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Abstract. Gröbner basis theory reduces questions about systems of
polynomial equations to the combinatorial study of monomial ideals,
or staircases. This article gives an elementary introduction to current
research in this area. After reviewing the bivariate case, a new corre-
spondence is established between planar graphs and minimal resolutions
of monomial ideals in three variables. A brief guide is given to the litera-
ture on complexity issues and monomial ideals in four or more variables.

1 Introduction

A monomial ideal M is an ideal generated by monomials xi1
1 xi2

2 · · ·xin
n in a

polynomial ring K[x1, x2, . . . , xn]. Monomial ideals are ubiquitous in the study
of Gröbner bases. For instance, if I = 〈x4 + y4 − 1, x7 + y7 − 2〉 then its initial
ideal with respect to the total degree term order equals M = 〈x4, x3y4, xy7, y10〉.
The ideal I has 28 distinct complex roots, corresponding to the 28 monomials
xiyj not in M , that is, to the 28 lattice points under the staircase depicting M :
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Fig. 1. The monomial ideal M = 〈x4, x3y4, xy7, y10〉, with its generators (white cir-
cles), standard monomials (black dots), and irreducible components (shaded circles)

At any stage in Buchberger’s algorithm for computing Gröbner bases, one
considers the S-pairs among the current polynomials and removes those which
are redundant [7]. The minimal S-pairs define a graph GM on the generators of
any monomial ideal M . Our aim is to study this graph, and to give an elementary
introduction to recent work on computing the following objects associated to M :

i. the Hilbert series of M , i.e. the formal sum of all monomials not in M ;
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ii. the minimal resolution of M by free modules over the polynomial ring;
iii. the primary decomposition and the irreducible decomposition of M .

For a first introduction to these problems see [10, §9.2] and [11, Exercises
3.8 and 17.11]. Their importance for Buchberger’s Algorithm was emphasized
by Möller and Mora in [16]. Research papers describing effective algorithms are
[4] and [6] for problem (i), [9] and [14] for problem (ii), and [8] for problem (iii).

Our point of view differs from these sources. We regard (i), (ii), (iii) as the
same problem and we develop combinatorial tools for presenting structured solu-
tions. It is our belief that this approach will ultimately lead to faster algorithms.
This paper is organized as follows. The easy solution for n = 2 variables will be
reviewed in Section 2. In Sections 3 and 4 we present the generalization to the
case of three variables. We shall see that the S-pair graphs GM for n = 3 are
precisely the planar graphs. Section 5 summarizes what is known for n ≥ 4.

2 Two Variables

Let us begin by answering the three computational questions for our example.

1. The Hilbert series of the monomial ideal M = 〈x4, x3y4, xy7, y10 〉 equals

1 − x4 − x3y4 − xy7 − y10 + x4y4 + x3y7 + xy10

(1 − x)(1 − y)
. (1)

This expression equals the sum of the 28 standard monomials in Figure 1.
2. The minimal free resolution of M is the following exact sequence of modules,

0 −→ K[x, y]3
∂1−→K[x, y]4

∂0−→M −→ 0 , (2)

where, in matrix notation, ∂1 =









y4 0 0

−x y3 0

0 −x2 y3

0 0 −x









and ∂0 =
(

x4 x3y4 xy7 y10
)

.

3. The ideal M is 〈x, y〉-primary and its irreducible decomposition equals

M = 〈x4, y4〉 ∩ 〈x3, y7〉 ∩ 〈x, y10〉 . (see Figure 1) (3)

It is not difficult to extend this to an arbitrary monomial ideal in two variables,

M = 〈xa1yb1 , xa2yb2 , . . . , xarybr〉, where a1 > · · · > ar and b1 < · · · < br .

Proposition 1. The following holds for any monomial ideal M in two variables:

1. The Hilbert series of M equals

∑

{ xiyj : xiyj 6∈ M} =
1 −

∑r

j=1 xaj ybj +
∑r−1

i=1 xaiybi+1

(1 − x)(1 − y)
. (4)
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2. The minimal free resolution of M equals

0 −→ K[x, y]r−1 ∂1−→K[x, y]r
∂0−→M −→ 0, (5)

where ∂0 is the canonical map and ∂1 is given on standard basis vectors by

∂1(ei) = ybi+1−bi · ei − xai−ai+1 · ei+1.

3. The irreducible decomposition of M equals

M = 〈yb1〉 ∩ 〈xa1 , yb2〉 ∩ 〈xa2 , yb3〉 ∩ · · · ∩ 〈xar−1 , ybr 〉 ∩ 〈xar 〉 , (6)

where the first or last component are to be removed if b1 = 0 or ar = 0.

This implies that for monomials in two variables only consecutive S-pairs matter.

Corollary 1. When applying Buchberger’s Algorithm to r polynomials in two

variables, it suffices to form the r−1 consecutive S-pairs, instead of all
(

r
2

)

pairs.

3 Three Variables: the Generic Case

This section gives a combinatorial introduction to the results in the article [3].
The Hilbert series of any monomial ideal M = 〈m1, m2, . . . , mr 〉 in the poly-
nomial ring K[x1, . . . , xn] can be written using Inclusion–Exclusion as follows.
For I ⊆ {1, 2, . . . , r} let mI denote the least common multiple of {mi : i ∈ I}.

Proposition 2. The Hilbert series of M equals

∑

{xi1
1 xi2

2 · · ·xin

n 6∈ M} =
1

∏n
i=1(1 − xi)

·
∑

I⊆{1,2,...,r}

(−1)|I| · mI . (7)

Unfortunately this formula is useless for our problem (i), because the number of
summands is an exponential function in r. But almost all summands cancel.

In this section we show that for n = 3 the true number of summands in the
numerator of the Hilbert series of M is a linear function in r. We write x, y, z
for the variables. To simplify our discussion, we first assume that r ≥ 4 and M
is generic in the following sense: if mi = xaiybizci and mj = xaj ybj zcj are
minimal generators of M neither of which is a power of a single variable, then
ai 6= aj , bi 6= bj, ci 6= cj . In Section 4 we shall remove this hypothesis.

We define a graph GM with vertices 1, 2, . . . , r by declaring {i < j} an edge
whenever mij = lcm(mi, mj) is not a multiple of mk for any k ∈ {1, . . . , r}\{i, j}.
Let TM be the set of triples {i < j < k} which form a triangle {i, j}, {i, k}, {j, k}
in GM , and which do not consist entirely of powers xai , ybj , zck of the variables.
Consider the free module K[x, y, z]TM with basis { eijk : {i, j, k} ∈ TM}, the free
module K[x, y, z]GM with basis { eij : {i, j} ∈ GM}, and the linear maps

∂1 : K[x, y, z]GM → K[x, y, z]r , eij 7→
mij

mj
· ej −

mij

mi
· ei,

∂2 : K[x, y, z]T M → K[x, y, z]GM , eijk 7→
mijk

mjk
· ejk −

mijk

mik
· eik +

mijk

mij
· eij .

(8)
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Theorem 1. Let M be a generic monomial ideal in K[x, y, z].

1. The Hilbert series of M equals

1 −
∑r

i=1 mi +
∑

{i,j}∈GM
mij −

∑

{i,j,k}∈TM
mijk

(1 − x)(1 − y)(1 − z)
. (9)

2. The minimal free resolution of M equals

0 −→ K[x, y, z]TM
∂2−→K[x, y, z]GM

∂1−→K[x, y, z]r
∂0−→M −→ 0 . (10)

3. If M is artinian then the irreducible decomposition equals

M =
⋂

{i,j,k}∈TM

〈xdegx(mijk), ydegy(mijk), zdegz(mijk) 〉 . (11)

Here M is called artinian if some power of each variable is in M , or equivalently,
if the number of standard monomials is finite. The non-artinian case can be
reduced to the artinian case by considering M + 〈xm, ym, zm〉 for m ≫ 0.

We illustrate Theorem 4 for the generic artinian monomial ideal

1 2 3 4 5 6 7 8 9 10 11 12
〈x10, y10, z10, x8y6z, x9y3z2, x4y8z3, x7y5z4, xy9z5, x3y7z6, x5y4z7, x6yz8, x2y2z9〉

= 〈x10, y10, z〉 ∩ 〈x8, y10, z3〉 ∩ 〈x7, y8, z6〉 ∩ 〈x9, y5, z7〉 ∩ 〈x7, y7, z7〉 ∩
〈x10, y3, z8〉 ∩ 〈x9, y4, z8〉 ∩ 〈x5, y7, z9〉 ∩ 〈x3, y9, z9〉 ∩ 〈x10, y, z10〉 ∩
〈x2, y9, z10〉 ∩ 〈x, y10, z10〉 ∩ 〈x8, y8, z4〉 ∩ 〈x9, y6, z4〉 ∩ 〈x4, y10, z5〉 ∩
〈x4, y9, z6〉 ∩ 〈x6, y4, z9〉 ∩ 〈x10, y6, z2〉 ∩ 〈x6, y2, z10〉

7
2

810

1

5

11

4

12

3

9

6

Fig. 2. A generic monomial ideal with 12 generators (white circles), 30 minimal S-pairs
(black dots/edges), and 19 irreducible components (shaded circles/triangular regions)
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The right picture shows the graph GM . Its triangles correspond to irreducible
components; for instance, the last component 〈x6, y2, z10〉 arises from the trian-
gle {3, 11, 12} ∈ TM . The numerator of the Hilbert series has 62 = 1+12+30+19
summands, one for each vertex, edge and region of the planar graph GM .

We are now ready to establish the connection promised in this paper’s title.

Theorem 2. The S-pair graph GM of a generic monomial ideal M in three

variables is planar. If M is artinian then (GM , TM ) is triangulation of a triangle.

Proof sketch. It suffices to consider artinian ideals M , since one can throw in
high powers xm, ym, zm, compute the S-pair graph, and then obtain GM by
deleting any edges involving xm, ym, or zm. We may further assume that each
other generator of M is divisible by xyz. The idea is to construct a 3-dimensional
polytope whose edge graph equals GM . Our claim follows because edge graphs of
3-polytopes are planar. For instance, Figure 2 is the edge graph of an icosahedron.

Fix a large real number t ≫ 0. Let Pt denote the convex hull of the points
(tai , tbi , tci) ∈ R

3 as (ai, bi, ci) runs over the exponents on the minimal generators
xaiybizci of M . Each such point is a vertex of Pt, and the edge graph of Pt is
independent of t. We call Pt the hull polytope of M . One shows that every edge
E of GM is an edge of the hull polytope by producing a linear functional which
is minimized on Pt along E (this does not use genericity of M). Finally, the
genericity of M is used to show that every edge of Pt is obtained in this fashion.

Theorem 2 gives an answer to our questions (i), (ii), (iii) even if M is not
generic, but that answer is typically nonminimal. (For a minimal solution see
Section 4). The answer is found by deforming the non-generic ideal M to a
“nearby” generic ideal Mǫ, where ǫ represents a small positive real. For instance,

M = 〈x2, xy, xz, y2, yz, z2〉 deforms to Mǫ = 〈x2, x1+ǫy, xz1−ǫ, y2, y1+ǫz, z2〉.

We can apply Theorem 1 to the generic ideal Mǫ and then set ǫ = 0 to get the
Hilbert series, a choice of minimal S-pairs, and the irreducible decomposition of
M . For instance, the irreducible decomposition of the deformation equals

Mǫ = 〈x2, y, z1−ǫ〉 ∩ 〈x1+ǫ, y2, z1−ǫ〉 ∩ 〈x, y2, z〉 ∩ 〈x, y1+ǫ, z2〉.

We invite the reader to draw the graph GMǫ
and see what happens for ǫ → 0.

The preceding discussion allows Theorem 2 to provide the following complex-
ity result for all monomial ideals in K[x, y, z]. Recall that a planar graph GM on
r vertices has at most 3r − 6 edges and at most 2r − 5 bounded regions.

Corollary 2.

1. The numerator of the Hilbert series of an ideal generated by r monomials in

three variables x, y, z has at most 6r − 10 summands.

2. When applying Buchberger’s Criterion to r polynomials in three variables, it

suffices to form at most 3r − 6 S-pairs instead of all
(

r
2

)

possible S-pairs.
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4 Three Variables: the Non-generic Case

In this section we outline a proof for the following solution to (i), (ii), and (iii):

Theorem 3. Every monomial ideal M in K[x, y, z] has a minimal resolution by

the bounded regions of a planar graph. That resolution gives irredundant formulas

for the numerator of the Hilbert series and the irreducible decomposition of M .

For generic monomial ideals M this was established in Theorem 1. Before
discussing the proof for arbitrary M , we must first explain the meaning of “min-
imal resolution by a planar graph” G. Suppose the vertices of G are labeled
by the minimal generators m1, . . .mr of M . Label each edge {i < j} of G by
mij = lcm(mi, mj). Now G, determines a set T of bounded regions, with each
region R ∈ T having a certain set of vertices {i1 < · · ·<it} on its boundary. We
define the label mR = lcm(mi1 , . . . , mit

). Finally, for each region R and each
edge {i, j} define the sign ε(R, ij) to be 0 unless {i, j} is on the boundary of R,
then 1 if R is on the left as one goes from i to j and −1 if R is on the right.

In analogy with Eq. (8), consider the following maps of free modules:

∂1 : K[x, y, z]G → K[x, y, z]r , eij 7→
mij

mj

· ej −
mij

mi

· ei

∂2 : K[x, y, z]T → K[x, y, z]G , eR 7→
∑

{i,j}∈G

ε(R, ij) ·
mR

mij

· eij

(12)

which define a complex FG of free K[x, y, z]-modules in analogy with Eq. (10).
Theorem 3 says that it is always possible to choose a labeled planar graph G so
that FG is exact and minimal, i.e., mij 6= mR for any edge ij of a region R. The
graph G will be far from unique for monomial ideals M which are not generic.

Example. Consider the mth power of the maximal ideal 〈x, y, z〉, that is,

M = 〈x, y, z〉m = 〈xiyjzk : i, j, k ∈ N, i + j + k = m 〉 . (13)

The staircase of M is depicted in Figure 3(a) for m = 5. The graph in Figure 3(b)
represents a free resolution of M for m = 5. This graph is essentially the edge
graph of the hull polytope PM of M , as defined in Section 3. In fact, the hull
polytope makes sense for any monomial ideal (in any number of variables) and
gives a nice but nonminimal solution to our problems (i), (ii), and (iii):

The resolution defined by the graph in Figure 3(b) is nonminimal because
every downward-pointing triangle has the same label as all three of its edges.
We get a graph G satisfying Theorem 3 by deleting precisely one edge from each
downward-pointing triangle. When an edge is deleted, the two adjacent regions
join together, as the one with the larger label “swallows” the one with the smaller
label. Notice how many distinct graphs G result that minimally resolve M !

Since the monomial ideal M is invariant under the symmetric group on x, y, z,
we may ask whether there exists a minimal planar graph resolution which is
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(f)

(e)

(d)

(c)
(b)

(a)

Fig. 3. Symmetric resolutions of various powers of the maximal ideal 〈x, y, z〉

invariant. The answer is “yes” if and only if m is congruent to 0 or 1 modulo 3.
Examples of these symmetric choices are shown for various m in Figure 3: (c) is
m = 3; (d) is, without the dotted edges, m = 6; (e) is m = 4; and (f) is m = 7.

The general construction for the case m ≡ 0 (mod 3) is gotten by putting
together m2/9 of the graphs in Figure 3(c) in the pattern of Figure 3(b), erasing
the dotted edges as in Figure 3(d) when everything is put together. In the case
m ≡ 1 (mod 3), one radiates upside-down side-length 2 triangles outward from
the center, cutting them off at the boundary as in Figures 3(e,f). Of course, the
upside-down side-length 2 “triangles” are really hexagonal regions in the graph.

Proof sketch of Theorem 3. As in the generic case, we may assume that M is
artinian. We can always find some planar graph G′ such that FG′ is a (possibly
nonminimal) free resolution of M , e.g. by using the hull polytope or by deforming
to nearby generic monomial ideal. Since the labels on the vertices of G′ are
minimal generators, the matrix ∂1 never has ±1 entries. The matrix ∂2 has a ±1
entry if and only if some region has the same label as one of its boundary edges.
One shows that the graph obtained from G′ by deleting this edge and joining
the two adjacent regions still defines a free resolution of M . A graph G satisfying
Theorem 3 is obtained when there are no nonminimal edges left to delete.

Once we know that FG is a minimal free resolution then the irredundant
irreducible decomposition of M can be read off the labels on the regions of G, in
analogy with Eq. (11). The Hilbert series of M can be written down in analogy



8

with Eq. (9). None of the monomials in the resulting formula for the numerator
cancel. This very last fact relies on n ≤ 3 and may be false for n ≥ 4 variables.

We claim that the following converse to Theorem 3 holds.

Theorem 4. For every 3-connected planar graph G there exists a monomial

ideal M in 3 variables which is minimally resolved by the bounded regions of G.

This result is a variant of Steinitz’ Theorem [19, Theorem 4.1] which states
that 3-connected planar graphs are the edge graphs of 3-dimensional convex
polytopes. If G is a planar triangulation then M can be chosen generic, and, in
this case, Theorem 4 follows from Schnyder’s Theorem on order dimension [17,
Theorem 6.2.1, pp. 128], as explained in [3, §6]. The general non-triangulated
case is more difficult. It does not immediately follow from its order-theoretic
analogue due to Brightwell and Trotter [17, Theorem 6.3.1]. The complete proof
of Theorem 4 is “under construction” and will be published elsewhere.

In Figure 4 is a non-trivial example illustrating the encoding of a planar graph
G by a monomial ideal M . Note that the order 8 (dihedral group) symmetry of
the graph cannot be reproduced in the monomial ideal. The square is realized
by having an irreducible component which is determined by four surrounding
generators, two of which have one coordinate in common. Similarly, the hexagons
have six generators spread around the corresponding irreducible component, with
each such generator sharing one coordinate with the irreducible component.
Only the artinian components—those with generators on all three sides—define
regions in G. After M has been chosen to realize G, it may be that G can be
altered while still remaining a minimal resolution for M . For instance, edge a
can have its exterior vertex changed from 1 to 2, or even to 3, making the left
hexagon into a heptagon or octagon. Independently, edge b can have its vertex
4 moved to 5, making the right hexagon into a pentagon. What must remain
constant are the numbers of vertices, edges, and regions.

a

1

2

b

4

5

3

Fig. 4. A monomial ideal constructed to have the given graph as minimal resolution
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5 Four and More Variables

The ideas presented in Sections 3 and 4 make perfect sense also for n ≥ 4
variables. There is the hull polytope PM in R

n, and there are deformations
to generic monomial ideals M → Mǫ. Resolutions by planar graphs can be
generalized to resolutions by cell complexes, as defined by Bayer and Sturmfels
[5]. The familiar duality of planar graphs now becomes Alexander duality for

monomial ideals as defined by Miller [15], and yields an efficient algorithm for
problem (iii). However, it is more difficult to construct cellular resolutions which
are minimal. There seems to be no n-dimensional analogue to Theorem 3. One
obstruction is that the minimal resolution may depend on the characteristic of
the field K. Any general formula for minimal resolutions is expected to involve
homological algebra over the lcm-lattice of Gasharov, Peeva and Welker [12]. See
the recent work of Yuzvinsky [18] for a possible approach.

Cellular resolutions provide efficient formulas for Hilbert series and related
questions even if they are nonminimal. The following complexity result holds.

Theorem 5. Fix n ≥ 2. The numerator of the Hilbert series of an ideal M
generated by r monomials in n variables can have order r⌊

n
2
⌋ many terms for

r ≫ 0. The same upper and lower bound holds for the number of irreducible

components of M and the ranks of the modules in a minimal resolution of M .

This upper bound was derived by Bayer, Peeva and Sturmfels [3, Theorem
6.3] from the Upper Bound Theorem for Convex Polytopes [19, Theorem 8.23].
The Upper Bound Theorem states, roughly speaking, that the maximum num-
ber of faces of an n-dimensional polytope with r vertices has order r⌊

n
2
⌋. The

matching lower bound for Theorem 5 was established by Agnarsson [1].
There seems to be no analogue to Theorem 4 is higher dimensions. For in-

stance, there is a triangulation of a tetrahedron with three interior vertices [3,
§6] which does not support a minimal resolution of a monomial ideal M in
R = K[a, b, c, d]. A detailed study of the graphs GM for n = 4 appears in recent
work of Agnarsson, Felsner and Trotter [2]. The following example is instructive:

M = 〈a9b9c9, d9, a6b7c4d, a2b3c8d5, a5b8c3d2,
ab4c7d6, a8b5c2d3, a4bc6d7, a7b6cd4, a3b2c5d8〉.

Its S-pair graph GM is the complete graph on 12 vertices. The minimal resolution
of M is cellular and looks like 0 → R53 → R108 → R66 → R12 → M → 0. It is a
triangulation of a tetrahedron with 8 interior vertices, which is neighborly in the
sense that any two vertices form an edge. Polytope combinatorics [19, §8] tells
us that such a neighborly triangulation has 53 tetrahedra and 108 triangles.

Let φ(n) denote the maximum of generators of a monomial ideal M in n
variables whose S-pair graph GM equals the complete graph. It is a non-trivial
fact that φ(n) is actually finite. However, it grows doubly-exponentially in n;
see [17, Theorem 7.2.13]. Note that Corollary 1 implies φ(2) = 2, Corollary 2
implies φ(3) = 4, and φ(4) = 12 is attained by the neighborly monomial ideal
M above. The specific values in Table 1 are derived from the following theorem.
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Theorem 6. (Hosten and Morris [13]) The number φ(n) equals the number of

distinct simplicial complexes T on the set {1, 2, . . . , n−1} with the property that

no two faces of T have their union equal to {1, 2, . . . , n − 1}.

Table 1. The maximum number φ(n) of generators of a neighborly monomial ideal

variables = n 2 3 4 5 6 7 8

generators = φ(n) 2 4 12 81 2,646 1,422,564 229,809,982,112
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