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Abstract

We consider solutions of an elliptic partial differential equation in R
d with a stationary, random

conductivity coefficient that is also periodic with period L. Boundary conditions on a square
domain of width L are arranged so that the solution has a macroscopic unit gradient. We then
consider the average flux that results from this imposed boundary condition. It is known that in
the limit L → ∞, this quantity converges to a deterministic constant, almost surely. Our main
result is that the law of this random variable is very close to that of a normal random variable,
if the domain size L is large. We quantify this approximation by an error estimate in total
variation. The error estimate relies on a second order Poincaré inequality developed recently by
S. Chatterjee.

1 Introduction

Elliptic partial differential equations of the form

−∇ · (a(x)∇u) = f

arise in many physical applications where the coefficient a(x) may be modeled best as a random
field, due to inherent uncertainty and complexity of the physical medium [23]. In this situation,
the solutions u are also random objects. Homogenization theory for these equations [20, 14] shows
that, although the coefficient a(x) may be highly irregular, a solution u may be approximated
well by the solution of an “effective” elliptic equation having a more regular coefficient, perhaps a
deterministic coefficient. Quantifying the error in such an approximation and understanding the
statistical structure of the random solution is very important.

Here we consider solutions of the elliptic equation

−∇ · (a(x)(∇φ(x) + e1)) + βφ(x) = 0, x ∈ DL ⊂ R
d, (1.1)

where the scalar function a(x) ∈ L∞(Rd) is a stationary random field satisfying the uniform ellipticity
condition 0 < a∗ ≤ a(x) ≤ a∗, with a∗ and a∗ being deterministic constants. The parameter β ≥ 0 is
deterministic. The set DL = [0, L)d is the domain, and we require that φ satisfies periodic boundary
conditions on the boundary of DL. If we interpret (1.1) in terms of electrical conductivity, then φ is
a potential, a(x) is the conductivity, and the vector field −a(x)(∇φ+ e1) is a current density. The
unit vector e1 is deterministic, and it is the gradient of the linear potential x · e1.

The equation (1.1) plays an important role in the homogenization theory for the random elliptic
operator u 7→ −∇ · (a(x/ǫ)∇u) in the limit ǫ → 0 [20, 14]. It is well-known that the homogenized
conductivity tensor ā for that operator can be expressed in terms of functions φ, called “correctors”,
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which solve (1.1) with e1 being one of the d standard basis vectors and which have stationary
gradient. On the other hand, in a numerical computation of ā one must approximate the true
correctors by solving (1.1) in a bounded domain DL with suitable boundary condition. The periodic
boundary condition that we impose here is one choice that allows accurate approximation of the
effective coefficient ā in the limit L → ∞ [6, 19].

The focus of this paper is on the statistical behavior of the quantity

ΓL,β =
1

|DL|

∫

DL

a(x)|∇φ+ e1|2 + βφ2 dx

for large L. Using (1.1) and the periodicity of φ we see that ΓL,β may also be written as

ΓL,β =
1

|DL|

∫

DL

e1 · a(x)(∇φ(x) + e1) dx.

This is a random variable since a(x) and the solution φ are random. In terms of conductivity, ΓL,β

may be interpreted as an average flux in the direction e1 that results from a macroscopic potential
gradient imposed in the direction of e1. The results of [6, 19] imply that for β ≥ 0 fixed, ΓL,β

converges almost surely, as L → ∞, to a deterministic constant Γ̄β > 0. For β = 0, the limit Γ̄0 is
one of the diagonal entries of the homogenized tensor ā. For finite L, it is interesting to understand
how ΓL,β and φ fluctuate around their means. However, not much is known about the distribution of
ΓL,β or the distribution of φ. Our main result is an estimate showing that for L >> 1, the distribution
of ΓL,β is very close to that of a normal random variable.

Before we present the main result and explain its relation to other works, let us define the
problem precisely and establish notation. For L ∈ Z

+, let DL = [0, L)d ⊂ R
d and let L∞

per(DL)

denote the set of functions in L∞(Rd) which are periodic with period L in each direction. That is,
for all a ∈ L∞

per(DL), a(x+Lk) = a(x) holds for all k ∈ Z
d and almost every x ∈ R

d. The coefficient
a(x) in (1.1) will be a random function in L∞

per(DL). We also require that a(x) is stationary with

respect to integer shifts: for every k ∈ Z
d and a(·+ k) is equal in law to a(·).

We suppose that the random nature of a(x) comes from its dependence on a random vector ζ =
(ζk)k∈Zd∩DL

whose Ld components are independent and identically distributed real-valued random

variables, defined over a probability space (Ω,F ,P), where Ω = R
Ld

and P is a product measure on Ω.
We often will write a(x) for the random function a(x, ζ), the dependence on ζ being understood. Let
E[Y ] denote expectation with respect to the probability measure P defining the law of ζ (there will
be another assumption about the law of ζ below). We will make the following structural assumptions

about the random function a(x, ζ). First, we suppose that the map ζ → a(·, ζ) from R
Ld → L∞

per(DL)

is a twice Fréchet differentiable map. For each k ∈ Z
d, let Qk = k + [0, 1)d ⊂ R

d denote the cube of
size 1 with a corner at k. We suppose there are positive constants τ, C1, C2, C3, a

∗, a∗ > 0 such that
the following hold P-almost surely:

a∗ ≤ a(x) ≤ a∗, a.e. x ∈ DL, (1.2)

C1IQk
(x) ≤ ∂a

∂ζk
(x) ≤ C2IBτ (k)(x), a.e. x ∈ DL, ∀ k ∈ Z

d ∩DL, (1.3)

∣

∣

∣

∣

∂2a

∂ζk∂ζj
(x)

∣

∣

∣

∣

≤ C3IBτ (k)∩Bτ (j)(x), a.e. x ∈ DL, ∀ k, j ∈ Z
d ∩DL. (1.4)

The function IS(x) is the indicator of the set S, and Bτ (y) is the ball of radius τ centered at y, in the
metric topology of the torus on DL. That is, x ∈ Bτ (y) if and only if x = y+Lk+z for some k ∈ Z

d
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and |z| < τ . We suppose the constants τ , C1, C2, C3, a
∗, and a∗ are independent of L. Notice that

the bound (1.3) implies that a(x, ζ) depends only on those ζk for k in a τ -neighborhood of x (fixed
with respect to L). Thus, a(x, ζ) and a(y, ζ) are independent if |x − y| > 2τ . Also, (1.2) and (1.3)
imply that there are constants ζmin < ζmax such that ζk ∈ [ζmin, ζmax] holds with probability one.

For clarity, let us highlight a simple example for which these assumptions hold. Suppose that
0 < ζmin ≤ ζk ≤ ζmax for all k ∈ Z

d ∩ DL holds with probability one. For x ∈ R
d, define the

piecewise constant function

a(x) = a(x, ζ) =
∑

k∈Zd

ζ(k mod L)IMk
(x), (1.5)

where the sets Mk = k +M0 are translates of a given bounded and measureable set M0 satisfying
Q0 ⊂ M0 ⊂ Bτ (0). The notation (k mod L) refers to the point (k1 mod L, . . . , kd mod L) ∈ DL∩Z

d.
It is easy to see that a(x) ∈ L∞

per(DL) with probability one. Conditions (1.2), (1.3), and (1.4) hold

with a∗ = ζmin, a
∗ = ζmaxO(τd), and C1 = C2 = C3 = 1. Moreover, for each k ∈ Z

d, a(· + k) has
the same law as a(·), since a(x+ k, ζ) = a(x, ζ̂) where ζ̂j = ζ(j+k) mod L.

Let H1
per(DL) denote the set of L-periodic functions in H1

loc(R
d). That is, φ ∈ H1

per(DL) if

φ ∈ H1
loc(R

d) and φ(x + Lk) = φ(x) a.e. R
d for every k ∈ Z

d. If a(x) ∈ L∞(DL) and satisfies
0 < a∗ ≤ a(x) ≤ a∗ almost everywhere, then there exists a weak solution φ ∈ H1

per(DL) to (1.1):

∫

DL

∇v · a(x)(∇φ+ e1) + βφv dx = 0, ∀ v ∈ H1
per(DL). (1.6)

For β > 0, the solution is unique. For β = 0, the solution is not unique, but any two solutions in
H1

per(DL) must differ by a constant. So, under the normalization condition

∫

DL

φ(x) dx = 0, (1.7)

and for fixed L, the solution is unique in H1
per(DL) for all β ≥ 0. With a(x) = a(x, ζ) satisfying

the conditions above, this unique solution φ(x) = φ(x, a, L, β) depends on the parameters L and β,
on x ∈ DL, and on the random variables (ζj)j∈DL∩Zd which determine a. The uniqueness of the
solution implies that φ(x) is statistically stationary with respect to integer shifts: the law of φ(x) is
the same as that of φ(x+ k) for any k ∈ Z

d, since the variables ζj are identically distributed.
Having defined both a(x) and φ(x), we now define the random variable

ΓL,β =
1

|DL|

∫

DL

a(x)|∇φ+ e1|2 + βφ2 dx =
1

|DL|

∫

DL

e1 · a(x)(∇φ(x) + e1) dx,

which also is a function of the Ld random variables {ζj | j ∈ Z
d ∩DL}. It is known that ΓL,β has a

variational representation:

ΓL,β = min
v∈H1

per(DL)

1

|DL|

∫

DL

a(x)|∇v + e1|2 + βv2 dx. (1.8)

The Euler-Lagrange equation for this variational problem is (1.1), and φ is the unique minimizer
(unique up to addition of a constant if β = 0).

We make one more technical assumption about the variables ζk. We suppose that the law of ζk is
that of h(Zk) where Zk is a standard normal random variable and h : R → R is twice differentiable
and satisfies |h′(z)| ≤ c1 and |h′′(z)| ≤ c2. While this assumption excludes some interesting choices
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for the law of ζk, it does not imply that the law of ζk has a density with respect to Lebesgue measure
on R. We suppose that h is not a constant, so that Var(ζk) > 0.

Our main result is the following theorem. Recall that the total variation distance dTV (X,Y )
between the laws of two real-valued random variables X and Y is defined as

dTV (X,Y ) = sup |P(X ∈ A)− P(Y ∈ A)|,

where the supremum is over all Borel sets A ⊂ R. This quantity is invariant under centering and
scaling: dTV (X,Y ) = dTV ((X − µ)/σ, (Y − µ)/σ) for all µ ∈ R, σ > 0.

Theorem 1.1 Let d ≥ 1. There is a constant C > 0 and q > 4 such that

dTV (ΓL,β ,WL,β) ≤ CL−d/2E[Φ
q
0]
2/q

E[Φ0]2
(1.9)

holds for all L > 1 and β ≥ 0, where WL,β is a normal random variable having the same mean and
variance as ΓL,β, and

Φ0 =

∫

Q0

|∇φ(x) + e1|2 dx. (1.10)

Observe that the random variable Φ0 which appears in Theorem 1.1 depends on both L and β.
It is easy to see that E[Φ0] ≥ 1 holds for all L > 1 and β ≥ 0 and all d ≥ 1 (see (2.27)). So, when it
is also true that E[Φq

0] is bounded by a constant, independent of L > 1, then the right side of (1.9)
is bounded by O(L−d/2); in particular, the distribution of ΓL,β approaches that of a normal random
variable. As explained below, O(L−d/2) is the optimal bound on dTV (ΓL,β ,WL,β), in the sense that
this is the expected bound if ΓL,β behaves like the average of O(Ld) independent random variables.
For all dimensions d ≥ 1, if β ≥ β0 > 0 is bounded away from zero independently of L, then all
moments E[Φq

0] are bounded independently of L > 1 (for example, see Corollary 5.5). In this case,
Theorem 1.1 implies that dTV (ΓL,β ,WL,β) = O(L−d/2) as L → ∞, which is the optimal bound.

If β = 0 or if β > 0 is allowed to vanish as L → ∞, estimating the moments E[Φq
0] is a delicate

issue. To estimate E[Φq
0] in this situation one can use the arguments developed recently by Gloria and

Otto in [13], which is the work most directly related to this article. In [13], the authors derive variance
bounds for a discrete functional similar to ΓL,β, involving an infinite network of random resistors on
the bonds of the integer lattice Z

d. The PDE (1.1) is replaced by a discrete difference equation on
all of Zd, without the periodicity assumption. The stationary potential field φ(x) is defined at points
x ∈ Z

d; the gradient and divergence have interpretations as difference operators. For each edge e in
the integer lattice, the conductivity A = A(e) is a random variable which is stationary with respect
to lattice translation, but it is not periodic. Consequently, φ depends nontrivially on the infinite set
of conductances A(e). Gloria and Otto then consider the random variable

Γ̃L,β =
∑

Zd

(

A(e)|∇φ(e) + e1|2 + βφ(x)2
)

ηL(x)

where ηL(x) ≥ 0 is a deterministic weight function that is supported on a cube of size L, and having
total mass 1. In present setting, the periodization of the random field a(x) over DL serves a similar
purpose to the weight function ηL. One of the main results of [13] is that there is a constant C > 0
such that

Var(Γ̃L,β) ≤
{

CL−d, if d ≥ 3
CL−d| log(β)|, if d = 2
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holds for all β > 0 and L > 1. Another important result from [13], and a key step in the analysis of
Var(Γ̃L,β), is the following bound on moments of the discrete corrector φ:

E[ |φ(0)|q ] ≤
{

Cq, if d ≥ 3
Cq| log(β)|γq , if d = 2.

(1.11)

The constants Cq, γq > 0 are independent of L > 1 and β > 0. Observe that in dimension d = 2,
there is an extra factor that diverges as β → 0. The extension of the analysis of [13] to the present
setting (spatial continuum, with periodicity on DL) can be carried out to estimate moments of
both

∫

Q0
φ(x) dx and Φ0. In particular, the argument shows that for d ≥ 3 all moments E[Φq]

are bounded independently of L > 1 and β ≥ 0. Therefore, for d ≥ 3, Theorem 1.1 implies that
dTV (ΓL,β ,WL,β) = O(L−d/2). In the case d = 2, however, the argument shows that E[Φq] is bounded
by C| log β|γ for certain constants Cq, γq > 0 independent of L > 1 and β > 0. So, in the case d = 2,
if β = 0 or if | log β|γq → ∞ faster than Ld/2 as L → ∞, we cannot conclude from this bound
that dTV (ΓL,β ,WL,β) → 0 as L → ∞. In Section 5 we explain a few points about this method of
bounding E[Φq

0] and its relation to the present setting. However, the extension of the results of [13]
to the periodic setting is being worked out in [12], so we do not pursue it further.

Other works related to Theorem 1.1 include those of Naddaf and Spencer [18], Conlon and Naddaf
[8], and Boivin [4] in the discrete case and Yurinskii [26] in the continuum setting; they also derive
upper bounds on the variance of quantities similar to Γ̃L,β and ΓL,β. Komorowski and Ryzhik [15]
have proved some related moment bounds on φ in the discrete case when d = 1. In the discrete
setting the work of Wehr [24] contains a lower bound on the variance of a quantity analogous to
ΓL,0. However, none of the works we have mentioned address the issue of a central limit theorem:
whether the distribution of ΓL,β is approximately normal for L >> 1. If β = 0 and the dimension
is d = 1, then equation (1.1) can be integrated, with the solution φ written in terms of integrals of
1/a(x). In that case it is known that the solution itself may satisfy a central limit theorem after
suitable renormalization; see Borgeat and Piatnitski [5] Bal, Garnier, Motsch, Perrier [1] for precise
statement of these results. In the multidimensional setting, however, those techniques do not apply.

The basis for our proof of Theorem 1.1 is the following general inequality developed recently by
Chatterjee [7], based on Stein’s method of normal approximation. From now on, we often use Γ for
ΓL,β , the dependence on L and β being understood (φ also depends on both L and β).

Theorem 1.2 ([7], Theorem 2.2) Let h ∈ C2(R;R). Let {Zk}k∈I be a collection of independent,
standard normal random variables, where I is a finite index set. For k ∈ I, let ζk = h(Zk), and let
Γ = Γ(ζ) : R|I| → R be a function of the random vector ζ = (ζk)k∈I . Define constants

κ0 =



E

∑

j∈I

∣

∣

∣

∣

∂Γ

∂ζj

∣

∣

∣

∣

4




1/2

,

and

κ3 =



2

∫ 1

0

(

1

2
+

1√
t

)

E





∑

i∈I





∑

j∈I

∂2Γ

∂ζi∂ζj
(ζ)

∂Γ

∂ζj
(ζ̃(t))h′(Zi)h

′(Zj)h
′(Z̃j(t))





2

 dt





1/2

, (1.12)

where ζ̃(t) = (ζ̃k(t))k∈I is the random vector defined by

ζ̃k(t) = h(Z̃k(t)), Z̃k(t) =
√
tZk +

√
1− tZ ′

k,
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and Z ′ = (Z ′
k)k∈I is an independent copy of the random vector Z = (Zk)k∈I . If W is a normal

random variable having the same mean and variance as Γ, then

dTV (Γ,W ) ≤ 2
√
5c1c2κ0 + 2κ3

σ2
, (1.13)

where σ2 = Var(Γ), c1 = ‖h′‖∞, and c2 = ‖h′′‖∞.

We have stated this theorem differently from its statement in [7], yet the bound (1.13) follows
directly from the anlaysis proving Theorem 2.2 of [7] (see p. 33-34 therein). One way to bound
(1.12) uses the operator norm for the Hessian of Γ, as in [7]. With this approach, one obtains from
(1.12) the estimate

κ3 ≤ c31
√
5(E‖∇ζΓ‖4)1/4(E‖∇2

ζΓ‖4)1/4, (1.14)

which implies that

dTV (Γ,W ) ≤ 2
√
5c1c2κ0 + 2

√
5c31κ1κ2

σ2
, (1.15)

where
κ1 = (E‖∇ζΓ‖4)1/4, κ2 = (E‖∇2

ζΓ‖4)1/4.
Here ∇ζΓ refers to the gradient with respect to the variables ζk for k ∈ DL, and ∇2

ζΓ is the Hessian,

an Ld × Ld matrix. The norm ‖∇2
ζΓ‖ is the L2 operator norm. The bound (1.15) is precisely the

bound stated in Theorem 2.2 of [7]. Instead of using (1.14) and (1.15), however, we will use a
different approach to bounding κ3 that allows us to make better use of the structure of Γ.

For the moment, let us consider (1.15) instead of (1.13). What should we expect of the scaling
of each of the terms in (1.15)? Consider a sum of random variables

S =
1

Ld

Ld
∑

j=1

g(Zj) (1.16)

where Zj are independent standard normal random variables. Then ∂jS = L−dg′(Zj), so that
κ0 = O(L−3d/2) if g′ is bounded. Also, ‖∇S‖4 = L−4d(

∑

j g
′(Zj)

2)2, so that κ1 = O(L−d/2). For κ2

notice that ∂j∂kS = L−dδjkg
′′(Zj), so that κ2 = O(L−d) if g′′ is bounded. Thus κ3 = O(L−3d/2).

Finally, the variance is σ2 = O(L−d), so that the bound (1.15) is O(L−d/2) for this simple sum
of independent random variables. In general, if the dependence relations are sufficiently local, in
the sense that Ld∂j∂kS is typically small for |j − k| >> 1, we could still have κ3 = O(L−3d/2) and
dTV (S,W ) = O(L−d/2). Obviously ΓL,β can be written as the normalized sum

ΓL,β =
1

Ld

∑

j∈DL∩Zd

ηj , (1.17)

where the random variables ηj are

ηj =

∫

Qj

a(x)|∇φ(x) + e1|2 + β(φ(x))2 dx.

Although the variables ηj in (1.17) are identically distributed, each ηj depends on the O(Ld) variables
ζk in a nonlinear way through solution of the PDE (1.1). Consequently, the terms in the sum (1.17)
are mutually dependent, which makes the analysis of ΓL,β challenging.

Starting from (1.13), a proof of Theorem 1.1 will follow from a suitable upper bound on κ0 and
κ3 as well as a lower bound on σ2 = Var(ΓL,β), which appears in the denominator of (1.13). We will
show that κ0 = O(L−3d/2) and κ3 = O(L−3d/2). We will also prove the following lower bound on
σ2, which is similar to a result in [24]:
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Theorem 1.3 Let d ≥ 1. There is a constant C > 0 such that

Var(ΓL,β) ≥ CL−d
E[Φ0]

2 ≥ CL−d

holds for all L ≥ 1 and β ≥ 0.

Although the proof of Theorem 1.1 does not require an upper bound on the variance of ΓL,β, the
variance of ΓL,β can also be estimated from above in terms of Φ0:

Proposition 1.4 Let d ≥ 1. There is a constant C ≥ 0 such that

Var(ΓL,β) ≤ CL−d
E[Φ2

0]

holds for all L ≥ 1 and β ≥ 0.

As we have mentioned, if d ≥ 3, or if d = 2 and β > 0 is fixed, then E[Φ2
0] is bounded as L → ∞,

and Proposition 1.4 implies that Var(ΓL,β) = O(L−d).
Let us point out that the proof of Theorem 1.3 makes use of the structural assumptions on the

coefficient a(x). Specifically, the lower bound in (1.3) enables us to estimate ∂Γ
∂ζk

from below, a key
step in proof of Theorem 1.3. This structural condition is not used anywhere else in the analysis. If
(1.3) were replaced with

∣

∣

∣

∣

∂a

∂ζk
(x)

∣

∣

∣

∣

≤ C2IBτ (k)(x), a.e. x ∈ DL, ∀ k ∈ Z
d ∩DL,

then (1.9) may be replaced with

dTV (ΓL,β ,WL,β) ≤ CL−3d/2E[Φ
q
0]
2/q

σ2
. (1.18)

The rest of the paper is organized as follows: In Section 2 we prove Theorem 1.3, the lower
bound on σ2. Upper bounds on the constants κ0 and κ3 and the rest of the proof of Theorem 1.1 are
developed in Sections 3 and 4. Section 3 contains some deterministic PDE estimates (Caccioppoli’s
inequality and a version of Meyers’ estimate) which are useful in bounding κ3 and do not rely on the
statistical structure of the coefficients. Section 4 contains the main argument bounding κ0 and κ3.
Finally, in Section 5, we prove Proposition 1.4 and Corollary 5.5, which is an estimate of E[Φq

0] in
the case that β > 0 is fixed. We also make some remarks about estimating E[Φq

0] using the method
of [13] to deal with the case that β vanishes as L → ∞.

A few more comments about notation: throughout the article we will use the convention that
summation over indices j ∈ DL means a summation over j ∈ Z

d∩DL, with j ∈ Z
d being understood.

For a given measureable set A ⊂ R
d, we define the normalized integral

−
∫

A
u(x) dx =

1

|A|

∫

A
u(x) dx.

We also use C to denote deterministic constants that may change from line to line, but do not
depend on L or β. We will use Φj and Φ′

j to refer to the integrals

Φj =

∫

Qj

|∇φ(x) + e1|2 dx, Φ′
j =

∫

Bτ (j)
|∇φ(x) + e1|2 dx (1.19)
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which appear frequently in the analysis. Recall that Bτ (j) ⊃ Qj , so Φ′
j ≥ Φj .

After this paper was submitted for publication, we learned of two other related works on discrete
resistor network models. By making use of the martingale central limit theorem, Biskup, Salvi, and
Wolff [2] have proved a central limit theorem for a discrete quantity similar to Γ̃L,β when φ satisfies
linear Dirichet boundary conditions on a square box, in the regime of small ellipticity contrast (i.e.
|a∗a∗ − 1| is sufficiently small). Using different techniques, including generalized Walsh decomposition
and concentration bounds, Rossignol [21] has proved a variance bound and a central limit theorem
for effective resistence of a resistor network on the discrete torus. We refer to the recent review
paper [3] for many other references on the random conductance model.

Acknowledgment. I am grateful to Felix Otto whose insight and helpful comments led to
improvement of the main argument. I also thank Jan Wehr, Sourav Chatterjee, and Jonathan
Mattingly for stimulating discussion in the early stages of this work. The anonymous referees also
provided very helpful comments. The author’s research is partially funded by grant DMS-1007572
from the US National Science Foundation.

2 A lower bound on the variance σ
2

In this section we prove Theorem 1.3, the lower bound on σ2 = Var(ΓL,β) which appears in the
denominator of (1.13). One approach to proving the lower bound is to use the argument of Wehr
[24] who considered a functional similar to Γ for a discrete resistor network with random conductance
(without a uniform ellipticity constraint). If we assume (1.5) with Mk = Qk and that the law of
ζk is absolutely continuous with respect to Lebesgue measure on [ζmin, ζmax], that argument can be
adapted to the present setting, under the constraint

∫ ζmax

ζmin

(ν(s) + sν ′(s))2

ν(s)
ds < ∞, (2.20)

where ν is the density for the law of ζk. Here we give a proof that allows for the more general
structural condition (1.3) and allows for the law of ζk to be singular with respect to Lebesgue
measure.

First, since the variables {ζk}k∈Zd are independent, we have the lower bound

Var(Γ) ≥
∑

k∈DL

Var (E[ Γ | ζk ]) , (2.21)

where E[ Γ | ζk ] is the conditional expectation of Γ, conditioned on the value of ζk. This inequality
is proved in [25] (see Proposition 3.1, therein). Since the ζk are identically distributed, we have
Var (E[ Γ | ζk ]) = Var (E[ Γ | ζj ]) for all j, k ∈ DL, so that

Var(Γ) ≥ LdVar (E[ Γ | ζ0 ]) .

Next, observe that

Var (E[ Γ | ζ0 ]) =
∫

R

g(s)2ν(ds) =
1

2

∫

R2

(g(s)− g(s′))2ν(ds)ν(ds′) (2.22)

where
g(s) = E[ Γ | ζ0 = s ]− E[Γ] (2.23)
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and ν(ds) is the probability measure supported on [ζmin, ζmax] which is the law of the random
variable ζ0.

Since ζ 7→ a(x, ζ) is nondecreasing with respect to each coordinate ζk, it follows from (1.8) that
Γ is a nondecreasing function of each ζk, so we have g′(s) ≥ 0. We will establish the following lower
bound on the difference g(s)− g(s′):

Lemma 2.1 Define ρ(s) = E [Φ0 | ζ0 = s] ≥ 0. There is a constant θ > 0 such that

|g(s′)− g(s)| ≥ L−dθ|s− s′| max
(

ρ(s), ρ(s′)
)

holds for all s′, s ∈ [ζmin, ζmax], for all L > 1, β ≥ 0.

Therefore, from (2.22) we have

Var (E[ Γ | ζ0 ]) =
1

2

∫

R2

(g(s)− g(s′))2ν(ds)ν(ds′)

≥ 1

2
θ2L−2d

∫

R2

(s− s′)2ρ2(s)ν(ds)ν(ds′)

=
1

2
θ2L−2d

∫

R

(∫

R

(s− s′)2ν(ds′)

)

ρ2(s)ν(ds).

(2.24)

Since
∫

R
(s− s′)2ν(ds′) = E[(s− ζ0)

2] ≥ Var(ζ0), this implies

Var (E[ Γ | ζ0 ]) ≥ 1

2
θ2L−2dVar(ζ0)

∫

R

ρ2(s)ν(ds)

≥ 1

2
θ2L−2dVar(ζ0)

(∫

R

ρ(s)ν(ds)

)2

=
1

2
θ2L−2dVar(ζ0)E[Φ0]

2. (2.25)

Hence, (2.21) implies that

Var(Γ) ≥ 1

2
L−dθ2Var(ζ0)E[Φ0]

2.

Let us observe that E[Φ0] ≥ 1. Indeed, by stationarity of φ we have

E[Φ0] = E[

∫

Q0

|∇φ+ e1|2 dx] (2.26)

= E

[

−
∫

DL

|∇φ+ e1|2 dx
]

= E

[

−
∫

DL

(|∇φ|2 + 2∇φ · e1 + 1) dx

]

.

Since φ is periodic,
∫

DL
∇φ · e1 dx = 0. Hence,

E[Φ0] ≥ 1 + E[−
∫

DL

|∇φ|2 dx] ≥ 1. (2.27)

Except for a proof of Lemma 2.1, this establishes Theorem 1.3. To prove Lemma 2.1, we will
make use of the following lemma:
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Lemma 2.2 Let β ≥ 0. Suppose that a(x) and a′(x) are two measurable functions satisfying (1.2).
Let φ, φ′ ∈ H1

per(DL) satisfy

−∇ · (a(∇φ+ e1)) + βφ = 0, and −∇ · (a′(∇φ′ + e1)) + βφ′ = 0,

respectively. If (a− a′) is supported on a measureable set M ⊂ DL, then
∫

DL

|∇φ(x)−∇φ′(x)|2 dx ≤
(

a∗ − a∗
a∗

)2 ∫

M
|∇φ(x) + e1|2 dx, (2.28)

and
∫

M
|∇φ′ + e1|2 dx ≤

(

1 +
a∗ − a∗

a∗

)2 ∫

M
|∇φ+ e1|2 dx. (2.29)

In particular, if the vectors ζ and ζ ′ differ only in the jth coordinate (i.e. ζk = ζ ′k if k 6= j). Then
a(·) = a(·, ζ) and a′(·) = a(·, ζ ′) differ only on the set Bτ (j) (by 1.3), so (2.28) and (2.29) hold with
M = Bτ (j).

Proof of Lemma 2.2: The function v(x) = φ− φ′ ∈ H1
per(DL) is a weak solution to

−∇ · (a′∇v) + βv = −∇ ·
(

(a′ − a)(∇φ+ e1)
)

.

Multiply by v and integrate by parts. The uniform ellipticity implies:

a∗

∫

DL

|∇v(x)|2 dx ≤
∫

DL

∇v ·
(

(a′ − a)(∇φ+ e1)
)

dx.

Since a′ − a = 0 outside the set M , the Cauchy-Schwarz inequality leads to

a∗

∫

DL

|∇v(x)|2 dx ≤ (a∗ − a∗)

(∫

DL

|∇v|2 dx
)1/2(∫

M
|∇φ(x) + e1|2 dx

)1/2

,

which is (2.28). The bound (2.29) now follows by the triangle inequality in (L2(M))d. �

Proof of Lemma 2.1: Recall that g(s′) − g(s) = E[Γ | ζ0 = s′] − E[Γ | ζ0 = s]. Suppose the
vectors ζ and ζ ′ differ only in the jth coordinate (i.e. ζk = ζ ′k if k 6= j) and that s′ = ζ ′j > ζj = s.
Define a(·) = a(·, ζ) and a′(·) = a(·, ζ ′). The difference a′ − a is supported in Bτ (j), but its support
may not be confined to Q̄j . For this reason, we also define a function a′′ according to

a′′(x) =

{

a′(x) x ∈ Q̄j

a(x), x /∈ Q̄j .

Since a′(x) ≥ a′′(x) ≥ a(x) almost everywhere, we must have Γ(a′) ≥ Γ(a′′) ≥ Γ(a).
Let φ, φ′′ ∈ H1

per(DL) satisfy

−∇ · (a(∇φ+ e1)) + βφ = 0, and −∇ · (a′′(∇φ′′ + e1)) + βφ′′ = 0,

respectively. From the variational representation (1.8), we know that

LdΓ(a) = min
v∈H1

per(DL)

∫

DL

a|∇v + e1|2 + βv2 dx

≤
∫

DL

a|∇φ′′ + e1|2 dx+ β(φ′′)2 dx

=

∫

DL

a′′|∇φ′′ + e1|2 dx+ β(φ′′)2 dx+

∫

DL

(a− a′′)|∇φ′′ + e1|2 dx

= LdΓ(a′′) +

∫

DL

(a− a′′)|∇φ′′ + e1|2 dx. (2.30)

10



Therefore,

Γ(a′′)− Γ(a) ≥ L−d

∫

DL

(a′′ − a)|∇φ′′ + e1|2 dx. (2.31)

Since (a′′ − a) ≥ 0 is supported on Qj , then by (2.31) and Lemma 2.2,

Γ(a′′)− Γ(a) ≥ L−d

(

inf
x∈Qj

|a′′ − a|
)

1

2

∫

Qj

|∇φ′′ + e1|2 dx

≥ L−d

(

1 +
a∗ − a∗

a∗

)−2(

inf
x∈Qj

|a′′ − a|
)

1

2

∫

Qj

|∇φ+ e1|2 dx. (2.32)

Hence by using (1.3) and (2.32) we obtain

Γ(a′)− Γ(a) ≥ Γ(a′′)− Γ(a) ≥ L−dC

(

inf
x∈Qj

|a′′ − a|
)

1

2

∫

Qj

|∇φ+ e1|2 dx

= L−dC

(

inf
x∈Qj

|a′ − a|
)

1

2

∫

Qj

|∇φ+ e1|2 dx. (2.33)

By the lower bound in (1.3), this implies

Γ(a′)− Γ(a) ≥ L−dCC1|ζ ′j − ζj |
∫

Qj

|∇φ+ e1|2 dx. (2.34)

On the other hand, arguing as at (2.31) and using (1.3) we also have

Γ(a′)− Γ(a) ≥ L−d

∫

DL

(a′ − a)|∇φ′ + e1|2 dx ≥ L−dC1|ζ ′j − ζj |
∫

Qj

|∇φ′ + e1|2 dx. (2.35)

Lemma 2.2 now follows from (2.34) and (2.35) and the definition of g(s). �

3 Deterministic estimates for solutions of the elliptic equation

Our next goal is to prove Theorem 1.1 by using Theorem 1.2. In this section, however, we first
establish some regularity estimates that apply to solutions of elliptic equations. These estimates will
be used in the process of bounding the constants κ0 and κ3 which appear in Theorem 1.2. These
estimates rely only on the uniform ellipticity assumption, not on the statistical structure of the
coefficient a(x).

3.1 Caccioppoli’s inequality

Recall that the Poincaré inequality tells us that for sufficiently regular sets D there is a constant
CD > 0 such that

∫

D
(u(x)− ρD)

2 dx ≤ CD

∫

D
|∇u|2 dx (3.36)

holds for all u ∈ H1(D), where

ρD = −
∫

D
u(x) dx =

1

|D|

∫

D
u(x) dx.
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For solutions of elliptic equations Caccioppoli’s inequality gives the reverse inequality, enabling us
to control moments of ∇φ by moments of φ itself. Here and at other points in the paper it will be
convenient to use the notation 3Qj and 5Qj to refer to the cubes

3Qj = j + [−1, 2)d and 5Qj = j + [−2, 3)d,

which are concentric cubes of width 3 and 5, respectively, and containing Qj = j + [0, 1)d in their
center. We also define the random variables

ρ3,j = −
∫

3Qj

φ(x) dx and ρ5,j = −
∫

5Qj

φ(x) dx. (3.37)

Here is Caccioppoli’s inequality, presented in two different forms for convenient reference later:

Lemma 3.1 Let d ≥ 1 and let u ∈ H1(3Qj) be a weak solution to −∇ · (a∇u) + βu = ∇ · ξ for
x ∈ 3Qj, with ξ ∈ (L2(3Qj))

d. There is a constant K, depending only on a∗ and a∗ such that

∫

Qj

|∇u|2 dx ≤ K

(

∫

3Qj

|ξ|2 dx+

∫

3Qj

(u(x)− b)2 dx+ βb2

)

holds for any constant b ∈ R. Similarly, there is a constant K such that if R > 0 and u ∈ H1(BR(x0))
is a weak solution to −∇ · (a∇u) + βu = ∇ · ξ for x ∈ BR(x0), with ξ ∈ (L2(BR))

d, then

∫

BR
2

(x0)
|∇u|2 dx ≤ K

(

∫

BR(x0)
|ξ|2 dx+

1

R2

∫

BR(x0)
(u(x)− b)2 dx+ βb2Rd

)

holds for any constant b ∈ R.

Lemma 3.1 and variants are a consequence of the following:

Lemma 3.2 Let K1 = 2/a∗, K2 = (2/a∗) + 8(a∗/a∗)
2, and K3 = (2/a∗) + 2/(a∗)

2. Let Q be a
bounded open subset of Rd with smooth boundary. If β ≥ 0 and u ∈ H1(Q) is a weak solution to
−∇ · (a∇u) + βu = f +∇ · ξ for x ∈ Q, with f ∈ L2(Q) and ξ ∈ (L2(Q))d, then

∫

Q
ϕ2|∇u|2 dx ≤ K1

∫

Q
f(u− b)ϕ2 dx−K1β

∫

Q
u(u− b)ϕ2 dx

+K2

∫

Q
|∇ϕ|2(u− b)2 dx+K3

∫

Q
|ξ|2ϕ2 dx (3.38)

holds for any smooth function ϕ ≥ 0 which vanishes on the boundary of Q, and any constant b ∈ R.

Proof of Lemma 3.2: A proof of this sort can be found in various texts, for example Chapter
III of [9]. Suppose that u ∈ H1(Q) solves −∇ · (a∇u) + βu = ∇ · ξ in the weak sense:

∫

Q
a∇u∇v dx+

∫

Q
βuv dx =

∫

Q
fv dx−

∫

Q
ξ · ∇v dx ∀v ∈ H1

0 (Q). (3.39)

By choosing a test function v = (u− b)ϕ2 ∈ H1
0 (Q), using the uniform ellipticity, and the fact that

ϕ ≥ 0, we obtain from (3.39) the bound:

a∗

∫

Q
ϕ2|∇u|2 dx ≤ −

∫

Q
2ϕ(u− b)a∇u∇ϕdx−

∫

Q
βu(u− b)ϕ2 dx+

∫

Q
f(u− b)ϕ2 dx

−
∫

Q
ξ · (∇u)ϕ2 dx− 2

∫

Q
ξ · (∇ϕ)ϕ(u− b) dx. (3.40)
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By the Cauchy-Schwarz inequality, for any ǫ > 0,
∫

Q
2ϕ(u− b)a∇u∇ϕdx ≤ ǫ

∫

Q
ϕ2|∇u|2 dx+

(a∗)2

ǫ

∫

Q
|∇ϕ|2(u− b)2 dx

and
∫

Q
ξ · (∇u)ϕ2 dx ≤ ǫ

∫

Q
ϕ2|∇u|2 dx+

ǫ−1

4

∫

Q
ϕ2|ξ|2 dx (3.41)

and

2

∫

Q
ξ · (∇ϕ)ϕ(u− b) dx ≤

∫

Q
|ξ|2ϕ2 +

∫

Q
(u− b)2|∇ϕ|2 dx. (3.42)

Now by choosing ǫ = a∗/4, we infer from (3.40) the bound

a∗
2

∫

Q
ϕ2|∇u|2 dx ≤ −

∫

Q
βu(u− b)ϕ2 dx+

∫

Q
f(u− b)ϕ2 dx

+

(

1 +
4(a∗)2

a∗

)∫

Q
|∇ϕ|2(u− b)2 dx+

(

a−1
∗ + 1

)

∫

Q
|ξ|2ϕ2 dx. (3.43)

This completes the proof. �

Remark 3.3 The conclusion of Lemma 3.2 also holds if we assume that u ∈ H1
per(DL) and ϕ ≥ 0

is periodic. In that case, ϕ(x) need not vanish at any point DL; the integration-by-parts is made
possible by the periodicity.

Proof of Lemma 3.1. Let u(x) and b be as in Lemma 3.1. We apply Lemma 3.2 with Q = 3Qj .
We may choose 0 ≤ ϕ(x) ≤ 1 to be a smooth function with support in Q = 3Qj ⊂ DL and satisfying
ϕ ≡ 1 in Qj and |∇ϕ| ≤ C. In this case, observe that since β ≥ 0 and 0 ≤ ϕ ≤ 1,

−β

∫

3Qj

u(u− b)ϕ2 dx ≤ βb2|3Qj |.

This proves the first part of Lemma 3.1. The second part also follows by a similar argument with
Q = BR(x0). In that case, we choose the test function ϕ(x) to be a smooth function with support
in Q = BR(x0) ⊂ DL and satisfying ϕ ≡ 1 in BR/2 with |∇ϕ| ≤ C/R. �

3.2 Higher regularity – Meyers’ estimate

If u ∈ H1
per(DL) satisfies −∇ · (a∇u) + βu = ∇ · v with v ∈ (L2(DL))

d and β ≥ 0, then it is easy to
see that

∫

DL

|∇u|2 dx ≤ 1

(a∗)2

∫

DL

|v|2 dx

must hold. If v ∈ (Lp(DL))
d for some p > 2, a well-known result of Meyers [17] implies higher

integrability of ∇u, as described by the following lemma.

Lemma 3.4 For all s > 2, there is a constant p∗ > 2 and C > 0 such that the following holds: If
L > 1, β ≥ 0, v ∈ (Ls(DL))

d, and if u ∈ H1
per(DL) satisfies −∇ · (a∇u) + βu = ∇ · v, then

−
∫

DL

|∇u|p dx < C−
∫

DL

|v|p dx (3.44)

for all p ∈ [2, p∗].
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Proof of Lemma 3.4: For β = 0, (3.44) can be derived directly from Theorem 2 of Meyers [17] by
using the periodicity of u. However, for β > 0 it is more convenient to give a proof based on a result
of Giaquinta and Modica [10]. By the Caccioppoli inequality (Lemma 3.1) applied to u(x) we have

∫

KR(x0)
|∇xu(x)|2 dx ≤ Cβū2Rd +

C

R2

∫

K2R(x0)
|u(x)− ū|2 dx+ C

∫

K2R(x0)
|v|2 dx (3.45)

where

ū =
1

|K2R|

∫

K2R(x0)
u(x) dx

and KR(x0) is a cube of width 2R centered at a point x0. By the Poincaré-Sobolev inequality, this
implies

−
∫

KR(x0)
|∇u|2 dx ≤ Cβ−

∫

K2R(x0)
u2 dx+ C

(

−
∫

K2R(x0)
|∇u|2d/(d+2) dx

)(d+2)/d

+C−
∫

K2R(x0)
|v|2 dx. (3.46)

Now we apply Proposition 5.1 of [10] (see also Theorem V.1.2 of [9]) with g = |∇u|2d/(d+2), q =
(d+ 2)/d, and f = (Cβu2 + C|v|2)1/q. Since

−
∫

KR(x0)
gq dx ≤ C

(

−
∫

K2R(x0)
g dx

)q

+−
∫

K2R(x0)
f q dx

holds for all x0 ∈ DL and R > 0, that proposition implies that for some ǫ > 0 and p = q(1 + ǫ), we
must have

−
∫

KR(x0)
gp dx ≤ C

(

−
∫

K2R(x0)
gq dx

)1+ǫ

+ C−
∫

K2R(x0)
fp dx

for any R > 0 and x0 ∈ DL. This means that

−
∫

KR/2(x0)
|∇u(x)|r dx ≤ C

(

−
∫

KR(x0)
|∇u(x)|2 dx

)r/2

+Cβr/2−
∫

KR

|u|r dx+ C−
∫

KR

|v|r dx, (3.47)

where r = 2(1 + ǫ) > 2. In particular, we may choose R = L so that KR/2(x0) = DL. Since u and v
are periodic over DL, we conclude that

(

−
∫

DL

|∇u(x)|r dx
)1/r

≤ C

(

−
∫

DL

|∇u(x)|2 dx
)1/2

+ C

(

−
∫

DL

|v|r dx
)1/r

+Cβ1/2

(

−
∫

DL

|u|r dx
)1/r

. (3.48)

If β > 0, the last term in (3.48) may be absorbed into the others, as follows. Since r > 2, we
may use the test function η = |u|r−1sign(u) ∈ H1

per(DL) in the equality

∫

DL

a∇u∇η dx+ β

∫

DL

uη dx = −
∫

DL

v · ∇η dx,
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to obtain:

a∗(r − 1)

∫

DL

|∇u|2|u|r−2 dx+ β

∫

DL

|u|r dx ≤ (r − 1)

∫

DL

|v||∇u||u|r−2 dx,

≤ (r − 1)ǫ−1

2

∫

DL

|v|2|u|r−2 dx

+
(r − 1)ǫ

2

∫

DL

|∇u|2|u|r−2 dx

for any ǫ > 0. Therefore, with ǫ = 2a∗, we obtain

β

∫

DL

|u|r dx ≤ (r − 1)

4a∗

∫

DL

|v|2|u|r−2 dx.

By Hölder’s inequality, this implies

βr/2

∫

DL

|u|r dx ≤
(

(r − 1)

4a∗

)r/2 ∫

DL

|v|r dx.

Now we substitute this bound for the last term in (3.48), and we conclude that

(

−
∫

DL

|∇u(x)|r dx
)1/r

≤ C

(

−
∫

DL

|∇u(x)|2 dx
)1/2

+ C

(

−
∫

DL

|v|r dx
)1/r

(3.49)

holds for all L > 1.
Since u satisfies −∇ · (a∇u) + βu = ∇ · v, we have

∫

DL

|∇u|2 dx ≤ 1

(a∗)2

∫

DL

|v|2 dx.

Therefore, since r > 2, Jensen’s inequality implies

(

−
∫

DL

|∇u(x)|2 dx
)1/2

≤ 1

a∗

(

−
∫

DL

|v(x)|r dx
)1/r

.

Combining this with (3.49) we conclude the proof. �

4 The Proof of Theorem 1.1

In this section we prove that the constants κ0 and κ3 appearing in Theorem 1.2 are bounded according
to

κ0 = L−3d/2
E[Φ4

0]
1/2 and κ3 ≤ CL−3d/2

E[Φq
0]
3/(2q) + CL−3d/2

E[Φ4
0]
1/2 (4.50)

for all L > 1 and β ≥ 0, if q > 4 is sufficiently large. By combining this with Theorem 1.3 and
Theorem 1.2, we obtain Theorem 1.1.

To obtain these bounds, we will need to compute derivatives of Γ and φ with respect to the
variables ζk. First, we establish the differentiability of φ(x, ζ) with respect to ζk.

Lemma 4.1 For β ≥ 0, the function

wk(x) =
∂

∂ζk
φ(x, ζ)
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is in H1
per(DL) and it is a weak solution of the equation

−∇ · (a(x)∇wk) + βwk = ∇ · ξk, x ∈ DL (4.51)

where ξk ∈ (L2
per(DL))

d is the vector field

ξk(x) =
∂a

∂ζk
(x, ζ)(∇φ(x, ζ) + e1).

Proof of Lemma 4.1: For ǫ > 0 small, let ζ ′j = ζj for all j 6= k and let ζ ′k = ζk − ǫ. Let

vǫ(x) = ǫ−1(φ− φ′)

where φ′ = φ(x, ζ ′). The function φ− φ′ ∈ H1
per(DL) satisfies

−∇ · (a∇(φ− φ′)) + β(φ− φ′) = ∇ ·
(

(a(x, ζ)− a(x, ζ ′))(∇φ′ + e1)
)

. (4.52)

Using φ− φ′ as a test function against (4.52), we integrate by parts and apply the Cauchy-Schwarz
inequality to obtain

∫

DL

|∇(φ− φ′)|2 dx ≤ 1

(a∗)2
‖a(x, ζ)− a(x, ζ ′)‖2∞

∫

DL

|∇φ′ + e1|2 dx. (4.53)

As ǫ → 0, ‖a(x, ζ)−a(x, ζ ′)‖2∞ → 0. So, combining (4.53) and the fact that
∫

DL
φ dx =

∫

DL
φ′ dx = 0,

we conclude that φ′ → φ strongly in H1
per(DL) as ǫ → 0.

Let wk be the unique weak solution of (4.51) satisfying
∫

DL
wk dx = 0. The function vǫ ∈

H1
per(DL) satisfies

−∇ · (a∇vǫ) + βvǫ = ∇ ·
(

a(x, ζ)− a(x, ζ ′)

ǫ
(∇φ′ + e1)

)

. (4.54)

Therefore, vǫ − wk satisfies

−∇ · (a∇(vǫ − wk)) + β(vǫ − wk) = ∇ ·
(

a(x, ζ)− a(x, ζ ′)

ǫ
(∇φ′ + e1)− ξk

)

= ∇ ·
((

a(x, ζ)− a(x, ζ ′)

ǫ
− ∂a

∂ζk
(x, ζ)

)

(∇φ+ e1)

)

+∇ ·
(

a(x, ζ)− a(x, ζ ′)

ǫ
(∇φ′ −∇φ)

)

. (4.55)

Using vǫ − wk as a test function against (4.55), we obtain

∫

DL

|∇vǫ|2 dx ≤ 2

(a∗)2

∥

∥

∥

∥

a(x, ζ)− a(x, ζ ′)

ǫ
− ∂a

∂ζk
(x, ζ)

∥

∥

∥

∥

2

∞

∫

DL

|∇φ+ e1|2 dx.

+
2

(a∗)2

∥

∥

∥

∥

a(x, ζ)− a(x, ζ ′)

ǫ

∥

∥

∥

∥

2

∞

∫

DL

|∇φ′ −∇φ|2 dx. (4.56)

Since ζ 7→ a(·, ζ) is Fréchet differentiable, we know that ‖a(x,ζ)−a(x,ζ′)
ǫ − ∂a

∂ζk
(x, ζ)‖∞ → 0 as ǫ → 0.

Furthermore, ‖a(x,ζ)−a(x,ζ′)
ǫ ‖ is bounded as ǫ → 0. Since (φ′ − φ) → 0 in H1

per as ǫ → 0, the right
side of (4.56) vanishes as ǫ → 0. This and the Poincaré inequality implies that vǫ → wk strongly in
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H1
per. Elliptic regularity implies that the limit holds pointwise in x and that wk(x) is a continuous

function. �

Using the dominated convergence theorem and the fact that ζ 7→ a(·, ζ) ∈ L∞
per(DL) is Fréchet

differentiable, we find that

∂Γ

∂ζj
= L−d

∫

DL

∂a

∂ζj
(x)|∇φ+ e1|2 dx+ 2L−d

∫

DL

(a(x)(∇φ+ e1) · ∇wj + 2βφwj) dx, (4.57)

where wj(x) = ∂
∂ζj

φ(x, ζ) ∈ H1
per(DL) was established in Lemma 4.1. Then, using integration by

parts and (1.1), we see that the last term vanishes so that

∂jΓ =
∂Γ

∂ζj
= L−d

∫

DL

∂a

∂ζj
|∇φ+ e1|2 dx. (4.58)

In particular, the structural assumption (1.3) implies

0 ≤ C1L
−dΦj ≤

∂Γ

∂ζj
≤ C2L

−dΦ′
j . (4.59)

Recall Φ′
j defined at (1.19). From this and the stationarity of φ we see immediately that

κ0 =



E

∑

j∈DL

|∂jΓ(Z)|4




1/2

≤ CL−2d





∑

j∈DL

E[(Φ′
j)

4]





1/2

= CL−3d/2
(

E[(Φ′
0)

4]
)1/2

. (4.60)

Moments of Φ′
0 are related to moments of Φ0, as follows:

Lemma 4.2 For any power p ≥ 1, there is a constant C such that E[(Φ′
0)

p] ≤ CE[(Φ0)
p] for all

β ≥ 0, L ≥ 1.

Proof: By Minkowski’s inequality and the stationarity of φ:

E[(Φ′
0)

p] ≤ E

















∑

j∈DL
|Bτ (0)∩Qj |>0

∫

Qj

|∇φ+ e1|2 dx









p







≤









∑

j∈DL
|Bτ (0)∩Qj |>0

E

[(

∫

Qj

|∇φ+ e1|2 dx
)p]1/p









p

=









∑

j∈DL
|Bτ (0)∩Qj |>0

E [(Φj)
p]1/p









p

≤ CτpdE [(Φ0)
p] . (4.61)

�

By combining (4.60) and Lemma 4.2, we now have

κ0 ≤ CL−3d/2
E[(Φ0)

4]1/2, (4.62)
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which is the first estimate in (4.50).
Now we bound κ3. The term κ3 involves the Hessian ∇2

ζΓ, and from (4.58) we compute

∂2Γ

∂ζj∂ζi
= L−d2

∫

DL

∂a

∂ζj
(∇φ(x) + e1) · ∇(∂iφ) dx+ L−d

∫

DL

∂2a

∂ζj∂ζi
|∇φ+ e1|2 dx, (4.63)

where ∂iφ denotes the function ∂iφ = ∂
∂ζi

φ. Recall that the function x 7→ ∂a
∂ζj

is supported in Bτ (j).

In particular, the bounds (1.3) and (1.4) imply

∣

∣

∣

∣

∂2Γ

∂ζj∂ζi

∣

∣

∣

∣

≤ CL−d

(

∫

Bτ (j)
|(∇φ(x) + e1) · ∇(∂iφ)| dx+

∫

Bτ (i)∩Bτ (j)
|∇φ+ e1|2 dx

)

. (4.64)

We will make use of the following observations:

Lemma 4.3 There is a constant p∗ > 2 and C > 0 such that

E

[∫

Q0

|∇φ|p dx
]

< C (4.65)

holds for all L > 1, β ≥ 0 and p ∈ [2, p∗].

Proof of Lemma 4.3: This is a consequence of Lemma 3.4 and the stationarity of φ. Applying
Lemma 3.4 to φ, with v(x) = a(x)e1 ∈ (L∞(DL))

d we conclude that for some p∗ > 2, there is C > 0
such that, almost surely,

(

−
∫

DL

|∇φ(x)|p dx
)1/p

≤ C

(

−
∫

DL

|ae1|p dx
)1/p

≤ C (4.66)

holds for all p ∈ [2, p∗], L > 1, and β ≥ 0. Now, by the stationarity of φ,

E

[∫

Q0

|∇φ|p dx
]

= E

[

−
∫

DL

|∇φ|p dx
]

≤ Cp.

�

Lemma 4.4 Let ζ̃(t) = h(Z̃(t)) be the random vector defined in Theorem 1.2, and let ãt = a(x, ζ̃(t))
denote the associated conductivity. There are constants q > 4, C > 0 such that

E





∑

i





∑

j

∂2Γ

∂ζi∂ζj
(a)

∂Γ

∂ζj
(ãt)h

′(Zi)h
′(Zj)h

′(Z̃j(t))





2

 ≤ CL−3d
E[Φq

0]
3/q + CL−3d

E[Φ4
0] (4.67)

holds for all L > 1, β ≥ 0, t ∈ [0, 1].

Proof of Lemma 4.4: For each index i ∈ DL, let

Hi =
∑

j

∂2Γ

∂ζi∂ζj
(a)

∂Γ

∂ζj
(ãt)h

′(Zj)h
′(Z̃j(t)).

18



We claim that there is a constant C, independent of t, β, and L, such that

|Hi| ≤ CL−2d

∫

Bτ (i)
|∇φ(x, a) + e1||∇u(x)| dx+ CL−2d

∑

j∈DL∩B2τ (i)

Φ′
j(a)Φ

′
j(ãt) (4.68)

where u(x) ∈ H1
per(DL) satisfies

−∇ · (a∇u) + βu = −∇ ·



(∇φ(x, a) + e1)
∑

j∈DL

(

sjIBτ (j)(x)
∂a

∂ζj
(x, ζ)

)



 , x ∈ DL (4.69)

and the random variables {sj}j∈DL
are defined by

sj = Ld ∂Γ

∂ζj
(ãt)h

′(Zj)h
′(Z̃j).

These variables are identically distributed and satisfy |sj | ≤ CΦ′
j(ãt), by (4.58) and the fact that

|h′| ≤ c1. If β = 0, we may assume
∫

DL
u dx = 0, so that u is uniquely defined. To see why (4.68)

must be true, observe from (4.63) that

L2dHi = 2
∑

j∈DL

sj

∫

Bτ (j)

∂a

∂ζj
(x)(∇φ(x, a) + e1) · (∇∂iφ(x, a)) dx

+
∑

j∈DL

sj

∫

Bτ (j)∩Bτ (i)

∂2a

∂ζj∂ζi
(x)|∇φ(x, a) + e1|2 dx. (4.70)

The second sum in (4.70) is bounded by
∣

∣

∣

∣

∣

∣

∑

j∈DL

sj

∫

Bτ (j)∩Bτ (i)

∂2a

∂ζj∂ζi
(x)|∇φ(x, a) + e1|2 dx

∣

∣

∣

∣

∣

∣

≤ C
∑

j∈B2τ (i)

Φ′
j(ãt)Φ

′
j(a).

The first sum in (4.70) is exactly

∑

j∈DL

sj

∫

Bτ (j)

∂a

∂ζj
(x)(∇φ(x, a) + e1) · (∇∂iφ(x, a)) dx =

∫

DL

v(x) · ∇∂iφ(x, a) dx (4.71)

where the vector field v ∈ (L2(DL))
d is

v(x) = (∇φ(x, a) + e1)
∑

j∈DL

sjIBτ (j)(x)
∂a

∂ζj
(x, ζ), (4.72)

which depends on the random vectors Z and Z̃(t). Therefore,

L2d|Hi| ≤ C

∣

∣

∣

∣

∫

DL

v(x) · ∇∂iφ(x, a) dx

∣

∣

∣

∣

+ C
∑

j∈DL∩B2τ (i)

Φ′
j(a)Φ

′
j(ãt). (4.73)

Using equation (4.69) for u(x) and equation (4.51) for wi(x) = ∂iφ(x), we have
∫

DL

v(x) · ∇∂iφ(x, a) dx =

∫

DL

a(x)∇u∇wi + βuwi dx

= −
∫

Bτ (i)

∂a

∂ζi
(∇φ(x, a) + e1) · ∇u(x) dx.
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Hence
∣

∣

∣

∣

∫

DL

v(x) · ∇∂iφ(x, a) dx

∣

∣

∣

∣

≤ C

∫

Bτ (i)
|∇φ(x, a) + e1||∇u| dx.

This combined with (4.73) establishes (4.68). Observe that the vector field v is stationary with
respect to integer shifts in x, and it is independent of the index i. Consequently, u is also statistically
stationary and independent of i.

To establish (4.67) we must bound
∑

i E
[

H2
i

]

, and we will use (4.68). First, observe that there
is p > 2 such that v ∈ (Lp(DL))

d almost surely. This is a consequence of Lemma 4.3. Therefore,
since u satisfies (4.69), Lemma 3.4 immediately implies the following:

Corollary 4.5 There is an exponent p∗ > 2 and a constant C such that, with probability one,

−
∫

DL

|∇u|p dx ≤ C−
∫

DL

|v|p dx

holds for all p ∈ [2, p∗] and L > 1 and β ≥ 0, where v is the vector field defined by (4.72).

Now we proceed with the proof of (4.67). From (4.68) we have

L4d
∑

i∈DL

E
[

H2
i

]

≤ C(S1 + S2),

where

S1 =
∑

i∈DL

E





(

∫

Bτ (i)
|∇φ+ e1| |∇u| dx

)2


 , S2 =
∑

i∈DL

E









∑

j∈DL∩B2τ (i)

Φ′
j(a)Φ

′
j(ãt)





2

 .

First we bound S1. Let p ∈ (2, p∗) be as in Corollary 4.5, and let r = p/2 > 1 and q = r/(r− 1). By
Hölder’s inequality and the fact that τ is independent of L,

S1 ≤ C
∑

i∈DL

E

[

∫

Bτ (i)
|∇φ+ e1|2 dx

∫

Bτ (i)
|∇u|2 dx

]

≤
∑

i∈DL

E
[

Φ′
i(a)

q
]1/q

E

[(

∫

Bτ (i)
|∇u|2 dx

)r]1/r

= CLd
E
[

Φ′
0(a)

q
]1/q

E

[(

∫

Bτ (0)
|∇u|2 dx

)r]1/r

. (4.74)

In this last step we have used the stationarity of both u and φ. Now, as in the proof of Lemma 4.2,
the stationarity of u implies

E

[(

∫

Bτ (0)
|∇u|2 dx

)r]1/r

≤ E

















∑

ℓ∈Zd

|Qℓ∩Bτ (0)|>0

∫

Qℓ

|∇u|2 dx









r







1/r

≤
∑

ℓ∈Zd

|Qℓ∩Bτ (0)|>0

E

[(∫

Qℓ

|∇u|2 dx
)r]1/r

≤ CτdE

[(∫

Q0

|∇u|2 dx
)r]1/r

.
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So, by Jensen’s inequality, this implies

E

[(

∫

Bτ (0)
|∇u|2 dx

)r]1/r

≤ CE

[∫

Q0

|∇u|2r dx
]1/r

= CE

[

−
∫

DL

|∇u|2r dx
]1/r

.

Combining this with Corollary 4.5 (p = 2r), we obtain

E

[(

∫

Bτ (0)
|∇u|2 dx

)r]1/r

≤ CE

[

−
∫

DL

|v|p dx
]1/r

.

By definition of v and the bound |sj | ≤ CΦ′
j(ãt),

E

[

−
∫

DL

|v|p dx
]

= E

[∫

Q0

|v|p dx
]

≤ C
∑

ℓ∈Zd

|Bτ (ℓ)∩Q0|>0

E

[

(Φ′
ℓ(ãt))

p

∫

Q0

|∇φ(x, a) + e1|p dx
]

≤ CE
[

(Φ′
0(ãt))

np
]1/n

E

[

(

∫

Q0

|∇φ(x, a) + e1|p dx)m
]1/m

≤ CE [(Φ0(ãt))
np]1/n E

[

(

∫

Q0

|∇φ(x, a) + e1|p dx)m
]1/m

(4.75)

where n > 2 and m = n/(n− 1). In the last step we have used Lemma 4.2. Observe that Φ0(ãt) has

the same law as Φ0(a), so E [(Φ0(ãt))
np]1/n = E [(Φ0(a))

np]1/n. Since p < p∗, we may choose n large
so that pm < p∗. Then Jensen’s inequality and Lemma 4.3 imply that

E

[

(

∫

Q0

|∇φ(x, a) + e1|p dx)m
]1/m

≤ E

[

1 +

∫

Q0

|∇φ(x, a) + e1|p
∗

dx

]1/m

≤ C,

so that

E

[

−
∫

DL

|v|p dx
]

≤ CE [(Φ0)
np]1/n .

Combining the above computations applying Lemma 4.2, we conclude that

S1 ≤ CLd
E
[

Φ′
0(a)

q
]1/q

E [(Φ0(a))
np]1/rn ≤ CLd

E [Φ0(a)
q]1/q E [(Φ0(a))

np]1/rn .

By choosing p > 2 smaller, if necessary, we may assume that q ≥ np. Therefore, by Jensen’s
inequality, S1 ≤ CLd

E [Φ0(a)
q]3/q.
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Bounding S2 involves similar arguments. By Minkowski’s inequality and Hölder’s inequality

S2 =
∑

i∈DL

E









∑

j∈DL∩B2τ (i)

Φ′
j(a)Φ

′
j(ãt)





2



≤
∑

i∈DL





∑

j∈DL∩B2τ (i)

E

[

(

Φ′
j(a)Φ

′
j(ãt)

)2
]1/2





2

≤
∑

i∈DL





∑

j∈DL∩B2τ (i)

E
[

(Φ′
j(a))

4
]1/4

E
[

(Φ′
j(ãt))

4
]1/4





2

=
∑

i∈DL





∑

j∈DL∩B2τ (i)

E
[

(Φ′
0(a))

4
]1/2





2

≤ CLd
E
[

(Φ0(a))
4
]

. (4.76)

Now we conclude that

E





∑

i∈DL





∑

j∈DL

∂2Γ

∂ζi∂ζj
(a)

∂Γ

∂ζj
(ãt)h

′(Zi)h
′(Zj)h

′(Z̃j(t))





2

 = E





∑

i∈DL

|h′(Zi)|2H2
i





≤ CE





∑

i∈DL

H2
i



 ≤ CL−4d(S1 + S2) ≤ CL−3d(E [(Φ0)
q]3/q + E

[

(Φ0)
4
]

).(4.77)

�

Having proved (4.67), the bound κ3 ≤ CL−3d/2
E[Φq

0]
3/(2q) + CL−3d/2

E
[

(Φ0)
4
]1/2

now follows
immediately from the definition of κ3 in Theorem 1.2 and the fact that the right side of (4.67) is
independent of t ∈ [0, 1]. This completes the proof of Theorem 1.1.

5 Stochastic moment estimates

We close with some estimates on the moments of the random variable Φ0 which appears in Theorem
1.1. First, we have an estimate which is Lemma 2.7 from [13]:

Lemma 5.1 Let d ≥ 1. Let n ≥ 0 be an even integer. Then

E

[

∫

Qj

(φ(x))n|∇φ(x)|2 dx
]

+
2β

(n+ 1)a∗
E

[

∫

Qj

(φ(x))n+2 dx

]

≤
(

a∗

a∗

)2

E[

∫

Qj

(φ(x))n dx] (5.78)

holds for any cube Qj, j ∈ DL.

This is proved by using the test function v = φn+1 ∈ H1
per(DL) in the variational equality (1.6)

satisfied by φ. By (1.6) and the Cauchy-Schwarz inequality one obtains

(n+ 1)

∫

DL

a(x)|∇φ|2φn dx+ β

∫

DL

φn+2 dx = (n+ 1)

∫

DL

φn∇φ · a(x)e1 dx

≤ (n+ 1)

2a∗

∫

DL

φn|a(x)e1|2 dx+
(n+ 1)a∗

2

∫

DL

φn|∇φ|2 dx. (5.79)
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Therefore, since a∗ ≤ a(x) ≤ a∗, we conclude that

∫

DL

|∇φ|2φn dx+
2β

(n+ 1)a∗

∫

DL

φn+2 dx ≤
(

a∗

a∗

)2 ∫

DL

φn dx. (5.80)

Then (5.78) follows by the stationarity of φ and ∇φ.

Corollary 5.2 Let d ≥ 1 and let m be a positive integer. Then

E

[∫

Q0

(φ(x))2m dx

]

≤
(

a∗√
2a∗

)2m

β−m
m
∏

k=1

(2m− 2k + 1) (5.81)

holds for all β > 0 and L > 1.

Proof of Corollary 5.2: Observe that the final product over k = 1, . . . ,m is bounded by
2m(m!). By (5.78) with n = 0, we have

E

[∫

Q0

(φ(x))2 dx

]

≤ (a∗)2

2a∗
β−1.

So, (5.81) holds for m = 1. Now, arguing inductively, suppose that (5.81) holds for some integer
m ≥ 1. Then by (5.78) and the induction hypothesis

E

[∫

Q0

(φ(x))2(m+1) dx

]

≤ (a∗)2

2a∗
β−1(2m+ 1)E

[∫

Q0

(φ(x))2m dx

]

≤ (a∗)2

2a∗
β−1(2m+ 1)

(a∗)2m

(2a∗)m
β−m

m
∏

k=1

(2m− 2k + 1)

=

(

a∗√
2a∗

)2(m+1)

β−(m+1)
m+1
∏

k=1

(2(m+ 1)− 2k + 1). (5.82)

So, (5.81) also holds for m+ 1 and by induction on m it holds for all m ≥ 1. �

Proposition 5.3 Let d ≥ 1. For each even integer n ≥ 0, there is a constant Cn such that

E

[

(∫

Q0

|∇φ|2 dx
)n+1

]

≤ Cn + CnE

[

(∫

Q0

φ dx

)2n
]

(5.83)

holds for all L > 1 and β ≥ 0.

Proof of Proposition 5.3: By Caccioppoli’s inequality (Lemma 3.1) we know that

∫

Q0

|∇φ|2 dx ≤ C

(

1 + βb2 +

∫

3Q0

(φ(x)− b)2 dx

)
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holds with probability one, where b is the random constant

b =

(

1

|3Q0|

∫

3Q0

φn+1(x) dx

) 1

n+1

.

Therefore, with probability one, we have

(∫

Q0

|∇φ|2 dx
)n+1

≤ C

(

1 + βn+1b2(n+1) +

∫

3Q0

(φ(x)− b)2(n+1) dx

)

. (5.84)

Then, by (5.84) and Lemma 5.4 below, we have

(∫

Q0

|∇φ|2 dx
)n+1

≤ C

(

1 + βn+1b2(n+1) +

∫

3Q0

(φn+1(x)− bn+1)2 dx

)

.

Now by applying the Poincaré inequality in 3Q0 to the last integral, we conclude that

(∫

Q0

|∇φ|2 dx
)n+1

≤ C

(

1 + βn+1b2(n+1) +

∫

3Q0

|∇(φn+1)|2 dx
)

= C

(

1 + βn+1b2(n+1) + (n+ 1)2
∫

3Q0

|∇φ|2φ2n dx

)

. (5.85)

Consider the term βn+1b2(n+1). By Jensen’s inequality, the stationarity of φ, and Corollary 5.2 we
know that

E[βn+1b2(n+1)] ≤ βn+1
E

[∫

Q0

φ2(n+1) dx

]

≤ (a∗/
√
2a∗)

n+1
√

(2n+ 2)! (5.86)

holds for all L > 1, β ≥ 0. Also, by Lemma 5.1,

E

[∫

3Q0

|∇φ|2φ2n dx

]

≤ CE

[∫

3Q0

φ2n dx

]

= C3dE

[∫

Q0

φ2n dx

]

.

So, returning to (5.85), we conclude that for a constant Cn independent of L > 1 and β ≥ 0,

E

[

(∫

Q0

|∇φ|2 dx
)n+1

]

≤ Cn

(

1 + E

[∫

Q0

φ2n dx

])

. (5.87)

By the De Giorgi-Nash-Moser theory (e.g. [11], Theorem 8.24), φ is Hölder continuous with

|φ|Cα(Q0) = sup
x,y∈Q0

x 6=y

|φ(x)− φ(y)|
|x− y|α ≤ C(‖φ(·)− ρ3,0‖L2(3Q) + 1)

for some deterministic constants α > 0 and C > 0, which depend on a∗ and a∗ but not on L or β ≥ 0.
(Recall ρ3,0 defined at (3.37).) There must be a point x0 ∈ Q0 such that |φ(x0)| ≤ ‖φ(·)‖L2(Q0).
Therefore, if |φ|Cα(3Q) = h,

∫

Q0

φ(x)2n dx ≤
∫

Q0

(|φ(x0)|+ Ch)2n dx

≤ |Q0|
(

‖φ‖L2(Q0) + C(1 + ‖φ(·)− ρ3,0‖L2(3Q))
)2n

≤ C

(

1 +

(∫

3Q0

(φ(x))2 dx

)1/2
)2n

. (5.88)
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Now returning to (5.87), we conclude that

E

[

(∫

Q0

|∇φ|2 dx
)n+1

]

≤ Cn

(

1 + E

[(∫

3Q0

φ2 dx

)n])

≤ Cn3
dn

(

1 + E

[(∫

Q0

φ2 dx

)n])

.(5.89)

The last inequality follows from the stationarity of φ.
By the triangle inequality,

∫

Q0

φ2 dx ≤ 2

∫

Q0

(φ(x)− ρ)2 dx+ 2

∫

Q0

ρ2 dx

where ρ =
∫

Q0
φ(x) dx. Combining this with the Poincaré inequality in Q0, we obtain

(∫

Q0

φ2 dx

)n

≤ Cn

(∫

Q0

|∇φ|2 dx
)n

+ Cnρ2n.

Therefore, by (5.89) we have

E

[

(∫

Q0

|∇φ|2 dx
)n+1

]

≤ Cn

(

1 + E

[(∫

Q0

|∇φ|2 dx
)n]

+ E[ρ2n]

)

.

≤ Cn



1 + E

[

(∫

Q0

|∇φ|2 dx
)n+1

]n/(n+1)

+ E[ρ2n]



 .

The bound (5.83) now follows from Young’s inequality. �

The following fact was used in the proof of Proposition 5.3:

Lemma 5.4 Let n ≥ 2 be an even integer. For all z ∈ R and m ∈ R

0 ≤ (z −m)2(n+1) ≤ 32(n+1)(zn+1 −mn+1)2. (5.90)

Proof: If m = 0, the bound (5.90) obviously holds. If m 6= 0, then m2(n+1) > 0 and we see that the
bound is equivalent to

(ẑ − 1)2(n+1) ≤ 32(n+1)(ẑn+1 − 1)2 (5.91)

where ẑ = z/m. Let f(z) = (zn+1 − 1)2 and g(z) = (z − 1)2(n+1). Both of these polynomials are
nonnegative for z ∈ R and f(1) = g(1) = 0. If z ∈ [−2, 0], we observe that g(z) ≤ 32(n+1) and
f(z) ≥ 1, so g(z) ≤ 32(n+1)f(z) holds for z ∈ [−2, 0]. For other z ∈ R, consider the factorization

g(z) = (z − 1)2
n
∏

k=1

(z − 1)2, f(z) = (z − 1)2
n
∏

k=1

(z − ωk)(z − ω̄k),

where ωk = ei2πk/(n+1) is a (n + 1)th root of unity. The products (z − wk)(z − w̄k) are real and
positive for z ∈ R, k = 1, . . . , n. For z ≤ −2, it is easy to see that (z − 1)2 ≤ 32(z − wk)(z − w̄k).
It follows that g(z) ≤ 32nf(z) for z ≤ −2. For z ≥ 0, we also have (z − 1)2 ≤ (z − wk)(z − wk) for
each k = 1, 2, . . . , n. Hence g(z) ≤ f(z) for z ≥ 0. We have shown that g(z) ≤ 32(n+1)f(z) for all
z ∈ R. Hence (5.91) holds. �

From Corollary 5.2 and Proposition 5.3 we immediately obtain the following:
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Corollary 5.5 Let d ≥ 1. For all positive odd integers m, there is a constant Cm > 0 such that

E

[(∫

Q0

|∇φ|2 dx
)m]

≤ Cm(1 + β1−m) (5.92)

holds for all L > 1, β > 0. Hence, E[Φm
0 ] ≤ C(1 + β1−m).

Observe that the bound in Proposition 5.3 is better than what is immediately implied by the
Caccioppoli inequality and the stationarity of φ, since the homogeneity of the integral term on the
right side of (5.83) is less than that of the term on the left side. This fact plays an important role
in the method of Gloria and Otto [13] to bound moments of Φ0, independently of β ≥ 0 and L > 1.
Although [13] pertains to the discrete setting on all of Zd (rather than continuum, periodic), that
method can still be applied here. In view of Proposition 5.3, the moments of Φ0 are bounded by
E[Φn+1

0 ] ≤ Cn(1 + E[ρ2n]), where the random variable

ρ =

∫

Q0

φ(x) dx

has zero mean. In the discrete setting of [13], φ(0) is analogous to this ρ.
Let us briefly sketch the method of [13] to bound moments of ρ. For integers m ≥ 1, define

Em = E[ρm] and Vm = Var[ρm]. Therefore,

E2m = Vm + (Em)2 (5.93)

for all m. Because E1 = E[ρ] = 0 and E2 = V1, the equality (5.93) can be iterated to obtain

E2·2ℓ ≤
ℓ
∑

q=0

Cq(V2ℓ−q)2
q

(5.94)

for any integer ℓ > 2, where C0 = 1 and Cq = 2122 · · · 22q for q > 0. Of course, this bound is very
general. However, in the discrete case on Z

d, Gloria and Otto proved that for ℓ sufficiently large,

(V2ℓ−q)2
q ≤ Kℓ(1 + (E2·2ℓ)

rℓ) (5.95)

holds for all q = 0, . . . , ℓ, for some power rℓ < 1 and constant Kℓ. For d ≥ 3, the constant Kℓ is
independent of L > 1 and β > 0. Applying this fact and Young’s inequality at (5.94), we conclude
that E2·2ℓ must be bounded independently of L > 1 and β ≥ 0, for d ≥ 3; this is the first bound in
(1.11). For d = 2, the constant Kℓ is indepdendent of L, but it depends on log β. So, in the d = 2
case, one obtains E2·2ℓ ≤ C| log β|γℓ for some γℓ > 0. This is second bound in (1.11).

The bound (5.95) on the variances Vm is obtained from a spectral-gap estimate (e.g. the Efron-
Stein inequality [22]). If F (ζ) is a function of the random vector ζ = (ζj), j ∈ DL, this inequality
is

Var[F (ζ)] ≤ 1

2
E





∑

j∈DL

|∆jF (ζ)|2


 (5.96)

where
∆jF (ζ) = F (ζ1, . . . , ζj−1, ζ

′
j , ζj+1, . . . , ζN )− F (ζ1, . . . , ζj−1, ζj , ζj+1, . . . , ζN )
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and ζ ′j is an independent copy of ζj . By the mean value theorem, this implies that

Vm ≤ CE





∑

j∈DL

sup
ζj

|∂j(ρm)|2


 . (5.97)

Therefore, since

∂jρ
m = mρm−1

∫

Q0

∂jφ(x) dx,

we have

|∂jρm|2 ≤ m2ρ2m−2Φ′
j

∫

Q0

|ŵj(x)|2 dx (5.98)

where

ŵj(x) = (Φ′
j)

−1/2∂jφ(x), Φ′
j =

∫

Bτ (j)
|∇φ(x, ζ) + e1|2 dx.

(Recall Lemma 4.1.) Hence,

Vm ≤ C
∑

j∈DL

E

[

sup
ζj

ρ2m−2Φ′
j

∫

Q0

|ŵj(x)|2 dx
]

. (5.99)

Now, suppose 1 ≤ m ≤ n. By applying Hölder’s inequality with p = (n+ 1) and p′ = (n+ 1)/n
to each term in (5.99) we have

E

[

sup
ζj

ρ2m−2(ζ)

∫

Q0

|∂jφ(x, ζ)|2 dx
]

≤ E

[

sup
ζj

(Φ′
j)

n+1

] 1

n+1

(5.100)

× E

[

sup
ζj

ρ(2m−2)(n+1)/n

(∫

Q0

|ŵj(x)|2 dx
)(n+1)/n

]n/(n+1)

.

Consider the first term in the right side of (5.100). By Lemma 2.2, the stationarity of φ, Lemma
4.2, and then Proposition 5.3 we have

E

[

sup
ζj

(

Φ′
j

)n+1

] 1

n+1

≤ CE

[

(

Φ′
j

)n+1
] 1

n+1

= E

[

(

Φ′
0

)n+1
] 1

n+1

≤ CE

[

(Φ0)
n+1
] 1

n+1 ≤ C(1 + E
1

n+1

2n ). (5.101)

Therefore,

Vm ≤ C(1 + E
1

n+1

2n )
∑

j∈DL

E

[

sup
ζj

ρ(2m−2)(n+1)/n

(∫

Q0

|ŵj(x)|2 dx
)(n+1)/n

]n/(n+1)

. (5.102)

To estimate the sum remaining in (5.102), one needs to control the random variables
∫

Q0
|ŵj(x)|2 dx,

which we expect to be small if dist(Bτ (j), Q0) is large. In fact, it was observed in [13] that the func-
tion ŵj is related to the gradient of the Green’s function G(x, y) for the operator u 7→ −∇·a∇u+βu
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on DL. As has been pointed out in [12], in the periodic setting it is important to choose the Green’s
function that respects the normalization

∫

D u(x) dx = 0 in order to obtain the optimal estimates on
∇G, uniformly in β ≥ 0. For each y ∈ DL, this function G(·, y) is periodic over DL, and for each
r > 0, G(·, y) ∈ H1

loc(DL \Br(y)). Also,

∫

DL

a(x)∇xG(x, y)∇xϕ(x) + βG(x, y)ϕ(x) dx = ϕ(y)− 1

|DL|

∫

DL

ϕ(y) dy

holds for all smooth, periodic functions ϕ. That is,

−∇x · (a(x)∇xG(x, y)) + βG = δy(x)− |DL|−1.

In the present setting, the connection between ŵj(x) and G(x, y) is as follows:

Lemma 5.6 Let d ≥ 1. Suppose A ⊂ DL is an open set for which dist(A,Bτ (j)) > 0. Then we
have

∫

A
(ŵj(y))

2 dy ≤ (C2)
2

∫

y∈A

∫

x∈Bτ (j)
|∇xG(x, y)|2 dx dy. (5.103)

In particular, if dist(Q0, Bτ (j)) > 0,

(∫

Q0

|ŵj(x)|2 dx
)(n+1)/n

≤ (C2)
2(n+1)/n

∫

y∈Q0

∫

x∈Bτ (j)
|∇xG(x, y)|2(n+1)/n dx dy.

When n is large, the exponent q = 2(n + 1)/n is only slightly larger than 2, and Meyers’ estimate
implies that |∇xG| ∈ Lq

loc if q − 2 > 0 is small enough (away from the singularity at x = y). As
shown in [13], this fact, the Caccioppoli inequality, and uniform decay estimates on G(x, y) can be
used to obtain optimal bounds on the decay of |∇G|q away from the singularity. This leads to the
optimal estimate of (5.102). Extension of the Green’s function estimates of [13] and of the moment
estimates on Φ0 to the periodic setting is being carried out in [12].

Proof of Lemma 5.6: Let v ∈ H1
per(DL) satisfy

−∇ · (a∇v) + βv = ∂jφIA(x)−
1

DL

∫

A
∂jφ(x) dx.

By applying Lemma 4.1 to ∂jφ = (Φ′
j)

1/2ŵj and using
∫

DL
∂jφ(x) dx = 0, we have

∫

A
(∂jφ(x))

2 dx =

∫

DL

(IA(x)∂jφ(x))∂jφ(x) dx

=

∫

DL

a(x)∇v∇∂jφ+ βv∂jφ dx

= −
∫

DL

ξj(x) · ∇v(x) dx ≤
(

∫

Bτ (j)
|ξj |2

)1/2(
∫

Bτ (j)
|∇v|2

)1/2

(5.104)

since ξj is supported in Bτ (j). On the other hand,

v(x) =

∫

A
G(x, y)∂jφ(y) dy, ∇v(x) =

∫

A
∇xG(x, y)∂jφ(y) dy
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hold for almost every x outside A. Therefore, by Cauchy-Schwarz we have

|∇v(x)|2 ≤
∫

A
|∇xG(x, y)|2 dy

∫

A
(∂jφ(y))

2 dy

for almost every x in Bτ (j). Also,
∫

Bτ (j)
|ξj |2 dx ≤ C2

2Φ
′
j , by (1.3). Combining this with (5.104) we

obtain (5.103). �

Proof of Proposition 1.4: This also follows from the inequality (5.96). Specifically, using
(5.96) and (4.59), we obtain

Var(Γ) ≤ 1

2

∑

j∈DL

E[|∆jΓ|2]

≤ (ζmax − ζmin)
2

2

∑

j∈DL

E

[

sup
ζj

∣

∣

∣

∣

∂Γ

∂ζj

∣

∣

∣

∣

2
]

≤ (ζmax − ζmin)
2

2
C2
2L

−2d
∑

j∈DL

E[sup
ζj

(Φ′
j)

2].

By Lemma 2.2, E[supζj (Φ
′
j)

2] ≤ CE[(Φ′
j)

2]. By stationarity of φ and Lemma 4.2, E[(Φ′
j)

2] =

E[(Φ′
0)

2] ≤ CE[(Φ0)
2]. Hence

Var(Γ) ≤ CL−2d
∑

j∈DL

E[(Φ0)
2] = CL−d

E[(Φ0)
2].

�
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