hand side as squaring (1);
upon eliminating x2

xx
2
y and using (25) to substitute for e2

z, we have

(e2
y − 4

9
)(e2

y + 8

9
) = (4

3
− e2

y)
2

⇒ e4
y + 4

9
e2

y − 32

81
= e4

y − 8

3
e2

y + 16

9

⇒ e2
y = 44

63

⇒ e2
z = 23

63

by (25). It is a simple matter to solve for the remaining variables; doing so and
multiplying the solution by

√
63 yields

(

(xx, yx, zx), (xy, yy, zy), (xz, yz, zz)
)

=
(

(10, 3
√

7, 0), (4, 5
√

7, 2
√

7), (4,−
√

7, 2
√

7)
)

as a parametrization of the unique convex icosamonohedron with the desired proper-
ties, thus proving the theorem. �

Remark 6.2 This figure has (3
√

7, 2
√

11,
√

23) protoface, which looks somewhat like
the right triangle of Section 5. The Jacobian matrix F ′ from the proofs of Theo-
rem 4.2(ii ) and Corollary 5.2 is also nonsingular here, guaranteeing that perturbations
still give icosamonohedra; it is likely that the resulting deformations of the example
in this section are nonconvex in certain directions and convex in others.
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7 Further Directions

Just as the assumptions in Section 5 and 6 allowed explicit solution of (1)–(9), it may
also be possible to solve for the two kinds of limiting isosceles icosamonohedra. One
could also ask for a more explicit description of the boundary curves in Figure 5. Of
course, all of this is a special case of the much more general

Problem 7.1

i. Classify all combinatorial types of convex monohedra. Find all combinatorial
types which have a realization with trivial facet subdivisions.

ii. Decide, for each combinatorial type, which congruence classes of faces can be
used to construct it.

iii. Decide, for each convex polygon T , which convex monohedra have protoface T .

As is evidenced by the present work, this problem can be a fertile ground for an
interplay between combinatorics and Real algebraic geometry—after all, the collection
of convex monohedra is just a semialgebraic set.

The unsubdivided condition in (i) is there to prevent things like tessellating the
faces of an already known monohedron, although doing so and then perturbing the
faces may be a fruitful way to find more convex monohedra. On the other hand, there
are combinatorial types for which convex monohedra exist but any realization has
nontrivial subdivisions. For instance, a tricolored octahedron with tetrahedral caps
on a pair of opposite facets can be realized as a convex monohedron, but any such
realization is really a subdivided parallelepiped. The tricolored icosahedron, on the
other hand, obviously has an unsubdivided realization (the regular one), and every
sufficiently small deformation as in Theorem 4.2 is still unsubdivided.

Another direction for further research is provided by a theorem in [A, Ch. IV, §3]
which states that every foldout homeomorphic to the sphere and having angle sums
≤ 2π at each vertex can be glued to form a polytope. This provides existence, but
there is no guarantee as to what the ridges and facets will be. Thus, although any
acute (or right) triangle makes two foldouts similar to those in Figure 6, and these
have (after identification) angle sums ≤ 2π with finitely many points of angle sum
< 2π, Corollary 5.2 nevertheless guarantees that the realized polytopes of many of
these foldouts cannot have the expected ridges. Instead, the realized polytopes will,
for the nonobtuse triangles T of Corollary 5.2(ii), be convex spheres isometric to
the nonconvex icosamonohedron with face T and tessellated by (nonplanar and not
necessarily congruent) surfaces isometric to T . This motivates the following:

Problem 7.2 Describe, for each triangle, the facets of the convex realizations guar-
anteed by the foldout theorem for the two icosamonohedral foldouts.
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For instance, Banchoff and Strauss [BS] found a polytope whose boundary is isometric
to an icosamonohedral foldout using (

√
11,

√
7, 2) right triangles but which has only

eight facets, some ridges of which fail to be unions of edges in the tricoloring.
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