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What is geometric combinatorics? This question is a bit controversial, but
at least in part, it is the study of geometric objects and their combinatorial
structure. Rather than trying to define this precisely at the outset, in this lecture
we’ll mainly give examples that appear in the 2004 PCMI graduate courses.

1. Polytopes

A popular class of examples are the convex polytopes, that is, convex hulls of finite
point sets in R4, These form the main topic of the graduate course by Ziegler, but
also play prominent roles in the undergraduate courses by Swartz and Thomas, and
in the undergraduate faculty course by Su (as well as making cameo appearances
in the graduate courses by Barvinok, Fomin, Forman, MacPherson, and Wachs!).

In R2, convex polytopes are polygons such as triangles, quadrilaterals, pen-
tagons, hexagons, etc. In R? they can be more interesting, such as the triangular
prism depicted in Figure 1(a).
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Figure 1. (a) The triangular prism P, with f-vector f(P) = (fo, f1,f2) =
(6,9,5). (b) Its graph or 1-skeleton, drawn as a 2-dimensional Schlegel diagram.
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What do we mean by combinatorial structure for a convex polytope? An obvi-
ous combinatorial feature of a convex polytope is that it has faces, each being the
intersection of the polytope with some hyperplane containing the polytope entirely
in one of its two closed half-spaces. Zero-dimensional faces are called vertices (la-
belled a,b,¢,d, e, f in Figure 1), one-dimensional faces are edges, and faces of codi-
mension 1 within the polytope are called facets. One can record the combinatorial
structure of the faces of a convex polytope P in varying ways and levels of detail.

e One might simply count the faces of various dimensions, and encode this
data in the f-vector

f(P) = (anflv"wfdfl)a

where f;(P) is the number of i-dimensional faces of P. For example, the
triangular prism in Figure 1 has f(P) = (fo, f1, f2) = (6,9,5).

e One might consider the graph or 1-skeleton of P; this is the abstract graph
whose node set is the set of vertices of P, and whose (undirected) arcs
are the edges of P. For example, Figure 1(b) depicts this graph for the
triangular prism. Here we have chosen to draw this graph in the plane
by projecting the whole 3-dimensional polytope P to the plane inside
one of its quadrangular facets, a visualization technique known as a 2-
dimensional Schlegel diagram for P. The back of the 2004 PCMI T-shirt
depicts the 3-dimensional Schlegel diagram of a four-dimensional polytope
with an interesting property, related to work of Joswig and Ziegler [4]: it
is dimensionally ambiguous in the sense that this same 1-skeleton appears
also for a five-dimensional polytope.

e One might further consider the entire partially ordered set (or poset, for
short) of all faces of P ordered by inclusion; see Figure 2.

abc acdf abde bcef def

ab ac bc ad be cf de ef df

Figure 2. The Hasse diagram for the poset of faces of the prism in Figure 1.

2. Characterizing f-vectors

What kinds of combinatorial questions about convex polytopes might we ask? One
that has been considered often is the following.

Question 1. Which (non-negative) vectors (fo, f1,- .., fa—1) in Z% can actually
arise as the f-vector of a d-dimensional convex polytope?
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Figure 3. The digon and the monogon: two valid CW-balls, obeying the
topological constraint fo = fi. The digon has 2 vertices and 2 edges, while
the monogon has 1 vertex and 1 edge.

From now on, when we speak of a “d-dimensional” polytope, we will assume that
it is fully d-dimensional in the sense that its points affinely span a d-dimensional
space. For d = 2, Question 1 has an obvious answer.

Proposition 2. A vector (fo, f1) € Z? is the f-vector of a 2-dimensional convex
polytope (polygon) if and only if

(1) fO = fl: and

(11) anfl > 3.

In spite of its simplicity, this answer foreshadows some important issues arising in
higher dimensions. Note that the equation constraint (i) is really a consequence of
topology: the boundary of a convex polygon is homeomorphic to a one-dimensional
sphere. The same equation (i) would hold—without any polytopality assumption—
for any C'W-complex homeomorphic to a 2-dimensional ball, e.g. the digon or mono-
gon depicted in Figure 3.

On the other hand, the inequality (ii) is really a consequence of polytopality. It
highlights the importance of clarifying in which category we work when studying f-
vectors (such as CW-spheres, regular CW-spheres, P L-spheres, polytopal spheres,
etc.) as this can have a dramatic effect on the answers and the difficulty level for
questions about f-vectors.

Question 1 for d = 3 is also not hard, and was answered by Steinitz roughly a
century ago.

Theorem 3. A vector (fo, f1, f2) € Z? is the f-vector of a 3-dimensional convex
polytope if and only if
(i) fo— f1+ f2 =2 (Euler’s relation),
(i) fo,f2 >4, and
(iii) 2f1 > 3f2, 2f1 > 3 fo.

Again, the equational constraint (i) is a familiar consequence of topology. Poly-
topality provides us with the first inequality fo > 4 in (ii), since we have assumed
that our polytope affinely spans R? and hence must have at least 4 affinely indepen-
dent vertices.? The condition fp > 4 then follows from the important tool of polar
duality: every convex polytope P in R? has a (polar) dual polytope P¢, whose
faces correspond bijectively with those of P, but in an inclusion-reversing and
dimension-reversing fashion. Thus for a 3-dimensional polytope P with f-vector

2Actually, both inequalities in (i) already follow from (i) and (iii), and hence are redundant, but
we have included them anyway.
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34

Figure 4. A pair of Platonic solids, which are polar dual to each other: the
icosahedron and the dodecahedron. Their f-vectors (fo, f1, f2) are related by
reversal, namely (12, 30,20) and (20, 30, 12), respectively.

Figure 5. “Blowing apart” the facets of a 3-dimensional polytope and then

counting edges in two ways shows that 2f; > 3fa.

(fo, f1, f2), its polar dual P® will have f-vector (fa, f1, fo). Two classic examples
of dual Platonic solids, the icosahedron and dodecahedron are shown in Figure 4.

The remaining inequalities (iii) in the above theorem are another consequence
of convexity that follows from counting the edges in the polytope after “blowing
apart” the facets, as depicted in Figure 5. Combining the fact that every edge
lies in exactly two facets with the fact that each facet has at least three boundary
edges, one is led to the inequality 2f; > 3f2. The second inequality in (iii) then
follows from polar duality. This shows the necessity of Steinitz’s conditions; the
sufficiency can be shown by constructing 3-dimensional polytopes with specified
f-vectors via some relatively simple constructions (start with a pyramid having an
arbitrary polygonal base, and iterate the operation of shaving off a vertex, or its
polar dual operation of stellarly subdividing a facet).

What about Question 1 for d > 47 In dimension 4 there are only partial answers
(see Ziegler’s course), and in higher dimensions, the question is wide open.
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Figure 6. The area of a lattice triangle having i = 1 interior lattice point and
b = 4 boundary lattice points is i + %b —1=2.

3. Lattice points

There is even more combinatorial structure attached to lattice polytopes, the topic
of the graduate course by Barvinok, appearing also in the undergraduate course by
Thomas as well as the undergraduate faculty course by Su. A lattice polytope is
a convex polytope whose vertices lie in Z?. Here there are non-trivial results even
for d = 2, that is for lattice polygons! The most famous is probably Pick’s formula
for the area of a lattice polygon.

Theorem 4. (Pick [6]) Let P be a lattice polygon with i lattice points in its interior
and b lattice points on its boundary. Then the area of P is i+ %b - 1.

Figure 6 illustrates this result for a certain lattice triangle. In fact, Pick’s Theorem
holds even for lattice polygons which are not convex.

The theory of lattice polytopes becomes more interesting in higher dimensions,
including the theory of Ehrhart polynomials. It is a subject that has seen many
advances within the last decade that have greatly increased our ability for explicit
computations. One such advance is Brion’s formula, which says how to list the
lattice points in a lattice polytope. More precisely, let P be a polytope in R¢ with
integer vertices. If a = (a1, ..., aq) € Z% is a lattice point, then write t2 = ¢{* - - - ¢
for the corresponding Laurent monomial. The generating function for the lattice
points in P is the sum of all Laurent monomials t2 for a € Z% N P. It is a rational
function because it has only finitely many terms. In contrast, consider the tangent
cone Ty, to the polytope at the vertex v, which is the translate by v of cone generated
over the positive real numbers by P — v. The generating function for the lattice
points Z¢ N T, in a tangent cone is not a finite sum, but it is still expressible as a
rational function Cy (t). Brion’s formula breaks the lattice point enumerator of P
into a sum over the vertices of P:

dootr= ) G,
a€zZinNpP vertices v of P

This counter-intuitive result looks like it counts each lattice point in P once for
each vertex of P, and furthermore counts all of the lattice points outside of P some
number of times, as well. But when that wild-looking generating function (sup-
ported on all of Z?) is expressed as a single rational function, the over-counting
inside of P and parts outside of P vanish. Brion’s formula is important for compu-
tation because it provides a “short” way to represent the set of lattice points in P.
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Figure 7. Brion’s formula verified for the 2 x 1 lattice rectangle in R?

Example 5. Let P C R? be the 2 x 1 lattice rectangle

with vertex set {(0,0), (1,0),(2,0), (1,2)}. The lattice point enumerator of P, writ-
ten in variables (s,t) = (t1,t2), is 1+t + t2 + s + st + st?>. The lattice points in
the tangent cone at (say) the vertex (1,2) of P consist of all integer vectors (a,b)
such that ¢ < 1 and b < 2. The generating function for these lattice points is
st2/(1 — s~ 1) (1 — t~1). The statement of Brion’s formula in this case is verified in
the calculation appearing in Figure 7.

4. Hyperplane arrangements

Another interesting example of geometric objects with combinatorial structure are
arrangements of hyperplanes, the subject of Stanley’s graduate course, and other
(affine or) linear subspaces of a vector space, which form part of the subject of
Wachs’s graduate course. Figure 8 illustrates an affine arrangement of hyperplanes
(lines) in R?, along with a central arrangement of hyperplanes in R? depicted via
their intersections with the unit sphere.

Hyperplanes dissect R? into open regions (or chambers), which can be bounded
or unbounded, and which one can attempt to count. When one complexifies real
hyperplanes or subspaces by considering them inside C%, they “poke holes” in the
space, creating non-trivial topology one can try to measure, e.g. by computing
homotopy invariants such as homology or homotopy groups, or cohomology rings.
When the hyperplanes or subspaces are defined over 7Z, one can consider their
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Figure 8. An arrangement of affine lines in R? with the bounded regions
shaded, and a central arrangement of hyperplanes in R3® depicted as great
circles on a unit sphere.

reductions mod p as arrangements in vector spaces IFZ over finite fields, and then
count points lying on or off the arrangement. It turns out that almost all of this
enumerative or topological analysis comes down to understanding the topology of
another poset: the lattice of intersections of the subspaces, ordered by inclusion.

In particular, one learns that it is important to associate a simplicial complex
(and hence a topological space) to this poset, via the ubiquitous order complex
or nerve construction. We also find ourselves in need of a wide array of tools,
provided in the graduate course on poset topology by Wachs, for understanding
the homotopy or homeomorphism type of the various kinds of simplicial complexes
that arise in this way.

5. Symmetry

Many of the examples of combinatorial geometric objects cropping up all over
mathematics, such as in the geometry and representation theory of Lie groups
and algebras, are those possessing a high degree of symmetry. Such objects are the
subject of the graduate course by Fomin, and also play a prominent role in the part
of Wachs’s course that deals with the equivariant theory of poset topology.

To give some flavor of Fomin’s course, let’s look briefly at the classical topic of
reqular polytopes. A regular polytope is one in which every mazimal flag of faces

vertex C edge C --- C facet

“looks” the same, meaning that the group of linear symmetries preserving the poly-
tope acts transitively on all such flags. The 3-dimensional regular polytopes are
exactly the Platonic solids, depicted in Figure 4. Classical results in the theory as-
sociate to every regular polytope P a certain well-studied and well-behaved hyper-
plane arrangement: the symmetry group of a regular polytope is always generated
by reflection symmetries, and one simply takes the associated reflecting hyperplanes
for all such symmetries. For the regular tetrahedron, the associated dissection by
reflecting hyperplanes and the hyperplane arrangement are shown in Figure 9. Not
only do these reflection arrangements play a central role in Fomin’s course, but
they show up as key motivating examples, along with some of their well-behaved
deformations, in Stanley’s course as well.
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Figure 9. The reflection symmetries of the regular tetrahedron, dissecting
its boundary. The associated reflection hyperplane arrangement and root sys-

tem gives rise to the 3-dimensional associahedron, with f-vector (fo, f1, f2) =

(14,21,9). Note that fo =14 = %(244) = (4 is a Catalan number.

A collection of vectors consisting of a pair of two opposite normal vectors for
each of these reflecting hyperplanes gives rise to what is called a root system. It
should be noted that not every root system comes from the reflection arrange-
ment of a regular polytope, but three of the four infinite families of (finite, irre-
ducible, crystallographic) root systems (types A, B, and C) do arise in this way from
the higher-dimensional regular polytopes that generalize tetrahedra (simplices) and
cubes/octahedra (hypercubes/hyperoctahedra).

Moving beyond the classical theory, an exciting development in 21st century
geometric combinatorics (and a main focus of Fomin’s graduate course) has been
the discovery of what are called cluster algebras. The cluster algebras of finite type
give rise to new and important convex polytopes associated to root systems, called
generalized associahedra. For root systems of type A, these are the classical as-
sociahedra or Stasheff polytopes which have been known for decades in topology,
geometry and algebra. The bottom part of Figure 9 depicts the type A associahe-
dron arising from the reflection arrangement for the regular tetrahedron. In type B,
one recovers the more recently discovered cyclohedra of Bott and Taubes.

These polytopes exhibit wondrous numerology, closely connected with Cata-

lan numbers C,, = L(z:) in type A, and more generally with the mysterious

n+1
numerology of exponents for all root systems. A great deal of intriguing combina-

torics awaits discovery in these polytopes.

6. Moment graphs

Geometric combinatorics does not only concern structures arising from spaces that
feel discrete. Smooth spaces often have underlying combinatorics, as well. Many
smooth spaces can be considered from the point of view in MacPherson’s course,
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St x St action:

o ‘ X

Figure 10. CP! x CP! and the action of S' x S!

Ul

where the combinatorics takes the form of a graph drawn with straight edges in R™.
The setup is as follows.

An algebraic torus is a group of the form T' = (C*)™, where C* = C \ {0} is
the set of nonzero complex numbers, considered as a group under multiplication.
Inside of the algebraic torus 7" is an honest compact torus Tk = (S*)", the product
of n copies of the unit circle group. MacPherson’s course concerns spaces X with
an action of T. More precisely, let X be a smooth compact complex algebraic
variety of dimension d; thus X is a real manifold of dimension 2d with some extra
structure to make it a manifold over C. We require that the action T': X — X has
finitely many

e T-fixed points and

e complex 1-dimensional orbits.
An orbit of complex dimension 1 has real dimension 2, and is necessarily isomorphic
to a copy of C*. Since X is compact, the closure of such an orbit is an isomor-
phic copy of the Riemann sphere (projective complex line) P': add an origin 0 and
a point oo at infinity (both of which will be T-fixed points) to the copy of C*.
The union of the T-fixed points and the 1-dimensional orbits is a configuration,
called a balloon sculpture, of finitely many Riemann spheres in X joined at some
of their poles. The moment graph is a real 1-dimensional shadow of the complex
1-dimensional balloon sculpture. It is obtained from the balloon sculpture by iden-
tifying together all points in each orbit of the compact torus Tk.

Example 6. Let X = CP' x CP! be a product of two Riemann spheres. This space
comes with an action of T = C* x C*, so n = 2 in the preceding notation. The
compact torus Tg = S' x S! is the familiar real 2-dimensional doughnut. The two
copies of S! spin the corresponding spheres CP' around their axes, each leaving the
other sphere fixed pointwise, as depicted in Figure 10. The balloon sculpture in X
consists of four spheres joined pole-to-pole in a cycle, as in Figure 11. The circles
of latitude in the four balloons are T orbits, as are each of the poles. Collapsing
each of these orbits to a point yields the moment graph of CP! x CP!: a square.

In the above example, the quotient of all of X by T is the entire square—
including the interior, over which the Tx orbits are 2-dimensional tori. More gener-
ally, for every lattice polytope P there is a toric variety X p whose moment graph is
the edge graph of P, and whose quotient by T% is all of P. Although toric varieties
constitute a very important class of examples—they are the simplest spaces with
moment graphs—they aren’t the only spaces with moment graphs.



12 EZRA MILLER AND VIC REINER, PCMI 2004 OVERVIEW

balloon sculpture

moment graph X/Tx

Figure 11. The balloon sculpture of X = CP! x CP! and its map to the moment graph

Example 7. Let X be the quadric hypersurface in CPP% consisting of the solutions
to the polynomial equation 22 + z1y; + T2y2 + x3ys = 0. The algebraic torus
T = (C*)3, with coordinates (71, 72, 73), acts by

(T1,72,73) - (z:@1:22 T3 :y1:Y2:y3) = (2: 1121 ZT2£B2ZT3£B3ZTl_lyliTz_lygiT?)_lyg,);

that is, the polynomial equation is invariant under 7. The moment graph is ubig-
uitous when it comes to this summer school. In particular, there is geometric
combinatorics on the front of the 2004 PCMI T-shirt as well as on the back! This
example is straight from MacPherson’s notes, where it is treated in more detail.

Figure 12. The moment graph of the quadric hypersurface X in CP¢

The methods surrounding moment graphs are particularly well-suited to spaces
like complete flag manifolds and their relatives, including Grassmannians, other
quotients of compact Lie groups by parabolic subgroups, and loop Grassmanni-
ans. These spaces are crucial to interactions of combinatorics with representation
theory and algebraic geometry. Moment graphs (and moment maps, when they
are available) are vehicles by which smooth spaces give rise to more obviously
discrete-geometric objects such as polytopes, graphs, and root systems. A hint of
the consequences of this transition occurs in Fomin’s graduate course.
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Figure 13. The convex hull of the moment graph of the flag manifold F¢3 is a permutohedron

Example 8. Let X = F/3 be the manifold of flags in C3. Thus F/3 consists
of the chains {0} = Vo C V4 C Vo C V3 = C? of vector subspaces of C® with
dimV; = 4. The algebraic torus (C*)? naturally acts on X by virtue of its action
on C3. The moment graph of F/¢3 is depicted in Figure 13. The graph can be
naturally embedded in a plane sitting in R?, and its convex hull, which is the image
of the moment map, is a hexagon. More generally, the convex hull of the moment
graph of the manifold F/,, of flags in C™ is a polytope called the permutohedron,
whose vertices are the n! permutations of (1,...,n). Unlike the moment graphs of
toric varieties (but like the PCMI logo in Figure 12), the edges of the permutohedron
constitute only part of the moment graph of F/¢,, which also has edges passing
through the interior.

7. Fixed points of smooth symmetries

Moment graphs isolate combinatorial structures from a priori smooth geometric
contexts. But what is this combinatorial data good for? Although it may not
seem likely at first, the moment graph actually retains an enormous amount of
information about a space X. In particular, much of the topology of X can be
faithfully recovered from the discrete data of its moment graph.

This sort of claim reflects a phenomenon that is quite general. Without intro-
ducing too many hypotheses, the setup is that X should be a space with an action
of some Lie group G such that the set X of fixed points is finite. Now suppose
that ¢ is some global topological invariant of X that is G-equivariant, meaning that
it takes into account the G-action. The aim is to produce statements saying that

EZZ&E

ze€XC

breaks up as a sum of local contributions £, at the fixed points. Theorems of
this form are called localization theorems or fixed point formulas, and often come
attached to names such as Atiyah, Bott, or Lefschetz. The idea is that the residual
action of G on the tangent spaces to the G-fixed points carries enough information
about the action on X to reconstruct topological data.
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In MacPherson’s course, £ is an equivariant cohomology class or some related
invariant, the point being that the entire equivariant cohomology ring of X is
determined by its moment graph. In Barvinok’s course, taking £ to be the character
of the global sections of a line bundle on a toric variety yields Brion’s theorem as
a statement in equivariant K-theory. For instance, the computation in Example 5
comes from localization applied to the line bundle O(1,2) on the toric variety from
Example 6. Of course, this key to Barvinok’s polynomial-time algorithms for lattice
point enumeration does not, in a logical sense, require thinking about equivariant
K-theory of toric varieties; but it is worthwhile to note that it was in such a context
that Brion discovered the formula in the first place.

The notion that topology is encoded by local data near fixed points is a pow-
erful one. Even forgetting temporarily about the two preceding examples, it has
far-reaching consequences, combinatorial and otherwise, ranging from Okounkov
and Pandharipande’s proof of Witten’s conjecture (Kontsevich’s theorem) [5] to
Deligne’s proof of the Weil conjectures (see [2]).

Yet another example underlies a fundamental part of the geometry in Haiman’s
course. The smooth space there is the Hilbert scheme H,, of n points in the plane C2.
As a set, H, consists of the ideals I C C[z,y] in the two-variable polynomial
ring such that C[z,y]/I has dimension n as a vector space over C. The ideal of
polynomials vanishing on n distinct points in C? is an example of a point I € H,,.
However, there are other colength n ideals, such as the ideal generated by «™ and y;
a C-linear basis for the quotient C[z,y]/I is given by {1,x,22, ..., 2" 1}.

More generally, for every partition A of n, meaning a weakly decreasing list of
integers whose sum is n, there is an ideal I, generated by monomials. Think of A
as a (Young) shape, so that for example

A=(7,4,2,2,1) «—

is a partition of 7+4+2+2+1 = 16 in “French” notation. The nooks immediately
outside of A\ can be labeled naturally with monomials as in Figure 14. The ideal Iy
is then generated by these monomials. Thus, for A = (7,4,2,2,1) we get

I = (2", 2%y, 2%y, 2y, P).

It is easy to verify that the boxes inside A correspond to monomials that constitute
a C-linear basis for the quotient C[z,y]/I\. In particular, if X is a partition of n
then C[z,y]/I) has dimension n as a vector space over C.

The torus T = ((C*)2 acts on H, because it acts on C? by scaling the axes.
More concretely, if I = (f1(z,y),..., fr(x,y)) is an ideal, then (o,7) € T acts on I
by

(o,7) - I ={fi(ox,7y),..., fr(ox,TY)).

If f(x,y) is a monomial, then f(ox,Ty) is a scalar multiple of f(z,y). Therefore, if
all of the polynomials f;(x,y) are monomials, then (o,7) - I = I. In other words, if
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Figure 14. Monomials in the nooks immediately outside of the partition A = (7,4,2,2,1)

I = I, for some partition A then Iy is a T-fixed point of H,,. The converse holds as
well: if I is a T-fixed point, then I = I is a monomial ideal for some partition A.

For Hilbert schemes, therefore, combinatorics is evident already in the fixed
points themselves, regardless of localization theorems. This makes fixed point for-
mulas on H,, all the more interesting: any such formula will have a sum )~ &\
over partitions A of n on one side of the equation. What Haiman’s geometric the-
ory shows is that, for certain vector bundles and more general sheaves on H,, with
interesting global section characters &, fixed point formulas result in extraodinarily
interesting sums over \.

The reason why the fixed point formulas are so interesting is that a certain
particularly natural vector bundle on H, yields summands £y that are essentially
the Macdonald polynomials from Lecture 3 of Haiman’s course. This statement is
equivalent to the n! theorem (see Theorem 8 in the notes by Haiman and Woo).
One of the fixed point formulas it yields results in the (n 4+ 1)"~! theorem [3], a
combinatorial statement that motivated the whole geometric story. It says that

Rn = (C[xlvyla N ,$ﬂ7yn]/<$7iyf + x;y; | r,s € N>7

which is known as the ring of diagonal coinvariants, has dimension (n + 1)"~! as
a vector space over C. In fact, since the summands £, are torus-equivariant data
at the fixed point Iy, the fixed point formula is a doubly-graded version of this
enumerative statement. Combinatorial methods for such g, t-analogues in general,
and the Macdonald polynomials in particular, constitute Haiman’s course.

8. Morse theory

Localization theorems are powerful ways to reconstruct topological invariants from
knowledge of local data near fixed points. However, even to speak of fixed points we
must have a group action. In the preceding situations, such actions were natural,
in that they were fundamental to the smooth spaces under consideration. The flag
manifold, for instance, is the quotient of a Lie group by a closed subgroup, and
hence obviously has lots of Lie group actions on it; and a toric variety is (by some
definitions) the closure of a dense torus orbit. But what if our smooth space doesn’t
come with a natural Lie group action? Make a group action from scratch!
Suppose that X is a real manifold with a Riemannian metric. Any real-valued
function f : X — R yields a gradient flow on X: each point goes in the direction
of steepest descent. Gradient flow can be viewed as an action of the Lie group R



16 EZRA MILLER AND VIC REINER, PCMI 2004 OVERVIEW

Figure 15. Four critical points on a torus, with the negative flow directions

(thought of as parametrizing time) on X. The fixed points of the flow are the
critical points of f, where the derivative of f vanishes; these points are ambivalent
about which direction to go, so they stay put. See Figure 15 for an example with
four critical points on a torus. When f is generic, we can define the indez of a
critical point = to be the number of independent directions at x in which the flow
points away from z—that is, the limit is x as time approaches —oo.

Topological invariants are extracted from this (more or less) combinatorial data
of critical points, indexes, and downward flow submanifolds by constructing a cell
decomposition of X. There is one cell for each critical point, and the dimension of
the cell is the index of the critical point. From Figure 15, we see that a torus can
be constructed from a vertex (the bottom critical point), two edges (the middle two
critical points), and one 2-cell (the top critical point). The manner in which the
downward flow submanifold from one critical point approaches the other critical
points determines how to glue the cells.

Gradient flow is all well and good if we’re given a smooth manifold. But what if,
in the spirit of how this Overview started, we're given a discrete geometric object,
such as a collection of polytopes or a simplicial complex A? The answer lies in
Forman’s lectures: use discrete Morse theory. The idea is strikingly simple. Let P
be the Hasse diagram of the face poset of A. Orient all of the edges of P downward.
A Morse flow in this context is a (partial) matching on P such that reversing the
edges in the matching does not ruin the directed acylicity property of the directed
graph P. This mirrors the stipulation that our Morse function f mapped X to
the real numbers, and not (for example) to the circle. The critical simplices of the
Morse flow are the unmatched elements of P. In analogy with the smooth case,
the critical simplices correspond to cells in a complex that is homotopy-equivalent
to A, so the topological invariants have not changed. Discrete Morse theory is an
extremely useful tool in making explicit calculations. It is also a key theoretical
tool for poset homology, which leads to Wachs’s course.

Going beyond Morse theory, it is possible to combinatorialize a number of
other notions from differential geometry. Forman’s fourth and fifth lectures, for
example, discuss combinatorializations of curvature, and the purely combinatorial
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questions that result as a consequence. Of course, combinatorialization often helps
us understand the smooth setting better. Recent work of Biss [1], for example,
shows that understanding metric tangent data in a purely combinatorial context
loses no topological information whatsoever. The discrete analogues of smooth
tangent bundles are, in that case, matroid bundles on combinatorial differentiable
manifolds (“CD-manifolds”).

9. Further topics

We have tried in this Overview to give an idea of what “geometric combinatorics”
might mean, although (for obvious reasons) we have done so mostly in the con-
text of the courses at PCMI 2004. But this summer’s offerings are by no means
comprehensive! There are vast numbers of ways combinatorial structure arises in
geometry. Here, for example, is a small list of keywords.

e Tropicalization: polyhedral structures reflect the geometry of complex
algebraic varieties.
e Degeneration: replace a manifold or variety, such as a Schubert variety, by
a degenerate version that has several components, each of which is simpler.
e Stratification: different strata, as in moduli spaces of curves, can represent
collections of geometric objects with identical combinatorial properties.
e Branch point data (Hurwitz schemes and ramified covers): counting meth-
ods rely on combinatorics of the symmetric group.
e Generating functions: for example, Gromov—Witten theory leads to mul-
tivariate hypergeometric series.
e Characteristic classes: for example, functorial approaches to graph color-
ing and Tverberg-type theorems.
Some of the above items were hot topics at the 2004 PCMI Research Program: the
Clay lecture by Sturmfels was one of many talks about tropical geometry and its
applications, and the research talk by (for example) Vakil concerned recent advances
using degeneration. The last item on the list was expanded by Kozlov to a survey
paper that is included in this volume. The survey concerns graph complexes and
functorial approaches to graph coloring. More precisely, in 1978 Lovasz proved a
subtle conjecture of Kneser in graph theory using functoriality: a proper vertex-
coloring of a graph is intepreted as a morphism in a certain category of graphs.
This leads to a morphism between two topological spaces with free Zs-actions,
to which the Borsuk—Ulam theorem can be applied. Recently these techniques of
graph complexes and characteristic classes have been greatly extended, culminating
in Babson and Kozlov’s proof of a conjecture of Lovész.
Keeping in mind that the above list is incomplete, it should be clear that there
would never be enough time to cover all of the relevant topics. The only remedy
would be another summer school on Geometric Combinatorics.
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