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Abstract

We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies
randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity.
For a stationary and ergodic medium, and for certain initial condition, the solution develops a
moving front that has a deterministic asymptotic speed in the large time limit. The main result
of this article is a central limit theorem for the position of the front, in the supercritical regime,
if the medium satisfies a mixing condition. 1

1 Introduction and main results

We consider the scalar reaction-diffusion equation

vt = vxx + g(x, ω)v(1 − v), x ∈ R, t > 0, (1.1)

with random reaction rate g(x, ω) : R × Ω → (0,∞), defined over a probability space (Ω,F , P). We
will make assumptions about g and about the initial condition at t = 0 so that, with probability
one, there is a classical solution to (1.1) satisfying 0 < v < 1 and limx→−∞ v = 1, limx→∞ v = 0.
This ensemble of solutions behaves like a traveling wave or front propagating through the random
environment. We wish to understand the statistical fluctuations of the ensemble at large times.

When the reaction rate g is a constant, this equation is often called the KPP-Fisher equation,
and it has been known for a long time that there is a family of traveling wave solutions moving
with constant speed [12, 7]. There is a minimal speed c∗ > 0 such that for each c ≥ c∗ there is
a traveling wave of the form v(t, x) = ṽ(x − ct) where 0 < ṽ < 1 and ṽ(−∞) = 1, ṽ(+∞) = 0.
The equilibrium states v = 0 and v = 1 are unstable and stable, respectively. So, traveling waves
describe the propagation of the stable state. When g varies with x, there may not be traveling wave
solutions in this classical sense, although solutions may still exhibit some wave-like behavior. For
some examples of such behavior in periodic, almost-periodic, random media, or general disordered
media we refer to [2, 23, 19, 3, 26].

In this paper, we impose a statistical structure on g that is stationary and ergodic with respect to
shifts in x. This means that there is a group of measure-preserving transformations {πk}k∈R, acting
ergodically on (Ω,F), such that for almost every ω ∈ Ω, g(x + k, ω) = g(x, πkω) holds for all x ∈ R,
k ∈ R. We also assume that there are constants gmin and gmax such that 0 < gmin ≤ g(x, ω) ≤ gmax

holds for all x with probability one, so that the state v = 1 is everywhere stable and the state
v = 0 is everywhere unstable. Although the statistics of g are translation invariant, each realization
x → g(x, ω) will vary with x. We assume that the function x → g(x, ω) is almost surely uniformly
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Lipschitz continuous. Under these assumptions and with suitable initial condition v0 = v(0, x, ω) to
be defined later, (1.1) admits a unique classical solution v(t, x, ω) for almost every ω ∈ Ω.

The initial condition will satisfy 0 < v0 < 1, limx→−∞ v0 = 1, and limx→∞ v0 = 0. One can show
that v ր 1 locally uniformly, as t → ∞. We define the position of the wave for t ≥ 0 to be the
random process

X(t, ω) = sup {x ∈ R | v(t, x, ω) = 1/2} .

This process will diverge as t → ∞, but because the environment is statistically stationary one
expects some averaging to occur in the large time limit. Indeed, Freidlin and Gärtner [8, 9] have
proved that for suitable initial conditions the limit

lim
t→∞

X(t, ω)

t
= c > 0

exists with probability one. This may be regarded as a law of large numbers for the random wave
position. The purpose of the present analysis is to understand the fluctuations around this average
behavior X(t, ω) ∼ ct. Specifically, are the fluctuations Gaussian? Under what conditions will the
central limit theorem hold

lim
t→∞

P

(

X(t, ω) − ct√
t

> α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy

for some σ > 0?
Equations like (1.1) arise in several physical and biological applications in which a front or phase

boundary develops and invades an unstable phase. The nonlinear term v(1 − v) is a prototype
model that leads to “pulled fronts”. For an extensive review of such applications, see [25]. From
the point of view of applications, the choice of a coefficient g which varies with x is natural, given
that g represents a physical or biological parameter like a reaction rate or birth rate. Because the
underlying environment may vary in a way that is best described statistically, these parameters may
be described as a random field, and it is interesting to consider the statistical behavior of fronts
moving through such a random environment. For work on some other models of noisy pulled fronts
see [22, 24, 17, 5].

1.1 The linearized equation

The dynamics of pulled fronts depends sensitively on the behavior at the leading edge where v takes
values close to 0, the unstable state. For this reason, it is natural to first consider the linearized
equation

ϕt = ϕxx + g(x, ω)ϕ, (1.2)

and then try to compare the solution of the nonlinear equation (1.1) to solutions of this linearized
equation. To this end, we will study a special family of solutions for x ∈ [0,∞) having the form

ϕ(t, x, ω; γ) = eγtu(x, ω; γ),

where for sufficiently large values of the parameter γ > 0, the random function u(·, ω; γ) is defined
by the following theorem.

Theorem 1.1 There is a real number γ̄ ∈ [gmin, gmax] such that the following hold, P almost surely:
For every γ > γ̄ there exists a unique function u = u(·, ω; γ) ∈ C2((0,∞)) ∩ C([0,∞)) which solves
the linear boundary value problem

uxx + (g(x, ω) − γ)u = 0, x > 0 (1.3)
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and satisfies u(x, ω, γ) > 0 for all x > 0; u(0) = 1; and limx→+∞ u(x) = 0. If γ < γ̄, then no such
solution exists. For γ > γ̄, the limit

µ(γ) = lim
x→+∞

−1

x
log u(x, ω; γ) (1.4)

holds with probability one. The decay rate µ(γ) is deterministic, and it is concave and increasing in
γ.

For γ > γ̄, ϕ(t, x, ω; γ) solves the linearized equation (1.2) on the half-line x ∈ [0,∞) with
boundary condition ϕ(t, 0, ω; γ) = eγt for t ≥ 0 and initial condition ϕ(0, x, ω; γ) = u(x, ω; γ) for all
x ≥ 0. We define

Y (t, ω; γ) = sup{x ≥ 0 | ϕ(t, x, ω; γ) = 1/2},
and we refer to this stochastic process as the position of the wave ϕ at time t. This process is
nonnegative and non-decreasing in t. However, because u may not be monotone decreasing, Y (t)
may not be continuous. Using the fact that log(u(x, ω; γ)) ∼ −µ(γ)x as x → ∞, we see that the
limit

lim
t→∞

Y (t, ω; γ)

t
=

γ

µ(γ)
= c(γ) (1.5)

holds with probability one. The properties of the function µ(γ) (see Lemma 2.6) imply that the
minimal speed

c∗ = inf
γ>γ̄

c(γ) = inf
γ>γ̄

γ

µ(γ)
> 0

is positive. The asymptotic speed of ϕ depends on the exponential decay rate of the initial condition,
u(x, ω; γ).

To analyze the fluctuations in Y (t, ω; γ), we must analyze fluctuations in the tail of u(x, ω; γ) via
a refinement of (1.4). We will assume that g satisfies a mixing condition (2.39). This is a standard
condition that appears in central limit theorems for sums of dependent random variables; it controls
long-range dependence in the random field g(x, ω).

Theorem 1.2 Suppose that g(x, ω) satisfies the φ-mixing condition (2.39) with
∑

k φ(k)1/2 < ∞.
Let γ > γ̄. Then as n → ∞, the random variable

log(u(n, ω; γ)) + µ(γ)n√
n

(1.6)

converges in distribution to a centered Gaussian with variance σ2 ≥ 0. If σ2 > 0, then for any
M > 0 the family of processes {Vn(x, ω)}∞n=1 defined by

Vn(x, ω; γ) =
log(u(xn, ω; γ)) + µ(γ)xn

σ
√

n
, x ∈ [0, M ] (1.7)

converges weakly to a standard Brownian motion on [0, M ] as n → ∞, in the sense of weak conver-
gence of measures on C([0, M ]) with the uniform topology.

In principle, the variance σ2 could vanish, although we do not have a nontrivial example of this
phenomenon. If σ = 0, the convergence described by the theorem means that the quotient (1.6)
converges in distribution to zero. Later at Proposition 2.1, we construct a simple example for which
σ is positive. From this we will obtain a central limit theorem for the fluctuations of Y (t, ω; γ) about
its asymptotic mean behavior:

3



Theorem 1.3 Suppose that g(x, ω) satisfies the φ-mixing condition (2.39) with
∑

k φ(k)1/2 < ∞.
Let γ > γ̄, µ = µ(γ), and c = c(γ). Suppose that σ > 0, where σ is defined in Theorem 1.2. For any
α ∈ R,

lim
t→∞

P

(

Y (t, ω; γ) − ct

µ−1c
√

t
≤ α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy. (1.8)

For each M > 0 the family of processes

Zn(t, ω; γ) =
Y (nt, ω; γ) − cnt

µ−1cσ
√

n
, t ∈ [0, M ]

converges weakly, in the Skorohod space D, to a standard Brownian motion as n → ∞.

The processes Y (t, ω; γ) and Zn(t, ω; γ) may not be continuous. This is why we consider conver-
gence in the Skorohod space D – the space of functions on [0, M ] which are right-continuous with
left-hand limits, endowed with the Skorohod metric topology [4].

1.2 The nonlinear equation

Now we return to the nonlinear equation (1.1). Freidlin and Gärtner [8, 9] proved that if

lim
x→−∞

v0(x, ω) = 1, (1.9)

and

lim
x→∞

−1

x
log v0(x, ω) > µ∗ = µ(γ∗), (1.10)

where
γ∗ = inf {γ > γ̄ | c(γ) = c∗} , (1.11)

then X(t, ω)/t → c∗, with probability one as t → ∞. The bound (1.10) means that the initial
condition v0 decays to zero more rapidly than ϕ(0, x, ω; γ∗), which corresponds to the minimal speed
c∗. This result can be extended to more slowly decaying initial conditions. Specifically, if (1.9) and

lim
x→∞

−1

x
log v0(x, ω) = µ(γ) < µ∗, (1.12)

hold for some γ ∈ (γ̄, γ∗) (with probability one), then

lim
t→∞

X(t, ω)

t
= c(γ) > c∗.

So, the decay rate of the initial condition v0 selects the asymptotic speed of the front.
The fluctuations of the solution are a more delicate issue. One expects that the large time

behavior of v(t, x, ω) will be close to that of ϕ(t, x, ω; γ) if the initial condition v0(x, ω) is sufficiently
close to u(x, ω; γ) = ϕ(0, x, ω; γ) for x >> 1. Thus, we might obtain a central limit theorem for
X(t, ω) by comparing v to ϕ and using Theorem 1.3. For technical reasons, however, our approach
to estimating v by ϕ allows us to consider only supercritical waves which move faster than the
minimal speed c∗. We suppose that for some γ ∈ (γ̄, γ∗) the initial condition v0(x, ω) satisfies (1.9)
and

C1(ω)u(x, ω; γ) ≤ v0(x, ω) ≤ C2(ω)u(x, ω; γ), ∀ x > 0. (1.13)

and some positive constants C1(ω), C2(ω). Our main result for the nonlinear problem is the following:
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Theorem 1.4 Suppose that g(x, ω) satisfies the φ-mixing condition (2.39) with
∑

k φ(k)1/2 < ∞.
Suppose that γ ∈ (γ̄, γ∗), c = c(γ), µ = µ(γ), and that v0 satisfies (1.9) and (1.13). Suppose that
σ > 0, where σ is defined in Theorem 1.2. Then for any α ∈ R,

lim
t→∞

P

(

X(t, ω) − tc

µ−1c
√

t
≤ α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy.

In [18] the author derived a complementary result in the case that the nonlinear term is of the
bistable or ignition type. Those nonlinearities correspond to “pushed fronts”, which are not as sen-
sitive to fluctuations in the leading edge of the wave. Moreover, in that setting the asymptotic wave
speed is unique. The strategy in [18] was to show that the wave is stable with respect to fluctuations
in the environment that are far from the interface, so the motion of the interface depends primarily
on the local environment. That approach relies on stability analysis for generalized traveling waves
developed in [16], and resulted in a full invariance principle for the wave position.

For KPP fronts (i.e. pulled fronts), stability is a more delicate issue and the dynamics can be
quite complex, even in the case of the homogeneous environment where g is constant. This is due to
the sensitive dependence of the wave on the leading edge. For recent work on the stability of KPP
fronts, see [1] and [11] for the supercritical case, and [15] for the critical case. As the reader will see
later, our approach to proving Theorem 1.4 is to show that, with high probability as t → ∞, the
wave position X(t, ω) (associated with v) does not lag too far behind Y (t, ω) (associated with ϕ).

Observe that the initial condition v0(x) satisfying (1.13) is random. In particular, this assumption
excludes the case where v0(x) = Ce−λx for x >> 1. In that case log(u(x, ω; γ)/v0(x)) behaves like
a Brownian motion and is not bounded above or below; typical values of u(x, ω; γ)/v0(x) are of the
order O(eσ

√
x) as ǫ → ∞. While the condition (1.12) is sufficient to select the asymptotic speed,

it is not clear whether this is also sufficient to guarantee the central limit theorem for X(t, ω). To
understand this point, consider the linear equation (1.2) with g being a constant (i.e. a deterministic,
homogeneous medium). If the initial condition is v0(x) ∼ e−λx+σ

√
x then it is not hard to show that

the corresponding wave position Y (t) satisfies Y (t) ≥ ct + kσ
√

t for some positive constant k, and
t sufficiently large. Thus, even in the deterministic linear setting, fluctuations of order eσ

√
x in

the initial condition could lead to O(kσ
√

t) fluctuations in the position of the wave. We hope to
investigate this issue further in future work.

Let us also point out that our approach to analyzing the nonlinear equation does not extend to
the critical case γ = γ∗. For critical waves in the homogeneous medium, there is a logarithmic gap
between the solution of the linearized equation and that of the nonlinear equation: Y (t) − X(t) ∼
3
c∗ log t (see [15], and references therein). In the random setting, however, it is not clear whether
the gap between ϕ and v is only logarithmic or much larger. If the gap is o(

√
t) then Theorem 1.4

also holds in the critical case. We hope to address this critical case in future work. Fluctuations of
the interface in the multidimensional setting is another interesting and challenging topic. Although
asymptotic spreading of the interface has been proved in this setting ([14, 13, 18]), little is known
about the statistics of the fluctuations.

The rest of this paper is organized like this introductory section. In Section 2 we study the
stationary equation (1.3). There we prove Theorem 1.1 and Theorem 1.2, and we derive some useful
estimates on the function u(x, ω; γ). In Section 3 we prove Theorem 1.3 for fluctuations in the
position of ϕ which solves the linearized evolution equation. In Section 4, we prove some technical
estimates that are needed to bridge the gap between solutions of the linearized and the nonlinear
equations. In particular, we show that the leading edge of (ϕ(t, x, ω; γ))2 is dominated by a slower-
moving wave; this is where we use the supercritical assumption, γ ∈ (γ̄, γ∗). In Section 5 we prove
Theorem 1.4 using the key estimate in Lemma 5.1 which shows that, with high probability, X(t, ω)
(associated with v) does not lag far behind Y (t, ω) (associated with ϕ).
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2 The stationary equation

2.1 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Most aspects of the theorem are proved already
in [8] (see Chapter 7.5 therein) using the Feynman-Kac formula and probabilistic estimates. For
completeness and in order to establish some important estimates that we will use later, we give a
proof here using different arguments.

The constant γ̄ will be identified with the principal eigenvalue of the operator uxx + gu on R (in
the sense described below), and in order to construct the function u(x, ω; γ) we will need to study
properties of the eigenvalue problem on bounded intervals. For an interval I = [a, b], let Γ(I, ω) be
the principal eigenvalue and ψI(x, ω) ≥ 0 the principal eigenfunction of

ψI
xx + g(x, ω)ψI = Γ(I, ω)ψI , x ∈ (a, b), (2.14)

with ψI(a) = ψI(b) = 0, and ψI(x) > 0 for all x ∈ (a, b), and normalized by
∫

I ψI dx = 1.

Lemma 2.1 There is a constant Γ∞ ∈ [gmin, gmax] such that the following statements hold P-almost
surely. If I1 ⊂ I2 ⊂ R are two intervals, then Γ(I1, ω) ≤ Γ(I2, ω). Also,

Γ∞ = lim
k→∞

Γ([−k, k], ω) = lim
k→∞

Γ([0, k], ω).

Proof of Lemma 2.1: If I1 ⊂ I2, the fact that Γ(I1, ω) ≤ Γ(I2, ω) follows from the variational
representation

Γ(I, ω) = max

{∫

I
−(ψx)2 + g(x, ω)ψ2 dx | ψ ∈ H1

0 (I),

∫

I
ψ2 dx = 1

}

. (2.15)

Since gmin ≤ g ≤ gmax, this representation also implies Γ(I, ω) ∈ [gmin −π−2|I|−2, gmax −π−2|I|−2],
because π−2|I|−2 is the principal eigenvalue on of the Laplacian on I. It follows that the limit

Γ∞ = lim
k→∞

Γ([−k, k], ω) (2.16)

exists and satisfies Γ∞ ∈ [gmin, gmax]. We claim that Γ∞ is a constant, independent of ω. This
follows from the ergodicity assumption and the fact that Γ∞ must be invariant with respect to the
action of πx. Specifically, the stationarity of g implies that with probability one,

Γ∞(πxω) = lim
k→∞

Γ([−k, k], πxω) = lim
k→∞

Γ([−k + x, k + x], ω)

holds for all x ∈ R. However, since Γ is nondecreasing in I, Γ([−k +x, k +x], ω) ≥ Γ([−(k−|x|), k−
|x|], ω), and thus

Γ∞(πxω) ≥ lim
k→∞

Γ([−(k − |x|), k − |x|], ω) = Γ∞(ω), ∀ x ∈ R

holds with probability one. Since πx is measure-preserving, this implies Γ∞(πxω) = Γ∞(ω), P-almost
surely. Now the ergodicity assumption implies Γ∞ is constant, almost surely.
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Since Γ is nondecreasing in I, the limit

Γ+
∞ = lim

k→∞
Γ([0, k], ω)

also exists and satisfies Γ+
∞ ≤ Γ∞. Given δ > 0 and ǫ > 0, we may choose K large so that

P (Γ([−k, k], ω) > Γ∞ − ǫ) ≥ 1− δ holds for all k ≥ K. Hence, because πx is measure-preserving and
g is stationary,

P
(

Γ+
∞(ω) > Γ∞ − ǫ

)

≥ P (Γ([0, 2k], ω) > Γ∞ − ǫ)

= P (Γ([0, 2k], πkω) > Γ∞ − ǫ)

= P (Γ([−k, k], ω) > Γ∞ − ǫ) ≥ 1 − δ. (2.17)

Since δ and ǫ may be chosen arbitrarily small, this implies Γ+
∞ ≥ Γ∞ holds with probability one, so

Γ+
∞ = Γ∞. ¤

In the construction of u(x, ω; γ) and in the subsequent analysis we will make frequent use of the
following estimates:

Lemma 2.2 Let I = [a, b] and γ > Γ∞. Let ǫ > 0. There is a constant C > 0, such that if w(·, ω)
satisfies

wxx + (g(x, ω) − γ)w ≥ 0, x ∈ (a, b)

then

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√

γ−Γ∞−ǫ) + max(0, w(b, ω))Ce(x−b)(
√

γ−Γ∞−ǫ), ∀ x ∈ I.

In particular, if w(a, ω) ≤ 0 and w(b, ω) ≤ 0, then w ≤ 0 for all x ∈ [a, b]. The constant C depends
on ǫ, gmax and γ, but not on ω or I.

Proof of Lemma 2.2: We first prove the result assuming w(a, ω) = 1 and w(b, ω) ≤ 0. Let
δ > 0, and define z = eδ(x−a)w(x, ω) − e−(x−a) which satisfies

zxx − 2δzx + (g − γ + δ2)z ≥
(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a), x ∈ (a, b)

and z(a) = 0, z(b) < 0. After multiplying this equation by z+ = max(z, 0) ∈ H1
0 (I) and integrating

over I, we obtain

∫

I
−(z+)2x + g(z+)2 dx ≥ (γ − δ2)

∫

I
(z+)2 dx +

∫

I

(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a)z+ dx. (2.18)

By the representation (2.15), the left side is bounded by Γ(I, ω)
∫

I(z
+)2 dx. Therefore,

(γ − δ2 − Γ(I))

∫

I
(z+)2 dx ≤ −

∫

I

(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a)z+ dx.

For β > 0, let δ2 = γ − Γ∞ − β ≤ γ − Γ(I, ω) − β and apply the Cauchy-Schwarz inequality on the
right side to obtain:

β

∫

I
(z+)2 dx ≤ 1

2β

∫

I

(

−1 + 2δ − (g − γ + δ2)
)2

e−2(x−a) dx +
β

2

∫

I
(z+)2 dx.
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Therefore,

∫

I
(z+)2 dx ≤ β−2

∫ ∞

a

(

−1 + 2δ − (g − γ + δ2)
)2

e−2(x−a) dx ≤ (1 + 2δ + gmax + Γ∞ + β)2

2β2
.

Observe that the constant on the right side is independent of I and ω. Returning to (2.18) and
applying Cauchy-Schwarz again, we conclude that there is a constant C1 – depending only on δ,
gmax, γ, Γ∞, and β – such that

∫

I
(z+

x )2 ≤ C1.

Consequently, for all x ∈ I

z(x) ≤ z+(x) =

∫ x

a
z+
x (s) ds ≤

√
x − a

(∫

I
(z+

x )2 dx

)1/2

≤
√

C1(x − a)

and thus,
w(x, ω) = e−δ(x−a)(z + e−(x−a)) ≤ e−δ(x−a)(

√

C1(x − a) + e−(x−a)).

Now we let β be small so that δ =
√

γ − Γ∞ − β ≥ √
γ − Γ∞ − ǫ/2 and we have

w(x, ω) ≤ C2e
−(x−a)(

√
γ−Γ∞−ǫ)

= max(0, w(a, ω))C2e
−(x−a)(

√
γ−Γ∞−ǫ) + max(0, w(b, ω))C2e

(x−b)(
√

γ−Γ∞−ǫ)

since we have assumed w(a, ω) = 1 and w(b, ω) ≤ 0. In the case w(a, ω) ≤ 0 and w(b, ω) = 1, a very
similar argument (with z = eδ(b−x)w − ex−b) leads to the same bound with the same constant C2,
independent of I and ω. The general case then follows from the linearity of the equation. ¤

The following corollary will enable comparison of functions on the unbounded interval I = [a,∞).

Corollary 2.1 Let I = [a,∞) and γ > Γ∞ and ǫ > 0. There is a constant C > 0 such that if w
satisfies

wxx + (g(x, ω) − γ)w ≥ 0, ∀ x > a

with lim supx→∞ w(x, ω) < ∞, then

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√

γ−Γ∞−ǫ), ∀ x ∈ I. (2.19)

In particular, if w(a, ω) ≤ 0, then w(x, ω) ≤ 0 for all x ≥ a.

Proof of Corollary 2.1: If w vanishes outside an interval [a, b], then this is an immediate con-
sequence of Lemma 2.2. Otherwise, since M(ω) = lim supx→∞ w(x, ω) is finite, we may choose a
point b (depending on ω) arbitrarily large such that w(b, ω) ≤ 2M(ω). Then apply Lemma 2.2 on
the interval [a, b] to conclude that

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√

γ−Γ∞−ǫ) + 2MCe(x−b)(
√

γ−Γ∞−ǫ), ∀ x ∈ [a, b].

Since b may be chosen arbitrarily large, and since C is independent of b and ω, we conclude that
w(x, ω) satisfies (2.19) for all x ≥ a. ¤

Now we continue with the proof of Theorem 1.1. The solution u(x, ω; γ) is defined as the limit,
as k → ∞, of the function uk,γ(x, ω) satisfying the boundary value problem:

uk,γ
xx + (g(x, ω) − γ)uk,γ = 0, x ∈ (0, k) (2.20)
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with uk,γ(0) = 1 and uk,γ(0) = 0. If γ > Γ∞, then γ > Γ([0, k], ω) and the Fredholm alternative
implies that there exists a unique solution to this problem. For each k, uk,γ(x) ≥ 0 for all x ∈ [0, k].
This follows from Lemma 2.2 applied to the function w = −uk,γ(x). Moreover, for each x ∈ (0, k),
uk,γ(x, ω) is increasing in k. Specifically, if j > k then we may apply Lemma 2.2 to the function
w = uk,γ(x̄, ω) − uj,γ(x̄, ω) to conclude that uj,γ(x, ω) ≥ uk,γ(x, ω) for all x ∈ [0, k] if j > k.

Therefore, for all γ > Γ∞ we may define

u(x, ω; γ) = lim
k→∞

uk,γ(x, ω). (2.21)

By Lemma 2.2, uk,γ(x, ω) ≤ Ce−(
√

γ−Γ∞−ǫ)x holds for all x ∈ [0, k] with a constant C = C(ǫ, γ) that
is independent of k and ω. Therefore, the limit u(x, ω; γ) is also finite and satisfies

u(x, ω; γ) ≤ Ce−(
√

γ−Γ∞−ǫ)x (2.22)

with the same constant C, independent of ω. Because u(x, ω; γ) is finite, elliptic regularity implies
that u(·, ω; γ) satisfies equation (1.3) for x > 0, and u(0, ω; γ) = 1 and u(x, ω; γ) > 0 for x > 0. Thus
we have established that if γ > Γ∞, there exists a function u(x, ω; γ) with the desired properties.
With Corollary 2.1 it is not hard to see that the solution u(x, ω; γ) must be unique. Moreover, by
applying Corollary 2.1 to the function w = e−x

√
γ−gmin − u(x, ω; γ) we obtain the lower bound

u(x, ω; γ) ≥ e−x
√

γ−gmin , ∀ x > 0. (2.23)

Let us also observe that for each x, the functions y 7→ u(x + y, ω; γ) and y 7→ u(x, ω; γ)u(y, πxω; γ)
satisfy the same boundary value problem on [0,∞), because of g(x + y, ω) = g(y, πxω). Therefore
the uniqueness of u immediately implies the following useful relation:

Lemma 2.3 With probability one, u(x, ω; γ) satisfies

u(x + y, ω; γ) = u(x, ω; γ)u(y, πxω; γ) (2.24)

for all x ≥ 0, y ≥ 0, γ > γ̄.

Now suppose γ < Γk < Γ∞. If ψk = ψI is the eigenfunction (2.14) for I = [0, k], then the
function η(t, x) = e(Γk−γ)tψk(x) satisfies ηt = ηxx + (g(x)− γ)η and η ր ∞. If there were a solution
u(x, ω; γ) satisfying u > 0 for x ≥ 0, then the maximum principle would imply that for suitable
constant C, u(x, ω; γ) > Cη(t, x) must hold for all t and x ∈ [0, k]. However, this cannot hold since
η → ∞ as t → ∞. Therefore, for γ < Γ∞, no such solution exists since Γk → Γ∞ as k → ∞.

We now have established the first part of Theorem 1.1 and identified γ̄ = Γ∞. Next we show
that the limit (1.4) exists, almost surely, and satisfies the stated bounds. For each integer n ≥ 1, we
may iterate the equality (2.24) n − 1 times to obtain

log(u(n, ω; γ)) = log

(

n−1
∏

k=0

u(1, πkω; γ)

)

=
n−1
∑

k=0

log u(1, πkω; γ). (2.25)

Let qk(ω) = log u(1, πkω; γ). The F-measurability of qk may be proved as in [19]. By the bounds
(2.22) and (2.23), E[qk] is finite, so the ergodic theorem implies that the limit

−µ(γ) = lim
n→∞

1

n
log(u(n, ω; γ)) = lim

n→∞
1

n

n−1
∑

k=0

qk(ω) = E [q0] = E (log u(1, ω; γ)) (2.26)

holds with probability one. The fact that µ is independent of ω follows from the ergodicity assump-
tion, since we can show (using Lemma 2.3) that µ(γ) is invariant under the action of every πk, k ∈ R.
Elliptic regularity implies that the limit holds along continuous x, as well. This concludes the proof
of Theorem 1.1. ¤
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2.2 Properties of µ(γ) and u(x, ω; γ)

In this section we gather some useful observations about the functions µ(γ) and u(x, ω; γ).

Lemma 2.4 The following bounds hold P-almost surely. If γ′ > γ > γ̄, then

u(x, ω; γ) ≥ u(x, ω; γ′)
u(y, ω; γ)

u(y, ω; γ′)
(2.27)

for all 0 ≤ y ≤ x.

Proof: By (2.24) we know that,

u(x, ω; γ)

u(y, ω; γ)
= u(x − y, πyω; γ) and

u(x, ω; γ′)
u(y, ω; γ′)

= u(x − y, πyω; γ′)

hold for all x ≥ y. By applying Corollary 2.1 to the function w(x) = u(x−y, πyω; γ′)−u(x−y, πyω; γ)
on the interval x ∈ [y,∞), we see that u(x − y, πyω; γ) ≥ u(x − y, πyω; γ′) for all x ≥ y, so (2.27)
must hold for all x ≥ y. ¤

Lemma 2.5 Let γ′ > Γ∞, γ > Γ∞ and σ = 2γ − γ′ > Γ∞. Then

(u(x, ω; γ))2 ≤ u(x, ω; γ′)u(x, ω; σ) (2.28)

holds for all x ≥ 0. Also, for any ǫ > 0, there is a constant C such that

(u(x, ω; γ))2 ≤ u(x, ω; γ′)Ce−(
√

σ−Γ∞−ǫ)x (2.29)

holds for all x ≥ 0. The constant C depends on σ and ǫ, but not on ω.

Proof: Let σ = 2γ − γ′ > Γ∞. Since σ > Γ∞, the function u(x, ω; σ) is well-defined. To make the
notation simpler in what follows, we let θ(x, ω) = u(x, ω; γ′) and η(x, ω) = u(x, ω; σ). Now consider
the function z(x, ω) =

√

θ(x)η(x). A simple computation of zxx/z shows that z satisfies the equation

zxx + (g(x, ω) − γ)z = −z

4

(

θx

θ
− ηx

η

)2

. (2.30)

Because the right side is nonpositive and because z(0) = 1 and z(x) > 0 for x > 0, we may apply
Corollary 2.1 to the function w(x) = u(x, ω; γ) − z to conclude that w ≤ 0 for all x ≥ 0. Since
u(x, ω; γ) > 0 this means that

(u(x, ω; γ))2 ≤ z(x)2 = u(x, ω; γ)u(x, ω; σ) (2.31)

holds for all x > 0. The bound (2.29) now follows immediately from (2.19) applied to the function
w = u(x, ω; σ).¤

Lemma 2.6 For γ > γ̄, the function γ 7→ µ(γ) is concave. Also, (γ − γ̄)1/2 ≤ µ(γ) ≤ (γ − gmin)1/2.

Proof: Let γ1 < γ2 be such that Γ∞ < γ1 and γ2 ≤ 2γ1 +Γ∞. Then we may apply Lemma 2.5 with
γ = (γ1 + γ2)/2 and γ′ = γ2. In this case, σ = γ1, and (2.28) implies

2µ(
γ1 + γ2

2
) = 2µ(γ) ≥ µ(γ′) + µ(σ) = µ(γ1) + µ(γ2)

Since this holds for all such γ1 and γ2, µ must be concave. The upper and lower bound on µ follow
from the bounds (2.22) and (2.23) on u. ¤
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Lemma 2.7 Let γ′ > γ > γ̄ and δ ∈ [0,
√

γ′ − gmin −√
γ − gmin ]. Then

u(x, ω; γ′) ≤ e−δxu(x, ω; γ), ∀ x ≥ 0 (2.32)

holds with probability one. Thus µ(γ′) ≥ µ(γ) +
√

γ′ − gmin −√
γ − gmin > µ(γ).

Proof: Consider the function z = e−δxu(x, ω; γ) which satisfies

zxx + (g(x, ω) − γ′)z = e−δx
(

δ2u(x, ω; γ) − 2δux(x, ω; γ) − (γ′ − γ)u(x, ω; γ)
)

(2.33)

The function η = log u(x, ω; γ) satisfies ηxx + (ηx)2 + (g(x) − γ) = 0. If ηx attains a negative
local minimum at a point x̄, this implies that g(x̄) < γ and ηx(x̄) = −

√

γ − g(x̄) ≥ −√
γ − gmin.

Therefore,
ux(x, ω; γ) ≥ −√

γ − gminu(x, ω; γ) (2.34)

holds for all x. Therefore,

zxx + (g(x, ω) − γ′)z ≤ e−δx
(

δ2u(x, ω; γ) + 2δ
√

γ − gminu(x, ω; γ) − (γ′ − γ)u(x, ω; γ)
)

(2.35)

If δ ∈ [0,
√

γ′ − gmin −√
γ − gmin ], the right hand side is nonpositive. Now by applying Corollary

2.1 to the function w = u(x, ω; γ′) − z, we conclude that u(x, ω; γ′) ≤ z. ¤

2.3 Fluctuations in the tail of u

We are ready to prove Theorem 1.2 which describes fluctuations in the tail of u(x, ω; γ). We have
shown that the functions u(x, ω; γ) decay exponentially with rate −µ(γ). Now consider the partial
sums

SN (ω; γ) = log u(N, ω; γ) =

N−1
∑

k=0

qk(ω),

where qk(ω) = log u(1, πkω; γ). We will show that for fixed γ ∈ (γ̄,∞), SN satisfies the central limit
theorem, meaning that the quotient (SN + Nµ(γ))/

√
N is asymptotically normally distributed as

N → ∞. One approach to obtaining a central limit theorem (CLT) for SN is to use the method
of martingale approximation. This strategy can be made to work via the following theorem. Let
F−

k ⊂ F denote the σ-algebra generated by g(x, ω) for x ≤ k. Also, let F+
j denote the σ-algebra

generated by g(x, ω) for x ≥ j.

Theorem 2.1 (See Hall and Heyde [10], Section 5.4) Suppose that a stationary sequence {ηk}k ⊂
L2(Ω,F , P) satisfies E[ηk] = 0, and that the two series

∞
∑

k=1

(

η0 − E[η0|F−
k ]

)

and
∞

∑

k=1

E[ηk|F−
0 ] (2.36)

converge in L2(Ω,F , P). Then, the limit

σ2 = lim
N→∞

1

N
E





∣

∣

∣

∣

∣

N−1
∑

k=0

ηk

∣

∣

∣

∣

∣

2


 (2.37)

exists and is finite. If σ2 > 0 and Sk =
∑k−1

j=0 ηj, then as n → ∞ the family of processes

Z̄n(x) =
1

σ
√

n
(Sk + (nx − k)ηk) , k ≤ nx ≤ k + 1, k = 0, 1, . . . , n − 1 (2.38)

converges weakly to a standard Brownian motion on [0, 1], in the sense of C([0, 1]) with the topology
of uniform convergence.
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In order to apply the theorem with ηk = qk + µ = log u(1, πkω; γ) + µ, we will require a mixing
condition on the random field g(x, ω). Suppose that φ : [0,∞) → [0,∞) is a continuous decreasing
function such that φ(+∞) = 0. We say that the random field g(x, ω) is φ-mixing if the following
holds: for all j ≥ k and any ξ ∈ L2(Ω,F−

k , P) and η ∈ L2(Ω,F+
j , P),

|E [ξη] − E[ξ]E[η]| ≤ (φ(j − k))1/2
(

E[ξ2]E[η2]
)1/2

. (2.39)

Let us suppose that g(x, ω) is φ-mixing for some φ satisfying
∑∞

k=1 φ(k)1/2 < ∞.
Now we consider the first series in (2.36):

∞
∑

k=1

(

η0 − E[η0|F−
k ]

)

=
∞

∑

k=1

(

q0 − E[q0|F−
k ]

)

.

We need to show that E
[

|q0 − E[q0|F−
k ]|2

]

decays sufficiently fast as k → ∞ so that the series
converges in L2. Since E[q0|F−

k ] is the best L2 approximation of q0 that is F−
k -measurable, we can

prove the desired result by constructing an F−
k -measurable random variable q′0 which is very close

to q0 (error decays fast with k → ∞). Since q0 = log u(1, ω; γ), a natural candidate is obtained by
solving the differential equation with homogeneous Dirichlet condition at x = k. Let wk(x, ω; γ)
solve

wxx + (g(x, ω) − γ)w = 0, x ∈ [0, k] (2.40)

with wk(0, ω; γ) = 1 and wk(k, ω; γ) = 0. Then for all x ∈ (0, k),

u(x, ω; γ) = wk(x, ω; γ) + zk(x, ω; γ)u(k, ω; γ)

where zk(x, ω; γ) solves (2.40) with zk(0) = 0 and zk(k) = 1. Both wk and zk are F−
k -measurable.

Therefore, with q′0 = log wk(1, ω; γ) we have

q0 − q′0 = − log

(

wk(1, ω; γ)

u(1, ω; γ)

)

= − log

(

1 − zk(1, ω; γ)u(k, ω; γ)

u(1, ω; γ)

)

.

Let ǫ = (
√

γ − γ̄)/2 > 0. By Lemma 2.2 there is a constant C1 independent of k and ω such that
u(k, ω; γ) ≤ C1e

−kǫ. By applying the same Lemma to zk, we see that 0 ≤ zk(1, ω; z) ≤ C1e
(1−k)ǫ

also holds. The maximum principle implies that u(1, ω; γ) is bounded below by ρ(1) > 0 where ρ(x)
satisfies ρxx +(gmin−γ)ρ for x ∈ [0, 2] with ρ(0) = 1 and ρ(2) = 0. Consequently, there is a constant
C2, depending only on γ, such that

q0 − q′0 ≤ log
(

1 + C2e
−kǫ

)

holds for all k ≥ 1, with probability one. This upper bound, and a similar lower bound, imply that

E
[

|q0 − E[q0|F−
k ]|2

]

≤ E
[

|q0 − q′0|2
]

≤ C3e
−kǫ

for some constant C3 depending only on ǫ. So, the first series in (2.36) converges in L2(Ω,F , P).
Next, we consider the series

∞
∑

k=1

E[ηk|F−
0 ].

We have to show that E[|E[ηk|F−
0 ]|2] decays rapidly as k → ∞, and this is where we use the

assumption that g is φ-mixing. Observe that each qk and ηk is F+
k measurable. This follows from

the fact that qk = log u(1, πkω) = log ũk(k + 1, ω), where ũk is defined for x ≥ k by

ũk
xx + (g(x, ω) − γ)ũk = 0, x > k; ũk(k, ω) = 1; lim

x→∞
ũk(x, ω) = 0.
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Hence, ũk depends only on g(x, ω) for x ≥ k. Let θ ∈ L2(Ω,F−
0 , P) with E(θ2) = 1. Because ηk is

F+
k measurable, θ is F−

0 measurable, and E[ηk] = 0, we have

∣

∣E
(

θE[ηk|F−
0 ]

)∣

∣ = |E (θηk)| =
∣

∣

∣E

(

θE[ηk|F+
j ]

)∣

∣

∣ ≤ φ(k)1/2
E[(ηk)

2]1/2 ≤ Cφ(k)1/2. (2.41)

The last two inequalities follow from the mixing condition (2.39). Therefore, as θ ∈ L2(Ω,F−
0 , P)

was arbitrary, we conclude that E
(

|E[ηk|F−
0 ]|2

)1/2 ≤ Cφ(k)1/2. Now the triangle inequality implies

E

[

(
n

∑

k=m

E[ηk|F−
0 ])2

]1/2

≤
n

∑

k=m

E
[

(E[ηk|F−
0 ])2

]1/2 ≤
n

∑

k=m

Cφ(k)1/2.

Since the series
∑∞

k=1 φ(k)1/2 converges, it follows that
∑∞

k=1 E[ηk|F−
0 ] converges in L2(Ω,F , P).

We have shown that the random variables ηk = qk+µ = log u(1, πkω; γ)+µ satisfy the hypotheses
of Theorem 2.1. Therefore, Theorem 1.2 follows immediately from an application of Theorem 2.1.

We can construct a class of examples for which the variance σ2 > 0 in Theorem 1.2 is positive. Let
{gk(ω̃)}∞k=−∞ be a family of independent, identically distributed random variables on a probability

space (Ω̃, F̃ , P̃). Assume also that gmin ≤ gk ≤ gmax with probability one and Var(gk) > 0. Now
we define (Ω,F , P) to be the product space with product measure P defined in the usual way, and
for k ∈ Z let πk act on Ω as the shift-operator in the natural way: πk : (. . . , ω̃−1, ω̃0, ω̃1, . . . ) 7→
(. . . , ω̃k−1, ω̃k, ω̃k+1, . . . ). Define the continuous, piecewise linear, random function g(x, ω) by

g(x, ω) = (1 − x + k)gk(ω) + (x − k)gk+1(ω) ∀ x ∈ [k, k + 1), (2.42)

for each k ∈ Z. Because the gk are independent and idendically distributed, the family {πk}k∈Z is
measure-preserving and ergodic in its action on (Ω,F , P). So, Theorem 1.1 applies. Moreover, the
mixing condition holds so Theorem 1.2 also applies.

Proposition 2.1 Let g(x, ω) be defined by (2.42). For each γ > γ̄, the constant σ defined by
Theorem 1.2 is positive.

Proof of Proposition 2.1: If ηk = log(u(1, πkω; γ)) + µ, then

σ2 = lim
n→∞

1

n

n−1
∑

k=0

n−1
∑

j=0

E[ηkηj ] = E[η2
0] + lim

n→∞
2

n

n−1
∑

k=1

(n − k)E[η0ηk]. (2.43)

We claim that every term in the sum (2.43) is nonnegative, while E[η2
0] must be positive. It is useful to

think of the variables ηj(ω) as functions of the random sequence {gk}∞k=j . For each positive integer K,
we may approximate η0 by η′0(g0, g1, . . . , gK) where η′0 = log(wK(1, ω; γ))+µ, and wK was defined at
(2.40). Similarly, we may approximate ηj by η′j(gj , gj+1, . . . , gj+K) where η′j = log wK(1, πjω; γ)+µ.
Both η′0 and η′j are increasing functions of their arguments, so Lemma 2.8 implies that Cov(η′0η

′
j) ≥ 0.

Since E[η0ηj ] = limK→∞ Cov[η′0η
′
j ], it follows that E[η0ηj ] ≥ 0 for all j ≥ 0. Because η0 is an

increasing function of each of the variables {gk}∞k=0 and Var(gk) > 0, η0 cannot be constant. Thus
E[η2

0] > 0. ¤

Lemma 2.8 Let X = (X1, . . . , Xn) ∈ R
n be a vector of independent random variables. Suppose that

Xj takes values in the interval Ij ⊂ R: P(Xj ∈ Ij) = 1 for j = 1, . . . , n. Let I =
∏n

j=1 Ij. Suppose
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that f(x) : I → R and g(x) : I → R are such that E[f(X)2] < ∞ and E[g(X)2] < ∞ and for each
j = 1, . . . , n either

∂f(x)

∂xj
≥ 0 and

∂g(x)

∂xj
≥ 0

holds for all x ∈ I or
∂f(x)

∂xj
≤ 0 and

∂g(x)

∂xj
≤ 0

holds for all x ∈ I. Then Cov(f(X), g(X)) ≥ 0.

Proof: This follows from Lemma 2.3 of [6]. If X ′ = (X ′
1, . . . , X

′
n) is an independent copy of the

random vector X, that lemma gives the representation

Cov(f(X), g(X)) =
1

2

∑

A([n]

1
(

n
|A|

)

(n − |A|)
∑

j /∈A

E[∆jg(X)∆jf(XA)]

where ∆jg(X) = g(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn) − g(X) and XA is the random vector given by

XA
i = X ′

i if i ∈ A and XA
i = Xi if i /∈ A. By our assumptions on f and g, both ∆jg(X) and ∆jf(XA)

have the same sign, almost surely. Thus, each term in the sum satisfies E[∆jg(X)∆jf(XA)] ≥ 0. ¤

3 CLT for traveling front solutions of the linear equation

In this section we prove Theorem 1.3. For γ > γ̄ fixed, let c = c(γ) and µ = µ(γ). The function
ϕ(t, x, ω; γ) = eγtu(x, ω; γ) solves the linear boundary value problem

∂tϕ = ϕxx + g(x, ω)ϕ, x > 0, t ∈ R

ϕ(t, 0) = eγt, t > 0,

ϕ(0, x) = u(x, ω; γ), x > 0, (3.44)

For δ ∈ (0, 1], let us define

Yδ(t, ω; γ) = sup{x ≥ 0 | ϕ(t, x, ω; γ) ≥ δ}. (3.45)

Sometimes we abbreviate: Yδ(t). In Theorem 1.3, Y (t, ω; γ) = Yδ(t) with δ = 1/2. This stochastic
process is nonnegative and non-decreasing in t. However, because u may not be monotone decreasing,
Yδ(t) may have jumps. The F-measurability of Yδ(t, ω; γ) may be proved as in [19].

We define the random function R(x, ω; γ) : [0,∞) × Ω → R by

R(x, ω; γ) = log u(x, ω; γ) + µ(γ)x (3.46)

so that
u(x, ω; γ) = e−µx+R(x,ω;γ),

and R(x, ω; γ)/x → 0 with probability one as x → ∞. For suitable hypotheses on g, Proposition 2.1
shows that R(x, ω; γ) behaves like a Brownian motion for large x. Specifically, for any M > 0, the
family of processes Vn(x, ω; γ) = R(xn, ω; γ)/(σ

√
n) converges weakly in C([0, M ]) to a Brownian

motion, as n → ∞. For δ ∈ (0, 1] fixed, the wave’s position is

Yδ(t, ω) = sup{x ≥ 0 | − x + µ−1R(x, ω; γ) + ct = µ−1 log(δ)}.
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Therefore, if we define ht = Yδ(t) − ct we have

ht(ω) = sup{h ≥ −ct | − h + µ−1R(h + ct, ω; γ) = µ−1 log(δ)} (3.47)

Theorem 1.3 now follows immediately from the next lemma applied to ht, with W = µ−1R and
δ = 1/2.

Lemma 3.1 Let κ > 0. Suppose that W (x, ω) : [0,∞)×Ω → R is a continuous, random process on
(Ω,F , P) satisfying

lim
x→∞

W (x, ω)

x
= 0

and W (0, ω) = 0, P-almost surely. Also, suppose that the family of processes {n−1/2W (nx, ω)}∞n=1

satisfies W (0, ω) = 0, P-a.s., and converges weakly as n → ∞ to κB(x) where B(x) is a standard
Brownian motion on the interval [0, M ], for any M (in the sense of weak convergence of measures
on C([0, 1]) with the topology of uniform convergence). Let r < 0 and c > 0. Define the random
process ht by

ht(ω) = sup {h ≥ −ct | W (h + ct, ω) = h + r} . (3.48)

Then as t → ∞, (ht)/
√

t converges in distribution to a Gaussian random variable with zero mean
and variance κ2c2. If κ2 > 0, then the family of processes

Hn(t) =
1

κc
√

n
hnt (3.49)

converges weakly (as n → ∞) to a standard Brownian motion on [0, T ], in the Skorohod space D.

Proof: First we show that the finite dimensional distributions of Hn(t) converge to those of a
Brownian motion. Then we show that the induced family of measures is tight in the Skorohod space
D. These two conditions imply the weak convergence stated in the lemma (see Chapter 3, Section
15 of [4]).

For 0 ≤ t1 < t2 < · · · < tk ≤ T , we show that the finite dimensional distributions of {htin/
√

n}k
i=1

converge to those of {κB(cti)}k
i=1. Since c > 0 and r < 0, the assumptions on W imply that with

probability one ht is well-defined and finite for all t > 0. Let yi = htin + ctin, i = 1, . . . , k. Observe
that yi is defined as the largest point of intersection between the line y 7→ y − ctin + r and the
function W (y) which behaves like Brownian motion:

W (yi) = yi − ctin + r. (3.50)

Let us now define a subset of Ω on which we can control the possible location of the intersection
points. For ǫ ∈ (0, 1/2) and ŷ ∈ R, let

S(ǫ, ŷ) = {ω ∈ Ω | min(−ǫŷ,−ǫy) ≤ W (y, ω) ≤ max(ǫŷ, ǫy), ∀y ≥ 0}.

Because W (·, ω) is continuous and grows at most sublinearly, we may choose a constant ŷ = ŷ(ǫ)
sufficiently large so that P (S(ǫ, ŷ(ǫ))) ≥ 1 − ǫ. For ŷ defined in this way, set Sǫ = S(ǫ, ŷ(ǫ)). By
considering the intersection of the line y 7→ y − ctin + r with the functions y 7→ max(ǫŷ, ǫy) and
y 7→ min(−ǫŷ,−ǫy), we see that if ω ∈ Sǫ, then any solution of (3.50) must satisfy

min ((1 − 2ǫ)(ctin − r) , −ǫỹ + ctin − r) ≤ yi ≤ max ((1 + 2ǫ)(ctin − r) , ǫỹ + ctin − r)

Therefore, if ω ∈ Sǫ, then yi must lie in the interval Iǫ
i,n:

Iǫ
i,n = {y ∈ R | |y − ctin| ≤ max (2ǫctin + (1 + 2ǫ)|r| , ǫỹ + |r|) } .
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min(−ǫŷ,−ǫy)

max(ǫŷ, ǫy)

y

W (y, ω)

y − ctin + r

Iǫ
i,n

See the figure for an illustration of this point.
Let αi ∈ R. Since P(SC

ǫ ) ≤ ǫ and htin = W (yi) − r, we have

P

(

{n−1/2htin > αi, ∀ i}
)

= P

(

{n−1/2htin > αi, ∀ i} ∩ Sǫ

)

+ P

(

{n−1/2htin > αi, ∀ i} ∩ SC
ǫ

)

≤ P

(

{n−1/2htin > αi, ∀ i} ∩ Sǫ

)

+ ǫ

= P

(

{n−1/2W (yi) > rn−1/2 + αi, ∀ i} ∩ Sǫ}
)

+ ǫ

≤ P

(

{ω | sup
y∈Iǫ

i,n

n−1/2W (y) > rn−1/2 + αi, ∀ i}
)

+ ǫ.

The family of processes {n−1/2W (nt, ω)}∞n=1 converges weakly in C([0, 2cT ]) to κB(t), so it is tight
in C([0, 2cT ]). Therefore, as n → ∞ the last quantity converges to

lim
n→∞

P

(

{ω | sup
y∈Iǫ

i,n

n−1/2W (y) > rn−1/2 + αi, ∀ i}
)

= P






sup
s≥0

|s−cti|≤2ǫcti

κB(s) > αi, ∀ i






. (3.51)

Since ǫ > 0 is arbitrary and B(s) is almost-surely continuous, we have

lim sup
n→∞

P

(

{n−1/2htin > αi, ∀ i}
)

≤ P ({κB(cti) > αi, ∀ i}) .

A lower bound is proved in a similar manner:

P

(

{n−1/2htin > αi, ∀ i}
)

≥ P

(

{n−1/2htin > αi, ∀ i} ∩ Sǫ

)

≥ P

(

{ω | (W (ctin) − r)n−1/2 > αi − n−1/2 sup
y∈Iǫ

i,n

|W (y) − W (ctin)|, ∀ i}
)

.

Because {n−1/2W (nt, ω)}∞n=1 is tight in C([0, 2cT ]), for any δ1, δ2 > 0 we may choose ǫ smaller and
n sufficiently large so that

P

(

{ω | n−1/2 sup
y∈Iǫ

i,n

|W (y) − W (ctin)| < δ1, ∀ i}
)

≥ 1 − δ2.

Therefore,

P

(

{ω | n−1/2htin > αi, ∀ i}
)

≥ P

(

{(W (ctin) − r)n−1/2 > αi − δ1, ∀ i}
)

− δ2 (3.52)
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for n sufficiently large. Thus, since δ1 and δ2 may be chosen arbitrarily small,

lim inf
n→∞

P

(

{n−1/2htin > αi, ∀ i}
)

≥ P (κB(cti) ≥ αi, ∀ i) (3.53)

holds, as well. This proves convergence of the finite dimensional distributions.
Now we prove tightness in D. We will show that for any ǫ1 > 0 and ǫ2 > 0,

lim sup
n→∞

P






sup

s,t∈[0,T ]
|s−t|≤δ

|Hn(t) − Hn(s)| > ǫ1






≤ ǫ2 (3.54)

holds if δ > 0 is sufficiently small, and

sup
n≥1

P (|Hn(0)| > α) ≤ ǫ2 (3.55)

holds if α is large enough. These two conditions imply tightness in D (and in C([0, T ]), if the
processes Hn(t) were continuous [4]). For given n and any s, t ∈ [0, T ], let ys = hsn + csn and
yt = hst + cst. Then observe that

|Hn(t) − Hn(s)| =
1

κc
√

n
|W (ys) − W (yt)|.

Just as before, we see that for all ω ∈ Sǫ

|ys − csn| ≤ max (2ǫcsn + (1 + 2ǫ)|r| , ǫỹ + |r|) ,

and
|yt − ctn| ≤ max (2ǫctn + (1 + 2ǫ)|r| , ǫỹ + |r|) .

Therefore, if s, t ∈ [0, T ], |s− t| ≤ δ, and ω ∈ Sǫ, we must have n−1|ys − yt| ≤ cδ + 4Tcǫ + 6n−1|r|+
2n−1ǫỹ(ǫ). For a given δ, let ǫ > 0 be sufficiently small and then nδ,ǫ sufficiently large so that
cδ + 4Tcǫ + 6n−1|r| + 2n−1ǫỹ(ǫ) ≤ 2cδ holds for all n ≥ nδ,ǫ. Now we return to (3.54). For all
n ≥ nδ,ǫ we have

P






sup

s,t∈[0,T ]
|s−t|≤δ

|Hn(t) − Hn(s)| > ǫ1






= P






sup

s,t∈[0,T ]
|s−t|≤δ

1√
n
|W (ys) − W (yt)| > κcǫ1







≤ P






sup

r,τ∈[0,2cT ]
|r−τ |≤2cδ

1√
n
|W (nr) − W (nτ)| > κcǫ1






+ P(SC

ǫ )

Recall that P(SC
ǫ ) ≤ ǫ. Now because ǫ ∈ (0, 1/2) is arbitrary and because

lim sup
n→∞

P






sup

r,τ∈[0,2cT ]
|r−τ |≤2cδ

1√
n
|W (nr) − W (nτ)| > κcǫ1






≤ ǫ2/2

if δ is sufficiently small, this proves that (3.54) holds for δ sufficiently small.
Finally, we prove that (3.55) holds. Since W (x)/x → 0 with probability one, W (h, ω) = h + r

can have no solution if h is sufficiently large, depending on ω and r. Therefore, for any ǫ > 0,
P(h0 ≥ K) ≤ ǫ if K is sufficiently large. Since h0 ≥ 0 and Hn(0) = h0/(κc

√
n), this implies that for

any ǫ > 0, P(|Hn(0)| > ǫ) → 0 as n → ∞, which clearly implies (3.55). This completes the proof of
Lemma 3.1. ¤
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4 Estimates for the supercritical solutions of the linear equation

Here we prove some estimates that will enable us to compare solutions of the nonlinear problem (1.1)
to the functions ϕ(t, x, ω; γ) which solve the linearized problem (1.2). The estimates are restricted
to the supercritical regime γ ∈ (γ̄, γ∗), which corresponds to fronts moving faster than the minimal
speed, c(λ) > c∗. In the following analysis we will be comparing two functions ϕ(t, x, ω; γ) and
ϕ(t, x, ω; γ′) corresponding to two values γ and γ′. With the parameter γ fixed, we will use the
abbreviated notation Y1(t) and ht to refer to

Y1(t, ω, γ) = sup {x ≥ 0 | ϕ(t, x, ω; γ) = 1}

and
ht(ω; γ) = Y1(t, ω; γ) − c(γ)t,

always with parameter γ, not γ′.

Lemma 4.1 Let γ ∈ (γ̄, γ∗) and µ = µ(γ). There are constants β > 0, γ′ ∈ (γ, γ∗), and C3 > 1
such that the following holds with probability one: If for some time τ > 0 and some constants
C1(ω), C2(ω) > 0, the function w(t, x, ω) satisfies

wt = wxx + g(x, ω)w, x > 0, t > τ

w(t, x, ω) ≤ C1(ω)ϕ(t, x, ω; γ), ∀ x ≥ 0, t ≥ τ.

w(τ, x, ω) ≤ C2(ω)(ϕ(τ, x, ω; γ))2, ∀ x ≥ 0,

then,

w(t, x + Y1(t), ω) ≤ max(C1(ω), C2(ω)C3)
ϕ(t, x + Y1(t), ω; γ′)

ϕ(τ, Y1(τ), ω; γ′)
(4.56)

and

w(t, x + Y1(t), ω) ≤ max(C1(ω), C2(ω)C3)u(x, πY1(t)ω, γ′)e−β(t−τ)E(t, τ, ω, γ, γ′) (4.57)

hold for all t ≥ τ and x ≥ −Y1(t), where µ′ := µ(γ′) > µ and

E(t, τ, ω, γ, γ′) = exp
(

−µ′(ht(ω; γ) − hτ (ω; γ)) + R(Y1(t), ω, γ′) − R(Y1(τ), ω, γ′)
)

The constant C3 does not depend on ω or τ .

The significance of the bounds in Lemma 4.1 lies in the fact that γ′ > γ corresponds to a wave
moving more slowly than ϕ(t, x, ω; γ). Observe that γ′ appears in (4.56) and (4.57), although Yt(t)
corresponds to γ. Another important point is that the terms in the exponent defining E grow at
most sublinearly in t and τ . Consequently, we have the following estimates on E which we use later:

Proposition 4.1 Let E(t, τ, γ, γ′, ω) be defined as in Lemma 4.1. For any δ > 0, the random
variable

ξ(ω) = sup
t≥0

e−δtE(t, 0, γ, γ′, ω)

is finite with probability one, and for any ǫ > 0,

lim
t→∞

P(

∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ > eǫ

√
t) = 0. (4.58)
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Proof of Lemma 4.1: Using the upper bounds on w, we will show that we can fit above w
a wave that moves more slowly than ϕ(t, x, ω; γ). Let ǫ = γ − γ̄ > 0. Because we have assumed
γ ∈ (γ̄, γ∗), we may choose γ′ ∈ (γ,min(γ∗, γ+ǫ)) such that c′ := c(γ′) < c(γ) and µ′ = µ(γ′) > µ(γ).
Since ϕ(τ, Y1(τ, ω, γ), ω; γ) = 1, we have, with probability one,

w(τ, x, ω) ≤ C2(ω)(ϕ(τ, x, ω, γ))2

= C2(ω)
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)
(ϕ(τ, x, ω; γ))2

(ϕ(τ, Y1(τ), ω, γ))2
ϕ(τ, Y1(τ), ω; γ′)

ϕ(τ, x, ω; γ′)

= C2(ω)
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)

(u(x − Y1(τ), πY1(τ)ω; γ))2

u(x − Y1(τ), πY1(τ)ω; γ′)

for all x ≥ Y1(τ) = Y1(τ, ω, γ). Since 2γ − γ′ > γ̄, we see from Lemma 2.5 that this is bounded by

w(τ, x, ω) ≤ C2(ω)C3
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)
(4.59)

for a constant C3 that depends on γ and γ′, but not on ω or τ .
For 0 ≤ x ≤ Y1(τ, ω, γ), and t ≥ τ , Lemma 2.4 implies that

w(t, x, ω) ≤ C1(ω)ϕ(t, x, ω; γ) ≤ C1(ω)ϕ(t, x, ω, γ′)
ϕ(t, Y1(τ), ω; γ)

ϕ(t, Y1(τ), ω; γ′)

= C1(ω)ϕ(t, x, ω, γ′)
eγ(t−τ)ϕ(τ, Y1(τ), ω; γ)

eγ′(t−τ)ϕ(τ, Y1(τ), ω; γ′)

≤ C1(ω)
ϕ(t, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)
. (4.60)

The last inequality follows from the fact that ϕ(τ, Y1(τ), ω; γ) = 1. Combining this with (4.59) and
applying the maximum principle, we conclude that

w(t, x, ω) ≤ max(C1(ω), C2(ω)C3)
ϕ(t, x, ω; γ′)

ϕ(τ, Y1(τ), ω; γ′)
(4.61)

holds for all t ≥ τ and all x ≥ 0. This proves (4.56). The second bound (4.57) now follows from this
and Lemma 2.3:

ϕ(t, x + Y1(t), ω, γ′)
ϕ(τ, Y1(τ), ω; γ′)

=
eγ′(t−τ)u(x, πY1(t)ω, γ′)u(Y1(t), ω; γ′)

u(Y1(τ), ω, γ′)
. (4.62)

Using Y1(τ) = cτ + hτ (ω) in the last quotient, we obtain

ϕ(t, x + Y1(t), ω, γ′)
ϕ(τ, Y1(τ), ω; γ′)

= u(x, πY1(t)ω, γ′)e−β(t−τ)E(t, τ, ω, γ, γ′) (4.63)

with β = µ′(c − c′) > 0 and

E(t, τ, ω, γ, γ′) = exp
(

−µ′(ht(ω) − hτ (ω)) + R(Y1(t), ω, γ′) − R(Y1(τ), ω, γ′)
)

.

This proves (4.57). ¤

Proof of Proposition 4.1: To see that the random variable ξ(ω) is almost surely finite, observe
that the terms in the exponent defining E(t, 0, γ, γ′, ω) grow at most sublinearly in t. Specifically,
we have already established that

lim
t→∞

ht(ω)

t
= 0 (4.64)
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holds almost surely. Also, R(y, ω, γ)/y → 0 as y → ∞ and Y1(t, ω, γ)/t → c(γ) as t → ∞, so that

lim
t→∞

R(Y1(t), ω, γ′)
t

= lim
t→∞

R(Y1(t), ω, γ′)
Y1(t)

Y1(t)

t
= c lim

t→∞
R(Y1(t), ω, γ′)

Y1(t)
= 0 (4.65)

holds almost surely. Thus ξ(ω) < ∞ holds almost surely.
Now we prove (4.58). Let N > 0 and let τk = kt/N for k = 0, 1, 2, . . . , N . The integral we wish

to bound is:

∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ =

N
∑

k=1

∫ τk

τk−1

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ

≤
N

∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))eM(k,t,ω)

∫ τk

τk−1

e−δ(t−τ) dτ

where
M(k, t, ω) = max

τ∈[τk−1,τk]
µ′(hτ − hτk

) + max
τ∈[τk−1,τk]

R(Y1(τk)) − R(Y1(τ)).

(Recall that µ′ denotes the constant µ(γ′).) We claim that for any ǫ1 > 0 and ǫ2 > 0, we may take
N sufficiently large, so that

P

(

M(k, t, ω) ≤ ǫ1
√

t, ∀ k = 1, . . . , N
)

≥ 1 − ǫ2 (4.66)

holds if t is sufficiently large. Therefore, with probability at least 1 − ǫ2, we have

∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ ≤ δ−1eǫ1

√
t

N
∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))e−δ(t−τk)

= δ−1eǫ1
√

t + δ−1eǫ1
√

t
N−1
∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))e−δ(t−τk)

By taking α > 0 sufficiently large and then t sufficiently large, we also have

P

(

µ′|ht − hτk
|√

t
≥ α,

|R(Y1(t)) − R(Y1(τk))|√
t

≥ α ∀ k = 1, . . . , N − 1

)

≤ ǫ2.

Therefore, with probability at least 1 − 2ǫ2, we have

∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ ≤ δ−1eǫ1

√
t + δ−1eǫ1

√
t

N−1
∑

k=1

e2α
√

t−δ(t−τk)

≤ δ−1eǫ1
√

t + (N − 1)δ−1eǫ1
√

te2α
√

t−δt/N

if t is sufficiently large, depending on ǫ1 and ǫ2. Hence,

P

(∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ ≥ 2δ−1eǫ1

√
t

)

≤ 2ǫ2 (4.67)

if t is sufficiently large. Since ǫ1 and ǫ2 were chosen arbitrarily, this implies (4.58).
Let us verify the claim (4.66). Observe that

R(Y1(τk)) − R(Y1(τ))√
t

=
R(cτk) − R(cτ)√

t
+

R(Y1(τk)) − R(cτk)√
t

+
R(cτ) − R(Y1(τ))√

t
(4.68)
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Obviously (cτk − cτ)/t ≤ c/N for τ ∈ [τk−1, τk]. Also, Theorem 1.3 for Y1(t) and (3.54) imply that

max
τ∈[τk−1,τk]

|(Y1(τ))/t − (cτ)/t| ≤ max
τ∈[0,t]

|(hτ )/t| ≤ 2c/N

with probability at least 1 − ǫ3 if t is sufficiently large. Therefore, since the family of processes
x 7→ R(tx)/

√
t is tight in C([0, T ]) for any T , we see that

P

(

max
τ∈[τk−1,τk]

R(Y1(τk)) − R(Y1(τ)) ≥ ǫ1
√

t

)

≤ 1 − ǫ2 (4.69)

holds if N is large, and then t is sufficiently large. Similar estimates hold for hτ − hτk
, establishing

the claim. ¤

5 CLT for solutions of the nonlinear equation

Finally, we shift attention to solutions of the nonlinear problem (1.1), and we prove Theorem 1.4. We
suppose that the initial condition v(0, x, ω) = v0(x, ω) satisfies (1.9) and (1.13) for some γ ∈ (γ̄, γ∗).
For r ∈ (0, 1), let Xr(t, ω) be the interface position associated with v(t, x, ω):

Xr(t, ω) = sup {x ∈ R | v(t, x, ω) = r} .

We have already proved Theorem 1.3 for solutions of the linearized equation. So, if for almost every
ω we could show that Xr(t, ω) stays sufficiently close to Yr(t, ω) as t → ∞, the CLT would follow
for the solutions of the nonlinear equation (recall Yr defined at (3.45)).

For simplicity, we now suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for x > 0 and that v0(x, ω) =
1 for x < 0. The more general case (1.13) – where v0 is trapped between two fronts – follows readily
from this. The maximum principle implies that v(t, x, ω) ≤ ϕ(t, x, ω; γ) for all t ≥ 0 and x ≥ 0. So,
for any r ∈ (0, 1) we have

Xr(t, ω) ≤ Yr(t, ω) (5.70)

for all t ≥ 0. However, since v(t, x, ω) is merely a subsolution of the linearized equation, Xr(t, ω)
might lag behind Yr(t, ω). So, in order to obtain a CLT for Xr(t) by comparing with Yr(t), we
need to show that Xr(t) stays sufficiently close to Yr(t) with high probability. Actually, we’ll need
to introduce a time delay: Xr(t + h) stays sufficiently close to Yr(t) with high probability, if h is
sufficiently large.

Lemma 5.1 Let γ ∈ (γ̄, γ∗). Suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for x > 0 and v0(x) = 1
for x < 0. For any ǫ > 0,

lim
t→∞

P

(

X1/2(t + ǫ
√

t, ω) − Y1/2(t)(ω) ≥ 0
)

= 1. (5.71)

Before proving this lemma, let us show how (5.71) and (5.70) imply Theorem 1.4. For h > 0, let
G(t, h) ⊂ Ω be the set G(t, h) = {ω ∈ Ω | X1/2(t + h, ω) ≥ Y1/2(t)(ω)}. Then for any α ∈ R

P

(

X1/2(t + h, ω) − (t + h)c√
t + h

> α

)

≥ P

(

Y1/2(t)(ω) − (t + h)c√
t + h

> α

)

− P(G(t, h)C)

= P

(

Y1/2(t)(ω) − tc√
t

> α

√
t + h√

t
+

hc√
t

)

− P(G(t, h)C).
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Therefore, if we set h = ǫ
√

t for some ǫ > 0, Theorem 1.3 implies

lim inf
s→∞

P

(

X1/2(s, ω) − sc√
s

> α

)

≥ 1 − Φ(α/κ + ǫc/κ) − lim sup
t→∞

P(G(t, ǫ
√

t)C)

with κ = σµ−1c. However, by (5.71), P(G(t, ǫ
√

t)C) → 0 as t → ∞, so we must have

lim inf
s→∞

P

(

X1/2(s, ω) − sc√
s

> α

)

≥ 1 − Φ(α/κ)

since ǫ is arbitrary.
An upper bound on this probability follows easily from (5.70):

P

(

X1/2(s, ω) − sc√
s

> α

)

< P

(

Y1/2(s, ω) − sc√
s

> α

)

and the latter converges to 1 − Φ(α/κ) as s → ∞. This proves Theorem 1.4.
In the proof of Lemma 5.1, the following estimate plays a key role. It gives a lower bound on the

leading edge of the nonlinear wave in terms of the leading edge of the linear wave. The proof relies
on Lemma 4.1 and works only for the supercritical regime.

Lemma 5.2 Let γ ∈ (γ̄, γ∗). Suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for x > 0 and v0(x) = 1
for x < 0. Then there is a constant δ > 0 and a random variable θt(ω) > 0 such that

v(t, x + Y1(t), ω) ≥ ϕ(t, x + Y1(t), ω; γ)(1 − e−δxθt(ω)) (5.72)

holds for all x ≥ 0 and t ≥ 0, and for any ǫ > 0,

lim
t→∞

P(θt(ω) ≤ eǫ
√

t) = 1. (5.73)

Proof of Lemma 5.2: The strategy here is inspired by [1]. The idea is to think of the nonlinear
equation as an inhomogeneous linear equation. The nonlinear term is then controlled through the
Duhamel expansion and the estimates of Section 4. Let us define the difference ψ(t, x, ω) := ϕ − v,
which satisfies the equation

∂tψ − ψxx − g(x, ω)ψ = g(x, ω)v2 ≤ gmaxv2, x > 0, t > 0.

By the maximum principle, v(t, x) ≤ min(1, ϕ(t, x, ω; γ)) for all t ≥ 0, x ≥ 0. Therefore, gmaxv2 ≤
gmax min(1, ϕ2) = K(t, x, ω). So, for x > 0, we have ψ ≤ ψ1 + ψ2 where ψ1(t, x) solves

(ψ1)t = (ψ1)xx + g(x, ω)ψ1, x > 0, t > 0

ψ1(t, 0) = eγt, t > 0; ψ1(0, x) = max(0, ϕ(0, x, ω; γ) − 1), x > 0 (5.74)

and ψ2(t, x) solves

(ψ2)t = (ψ2)xx + g(x, ω)ψ2 + K(t, x), x > 0, t > 0

ψ2(t, 0) = 0, t > 0; ψ2(0, x) = 0, x > 0. (5.75)

We will apply Lemma 4.1 to both ψ1 and ψ2. For ψ1 we apply the lemma with τ = 0, C1 = 1,
and C2 = 1 to obtain the bound

ψ1(t, x + Y1(t)) ≤ C3u(x, πY1(t)ω, γ′)e−βtE(t, 0, ω, γ, γ′).
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By Proposition 4.1, the quantity

ξ(ω) = sup
t≥0

e−βt/2E(t, 0, ω, γ, γ′) (5.76)

is finite with probability one. Therefore, for all t > 0 and x ≥ 0,

ψ1(t, x + Y1(t), ω) ≤ C3u(x, πY1(t)ω, γ′)e−βt/2ξ(ω) ≤ C3e
−δxu(x, πY1(t)ω, γ)e−βt/2ξ(ω).

The last bound follows from Lemma 2.7 with δ =
√

γ′ − gmin −√
γ − gmin.

Now we bound ψ2. For each τ ∈ [0, t), let ρ(s, x, ω; τ) : [τ,∞) × [0,∞) × Ω → R solve

ρs = ρxx + g(x, ω)ρ, x > 0, s ≥ τ

ρ(s, 0) = 0, s ≥ τ

ρ(τ, x) = K(τ, x, ω), x > 0. (5.77)

Then ψ2 is given by the integral

ψ2(t, x, ω) =

∫ t

0
ρ(t, x, ω; τ) dτ. (5.78)

Since K(τ, x, ω) ≤ gmax min(1, ϕ2(τ, x, ω; γ)) and K(t, x, ω) ≤ gmaxϕ(t, x, ω; γ), we apply Lemma
4.1 to ρ (with C1 = gmax and C2 = gmax) and obtain:

ρ(t, x + Y1(t); τ) ≤ C3gmaxu(x, πY1(t), ω; γ′)e−β(t−τ)E(t, τ, ω, γ, γ′). (5.79)

Consequently, using Lemma 2.7 we see that

ψ2(t, x + Y1(t), ω) ≤ C3gmaxu(x, πY1(t), ω; γ′)
∫ t

0
e−β(t−τ)E(t, τ, ω, γ, γ′) dτ

≤ C3gmaxe−δxu(x, πY1(t), ω; γ)

∫ t

0
e−β(t−τ)E(t, τ, ω, γ, γ′) dτ (5.80)

holds for all x ≥ 0 and t ≥ 0, where

E(t, τ, ω, γ, γ′) = exp
(

−µ′(ht(ω; γ) − hτ (ω; γ)) + R(Y1(t), ω, γ′) − R(Y1(τ), ω, γ′)
)

.

Recall that µ′ refers to the constant µ(γ′).
Combining the estimates for ψ1 and ψ2 we conclude that for x > 0,

v(t, x + Y1(t), ω) = ϕ(t, x + Y1(t), ω; γ) − ψ(t, x + Y1(t), ω)

≥ ϕ(t, x + Y1(t), ω; γ) − C3e
−δxu(x, πY1(t)ω, γ)e−βt/2ξ(ω)

−C3gmaxe−δxu(x, πY1(t), ω; γ)

∫ t

0
e−β(t−τ)E(t, τ, ω, γ, γ′) dτ

= u(x, πY1(t)ω; γ)
(

1 − e−δxθt(ω)
)

= ϕ(t, x + Y1(t), ω; γ)
(

1 − e−δxθt(ω)
)

(5.81)

where

θt(ω) = C3e
−βt/2ξ(ω) + C3gmax

∫ t

0
e−β(t−τ)E(t, τ, ω, γ, γ′) dτ.
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Finally, the fact that limt→∞ P(θt(ω) ≤ eǫ
√

t) = 1 holds for any ǫ > 0 follows immediately from
Proposition 4.1 and the definition of θt(ω). ¤

Proof of Lemma 5.1:. Here is the strategy for proving Lemma 5.1. Lemma 5.2 implies that
if x̄ is sufficiently large, v(t, x̄ + Y1(t), ω) ≥ 1

2ϕ(t, x̄ + Y1(t), ω; γ) holds with high probability. So for
ℓ = 1

2ϕ(t, x̄ + Y1(t), ω; γ), we have a lower bound Xℓ(t) ≥ x̄ + Y1(t). If this level ℓ is not too small,
then v will be larger than 1/2 at this point x̄ + Y1(t) if we wait only a little longer. This would give
us a bound of the form X1/2(t+h) ≥ x̄+Y1(t). Choosing x̄ larger, if necessary, the latter is bounded
below by Y1/2(t). However, the necessary lag time h is random since it depends on ℓ, which depends
on the behavior of ϕ ahead of the point Y1(t).

With θt(ω) defined by Lemma 5.2, define

x̄ = x̄t(ω) = max
(

δ−1 log(2θt), Y1/2(t) − Y1(t)
)

and
ℓt(ω) = ϕ(t, x̄ + Y1(t), ω; γ)(1 − e−δx̄θt(ω)).

Observe that if δ−1 log(2θt) ≤ Y1/2(t)−Y1(t), then x̄ = Y1/2(t)−Y1(t) so that ℓt(ω) ≥ 1/4. Otherwise
ℓt may be small. By Lemma 5.2 and the definition of x̄,

Xℓt
(t) ≥ x̄ + Y1(t) ≥ Y1/2(t). (5.82)

So, we have a bound on the position of the ℓt-level set of v in terms of Y1/2(t). Since v(t, x̄+Y1(t), ω) ≥
ℓt, the Harnack inequality implies that there is a constant κ > 0 such that

v(t + 1, x, ω) ≥ κℓt(ω), ∀x ∈ [x̄ + Y1(t) − 1, x̄ + Y1(t) + 1].

This constant may be chosen independently of ω and t. Now we wish to bound the first time s ≥ t
at which v(s, x̄ + Y1(t), ω) ≥ 1/2. To this end, define η(s, x) which satisfies

ηs = ηxx + f1/2η x ∈ R, s > 0

with η(0, x) = 1 for |x| ≤ 1 and η(0, x) = 0 for |x| > 1. Here we choose f1/2 = 1
2f(1/2) so that

f(v) = gminv(1 − v) ≥ f1/2v for v ∈ [0, 1/2]. The maximum principle implies that

v(t + 1 + s, x, ω) ≥ κℓt(ω)η (s, x − (x̄ + Y1(t)))

holds for x ∈ R and s ≥ 0 as long as κℓt(ω)η (s, x − (x̄ + Y1(t))) ≤ 1/2 (before this time occurs,
(s, x) 7→ κℓtη(s, x) is a subsolution of the nonlinear equation). By symmetry, η has a global maximum
at x = 0. Therefore, if we define the function T : (0, 1) → R by

T (ℓ) = inf{s ≥ 0 | η(s, 0) ≥ 1/(2κℓ)},

we have v(t + 1 + s, x̄ + Y1(t), ω) ≥ 1/2 for all s ≥ T (ℓt(ω)). So, for all h ≥ 1 + T (ℓt(ω)), we have

X1/2(t + h, ω) ≥ x̄ + Y1(t) ≥ Y1/2(t).

We now have shown that

P

(

X1/2(t + ǫ
√

t, ω) ≥ Y1/2(t)(ω)
)

≥ P

(

T (ℓt(ω)) ≤ ǫ
√

t − 1
)

.

24



Therefore, to finish the proof we must bound the distribution of T (ℓt(ω)). It is not difficult to show
that η grows exponentially so that for any ℓ > 0, T (ℓ) ≤ k1 + k2|log(ℓ)| for some constants k1, k2

depending only on κ and f1/2. Therefore,

P

(

X1/2(t + ǫ
√

t, ω) ≤ Y1/2(t)(ω)
)

≤ P

(

ℓt(ω) ≤ exp(−ǫ
√

t/k2 − (1 + k1)/k2)
)

.

Lemma 5.1 now follows immediately from Lemma 5.3 below, which shows that the level ℓt cannot
vanish too quickly as t → ∞. ¤

Lemma 5.3 With ℓt(ω) defined as above,

lim
t→∞

P

(

ℓt(ω) ≤ exp(−ǫ
√

t)
)

= 0

holds for any ǫ > 0.

Proof: By definition,

ℓt(ω) = ϕ(t, x̄ + Y1(t), ω; γ)(1 − e−δx̄θt(ω)) = u(x̄, πY1(t)ω; γ)(1 − e−δx̄θt(ω))

≥ 1

2
u(x̄, πY1(t)ω; γ) (5.83)

with x̄ = x̄t(ω) = max
(

δ−1 log(2θt), Y1/2(t) − Y1(t)
)

. If Y1/2(t) − Y1(t) ≥ δ−1 log(2θt), then x̄ =
Y1/2(t) − Y1(t) so that ℓt(ω) ≥ 1/2ϕ(t, Y1/2(t), ω; γ) = 1/4. So, it suffices to show that

lim
t→∞

P

(

{ω | u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ǫ
√

t), θt(ω) ≥ 1/2}
)

= 0 (5.84)

holds. For ǫ ∈ (0, 1), u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ǫ
√

t) holds if and only if

µδ−1 log(2θt) − R
(

δ−1 log(2θt), πY1(t)ω; γ
)

> ǫ
√

t.

On the other hand, from the bounds (2.22) and (2.23) on u, we know that there is a constant M
such that |R(x, ω; γ)| ≤ M(x + 1) holds with probability one. Therefore, if θt ≥ 1/2,

µδ−1 log(2θt) − R
(

δ−1 log(2θt), πY1(t)ω; γ
)

≤ (µ + M)δ−1 log(2θt) + M < ǫ
√

t

holds for t sufficiently large, if θ ≤ 1
2 exp(ǫ

√
t/p) with p = 2(µ + M)δ−1. Therefore, by (5.73),

lim
t→∞

P

(

{ω | u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ǫ
√

t), θt(ω) ≥ 1/2}
)

≤ lim
t→∞

P

(

θt(ω) ≥ 1

2
exp(ǫ

√
t/p)

)

= 0.

¤

Remark 5.1 Let us point out that if the statement

P

(

lim inf
t→∞

X1/2(t + ǫ
√

t, ω) − Y1/2(t)(ω) ≥ 0
)

= 1, (5.85)

holds (which is stronger than Lemma 5.1), then tightness of the renormalized process (X(nt) −
cnt)/

√
n would follow from that of Zn(t, ω; γ). Thus, we would have weak convergence of the process

(X(nt) − cnt)/(µ−1c
√

n) to Brownian motion as n → ∞. The main issue is whether the estimate
(4.58) can be improved to the statement that, almost surely,

∫ t

0
e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ = o(eǫ

√
t), as t → ∞.
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