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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q .

Def. Q-module over the poset Q:

• family M = {Mq}q∈Q of vector spaces over the field k with

• homomorphism Mq → Mq′ whenever q � q′ in Q such that

• Mq → Mq′′ equals the composite Mq → Mq′ → Mq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n⇔M = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n⇔M = R

n-graded k[Rn
+]-module
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Example: expanding balls
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Example: expanding balls

dim(H0) = 12
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Example: expanding balls

dim(H0) = 6
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Example: expanding balls

dim(H0) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Example: expanding balls

dim(H0) = 1 dim(H1) = 0
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Example: filling brains [w/Bendich, Marron, Pieloch, Skwerer]
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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Fruit fly wings

photographic image
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Fruit fly wings

spline
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Fruit fly wings

spline

Hypothesis. Topological novelty arises when directional selection pushes

continuous variation in a developmental program beyond a certain threshold.
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Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑

→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑

→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑

→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
6
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family M = {Mq}q∈Q of vector spaces over the field k with

• homomorphism Mq → Mq′ whenever q � q′ in Q such that

• Mq → Mq′′ equals the composite Mq → Mq′ → Mq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n⇔M = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n⇔M = R

n-graded k[Rn
+]-module

1’’’
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Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{

x ∈ M | F (x) ≥ 1/s
}

.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{

Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}

⊆ M nested as r and s increase.

Def. [Carlsson–Zomorodian 2009] bipersistent homology H rs
i (µ) = Hi

(

Br (µ)rd s

)

algebra, geometry, combinatorics of H rs
∗ (µ)↔ statistics of µ
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Topology of probability distributions

images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family M = {Mq}q∈Q of vector spaces over the field k with

• homomorphism Mq → Mq′ whenever q � q′ in Q such that

• Mq → Mq′′ equals the composite Mq → Mq′ → Mq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n⇔M = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n⇔M = R

n-graded k[Rn
+]-module
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• Mq → Mq′′ equals the composite Mq → Mq′ → Mq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n⇔M = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n⇔M = R

n-graded k[Rn
+]-module
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Example: toy model fly wings

 

A piece of fly wing vein The (r , s)-plane R
2

Observations

• finitely many regions

• boundaries between regions are

(algebraic) curves

• discrete approximates algebraic

9
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Example: molecular screening [Keller, Lesnick, Willke 2018]

Output computed by RIVET [Lesnick–Wright 2015–]

10
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Example: fly wings, fully discretized

 

spline RIVET output

slow pipeline (spline RIVET output)

want instead:

• direct description of algebraic boundary curves for
• parallel computation—or better, single preprocessing step

11
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Intervals in posets

Thm [Crawley–Boevey 2012]. R-module M ⇒ M ∼=
⊕

I∈I

k[I] with I a set of intervals

Def. An interval I in a poset Q is a convex connected subset: a,b ∈ I⇒
• q ∈ I whenever a � q � b and
• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k[S] = {ks}s∈S.

Examples
• In R

2:

or or but not

• In R
3:

semialgebraic

or

piecewise linear

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187–216] 12
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Intervals in posets

Thm [Crawley–Boevey 2012]. R-module M ⇒ M ∼=
⊕

I∈I

k[I] with I a set of intervals

Def. An interval I in a poset Q is a convex connected subset: a,b ∈ I⇒
• q ∈ I whenever a � q � b and
• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k[S] = {ks}s∈S.

Examples
• In R

2:

or or but not

However:

Thm fails in multiple parameters [Carlsson–Zomorodian 2009]

• every module ∼=
⊕

indecomposables [Botnan–Crawley-Boevey 2020]

• indecomposable is arbitrarily worse than interval [Buchet–Escolar 2018]
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Functorial endpoints over R

R-module interval decomposition works up to isomorphism:

“Bases can be chosen so that. . . .”

but not in multipersistence⇒ crucial to extract endpoints functorially.

Right endpoint
• is a basis element for something, so
• look for “subspace of right endpoints”

Closed right endpoint at a ∈ R

• span(element in Ma that dies when pushed up to M>a)
• submodule ka ⊆ M

Def. Hom(ka,M) =
∑

(submodules ka ⊆ M)
= vector space of all right endpoints

= closed socle of M over parameter a ∈ R

Open right endpoint at a ∈ R

• ker
(

lim
−→

a′<a

Ma′ → Ma

)

(δR+M)a → (δ{0}M)a

13
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Functorial endpoints over R

R-module interval decomposition works up to isomorphism:

“Bases can be chosen so that. . . .”

but not in multipersistence⇒ crucial to extract endpoints functorially.

Right endpoint
• is a basis element for something, so
• look for “subspace of right endpoints”

Closed right endpoint at a ∈ R

• span(element in Ma that dies when pushed up to M>a)
• submodule ka ⊆ M

Def. Hom(ka,M) =
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= vector space of all right endpoints

= closed socle of M over parameter a ∈ R

Open right endpoint at a ∈ R
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(
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−→
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)

picture:
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Functorial endpoints over R

Finite endpoints: unify

• upper boundary R-module δM =
⊕

δσM, the sum over faces σ of cone R+

• has natural maps δR+M → δ{0}M → 0;
• take kernels of these and closed socles Hom(k,−) =

⊕

a Hom(ka,−)
•  finite endpoint vector spaces: open in δR+M and closed in M = δ{0}M

Infinite right endpoint

• submodule k[a + R+] for any a≫ 0
• submodule k[a + R+] ⊇ k[a′ + R+] for any a ≤ a′ ↔ same∞-endpoint
• need injective homomorphisms ϕ : k[a + R+] →֒ M, with
• ϕ ∼ ϕ′ if one is an R-translate of the other
• start with Hom(k[a + R+],M), but

• declare translation along R to be invertible by localizing: H  HR+

• mod out by translation: HR+  HR+/R.

Note. H  HR+

• kills any interval with a finite right endpoint (open or closed)
• replaces any immortal ray with a copy of R.

Def. H  HR+
/R is quotient-restriction.
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Socles in multiple parameters

Def. Fix a face σ of the cone R
n
+. The upper boundary of M atop σ is the

R
n-module δσM whose fiber over a ∈ R

n is the vector space

(δσM)a = Ma−σ = lim
−→

a′∈a−σ◦

Ma′

Def. Fix a face τ of the cone R
n
+.

• Let ∇τ = poset of faces containing τ .
• The upper boundary of M along τ is the (Rn

+ ×∇τ)-module

δτM =
⊕

σ∈∇τ

δσM

Def. The socle of M along τ is

socτ M = HomR+×∇τ

(

k[τ ], δτM
)

/τ

• take upper boundary of M along various faces of Rn
+

• look for copies of k[τ ] in there, as R
n-modules

• ensure these copies can’t be pushed down in face poset ∇τ
• take quotient-restriction along τ

16
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Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Comments on endpoints

Left endpoints are dual to right

• closed left: quotient module M ⊗ ka = (M/M<a)a

• open left: coker
(

Ma → lim
←−

a<a′

Ma′

)

• infinite left: quotient module k[a− R+]

Question. Is there a distinction between open and closed endpoints?

Answers
• For metrics and distances, no: [Berkouk–Petit 2021]; cf. Berkouk’s talk

at least for metrics based on γ-topology [Kashiwara–Schapira 2018–]
• But a module isn’t handed to you as "closed" or "open";

often, it turns out, it has closed left and open right endpoints

(from free presentation or from γ-topology, for instance).
• Boundary components, present or not, crucial for derived category

computation: module concrete complex representing it.
• Closed vs. open endpoints have very different meanings for topological

calculations with constructible sheaves and functions via pushforwards.

Note. Socles, minimal generators, resolutions, etc.: completely new

fundamental commutative algebra of real-exponent polynomial rings.
17



Persistence Fly wings Probability Intervals Functorial R-endpoints Multiparameter socles Birth and death posets QR codes Applications

Birth and death posets

Def. An R
n-module M has

• birth poset BM = parameters indexing left endpoints (births) and
• death poset DM = parameters indexing right endpoints (deaths).

Note. A death degree α ∈ DM records

• parameter a ∈ R
n
+

• face τ along which to quotient-restrict
• nadir σ.

To visualize: Let O(Rn) be the poset of orthants in R
n partially ordered by

inclusion, where an orthant is a translate of Rn
+ missing a set of closed faces.

Then BM is a subposet of the disjoint union Bn = ·
⋃

facesτ O(R
n/Rτ).

Examples.
• B1 is the union of {−∞} with the set of positive-pointing rays in R totally

ordered by inclusion.
• Z

n-module M with only finitely many nonzero Ma ⇒ BM and DM are ⊆ Z
n:

no nadirs (Zn is discrete) or quotient-restriction (every element is mortal).

Prop. The life poset BM ·∪ DM is a subposet of Bn ·∪ Dn, whose partial order

has β � α when the corresponding upward and downward orthants intersect.
18
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QR-codes

Prop. M has natural vector spaces

• Mβ for each β ∈ BM and
• Mα for each α ∈ DM

with natural maps Mγ → Mγ′ when γ � γ′ in the life poset BM ·∪ DM .

Def. The quotient-restriction code (or QR code) QR(M) is the module
⊕

γ∈BM ·∪DM

Mγ over the life poset BM ·∪ DM .

Remark. Better intuition: QR code↔ “morphism” Birth(M)→ Death(M),
where Birth(M) = QR(M)|BM

and Death(M) = QR(M)|DM
.

Examples.
• R-modules: birth degrees = left endpoints, death degrees = right endpoints;

appropriately ordered and paired bases for Birth(M) and Death(M)⇒
linear map Birth(M) and Death(M) is given by an identity matrix.

• Z
n-module M with dimk(M) <∞⇒ QR(M) is essentially equivalent to

the restriction of M to the nondisjoint union BM ∪ DM ⊆ Z
n.

Thm. M can be functorially recovered from its QR code.

Pf. Use socle and its dual notion of top to construct a fringe presentation.
19
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Applications

1. Direct computation with real parameters

• multipersistence often uses semialgebraic or even PL geometry
• Thm: QR codes inherit such geometry, plus tameness
• Current project: use this to implement semialgebraic computation
• potential payoff 1: single preprocessing step for many similar

multipersistence computations; e.g., fly wings
• potential payoff 2: data structure for multipersistence is amenable to

distance computation of the sort we typically see; in essence it thinks

like Lebesgue instead of Riemann

2. Algorithmic indecomposable decomposition

• functorial reduction to QR codes⇒ decompose QR codes
• birth-death perspective lends insight into how to extend [Dey–Xin 2018]

to work for arbitrary birth and death degrees

3. Distances

• use just the endpoints, or
• "corresponding parts" of the endpoints, e.g. same associated prime

(history or mortality type)

20
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