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1 Introduction

Reaction-diffusion front propagation in incompressible space-time random
flows is a fundamental subject in premixed turbulent combustion [6, 34, 28,
20, 32]. One challenging mathematical problem is to establish the propaga-
tion velocity of the front (large time asymptotic spreading rate) using the
governing partial differential equations. Another mathematical problem is
to characterize the propagation velocity in terms of flow statistics. Such a
velocity is called the turbulent flame speed in combustion [28], and it is an
upscaled quantity that depends on statistics of the random flows in a highly
nontrivial manner. Due to the notorious closure problem in turbulence, the
turbulent front speed has been approximated by ad hoc and formal proce-
dures in combustion literature, such as various closures and renormalization
group methods [27, 34, 7]. However, these methods are difficult to justify
mathematically.

A pleasant surprise is that fronts governed by the Kolmogorov-Petrovsky-
Piskunov (KPP) nonlinearity are in some sense solvable, and the front speeds
have a well-defined variational characterization in the large time limit. This
important mathematical property of KPP fronts has been analyzed for spe-
cial temporally random flows (time random shear flows) [20, 24, 33] and spa-
tially random environments [12, 10, 19, 29]. There have been several studies
of KPP fronts in periodic flows, for example see [10, 4, 21, 11, 8, 3, 26].

In this paper, we study KPP fronts propagating through space-time
random incompressible flows. The flows can be unbounded in time, as for
a Gaussian process. We establish the almost sure existence of propagating
fronts which evolve from compactly supported initial data, and we derive
a variational characterization for the front speeds. Using this characteriza-
tion, we derive some estimates of the fronts speed. One can also use this
characterization to numerically approximate the front speed, as presented
separately in [25].

The governing equation for KPP reactive fronts is the reaction-diffusion-
advection equation:

∂tu = ∆u+ V (x, t, ω̂) · ∇u+ f(u)
∆
= Lu+ f(u), (1.1)

with smooth, compactly supported, non-negative initial data u(x, 0, ω̂) =
u0(x), 0 ≤ u0 ≤ 1. The reaction function f(u) is nonlinear and satisfies:
f ∈ C1([0, 1]), f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1), and f(u) ≤ uf ′(0).
For example, f(u) = u(1 − u). The value u = 1 corresponds to the hot or
burned state in the combustion model, while u = 0 corresponds to the cold
or unburned state, which is unstable.
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The vector field V (x, t, ω̂) is defined over a probability space (Ω̂, F̂ , P̂ ).
We assume that:
(1) V is stationary with respect to shifts in x and t: there is a group of
measure-preserving transformations τ(x,t) : Ω̂ → Ω̂ such that V (x + h, t +

r, ω̂) = V (x, t, τ(h,r)ω̂), and τ acts ergodically on Ω̂.
(2) V is locally Hölder continuous, almost surely, in the sense that for each
T > 0 there is α = α(ω̂, T ) such that

‖V (·, ·, ω̂)‖Cα(Rd×[0,T ]) <∞ (1.2)

holds for almost every ω̂ ∈ Ω̂.
(3) V is divergence free, ∇·V = 0, in the sense of distribution, almost surely
with respect to P̂ ;
(4) V satisfies the moment condition:

V̄2
∆
= EP̂






sup

t∈[0,1]

x∈R
d

|V (x, t)|2






<∞. (1.3)

The condition (4) means that V (x, t, ω̂) is uniformly bounded in x for
each fixed t and ω̂. However, we do not require that V (x, t, ·) ∈ L∞(Ω̂), so
that V may become unbounded as t→ ∞. The Hölder regularity condition
(2) is satisfied by turbulent flows [20, 32] and is a physical assumption for
turbulent combustion problems [28, 27, 32].

For almost every ω̂, there exists a unique classical solution satisfying
(1.1). Our main result is the following theorem regarding the almost-sure
asymptotic behavior of the solution u(x, t, ω̂) as t→ ∞:

Theorem 1.1 There is a convex open set G ⊂ Rd and a set of full measure
Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, such that the following limits hold for all ω̂ ∈ Ω̂0:

lim
t→∞

sup
c∈F

u(ct, t) = 0 (1.4)

for any closed set F ⊂ Rd \ Ḡ, and

lim
t→∞

inf
c∈K

u(ct, t) = 1 (1.5)

for any compact set K ⊂ G.
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Thus, the set {ct ∈ Rd| c ∈ ∂G}, which is deterministic, represents the
spreading interface in an asymptotic sense, made precise by (1.4) and (1.5).
The set G may be characterized in the following way. Let φ(x, t, ω̂) ≥ 0 solve
the advection-diffusion equation ∂tφ = Lφ with initial condition φ(x, 0, ω̂) =
φ0(x) ≥ 0, where φ0(x) is smooth, deterministic, and compactly supported.

Theorem 1.2 The limit

µ(λ) = lim
t→∞

1

t
log

∫

Rd

eλ·xφ(x, t, ω̂) dx = lim
t→∞

1

t
log EP̂ [eλ·xφ(x, t, ω̂)] (1.6)

exists almost surely with respect to P̂ . Moreover, µ(λ) is a finite, convex
function of λ ∈ Rd.

Now the characterization of G is given by the following theorem:

Theorem 1.3 The set G described in Theorem 1.1 is given by

G = {c ∈ Rd| H(c) ≤ f ′(0)} (1.7)

where H(c) = supλ∈Rd(λ · c− µ(λ)) and µ(λ) is defined as in Theorem 1.2.
It follows that the asymptotic front speed c∗ in direction e ∈ Rd is given by
the variational formula:

c∗(e) = inf
λ·e>0

µ(λ) + f ′(0)
λ · e . (1.8)

For the KPP model, Theorem 1.1 and Theorem 1.3 address two open
problems in turbulent combustion [28]: the existence of a well-defined turbu-
lent flame speed and the precise analytical characterization of the turbulent
flame speed. In Theorem 1.2, one may normalize φ so that φ is the density
for a probability measure on Rd, for each fixed ω̂, and the theorem character-
izes the asymptotic behavior of the tails of the distribution (large deviations
from the mean behavior) almost surely with respect to the measure P̂ on
the velocity field. The function H in Theorem 1.3 is the rate function that
governs these large deviations.

The quantity µ(λ) has another characterization. Consider the function
ϕ∗(x, τ ; t, ω̂) which solves the terminal value problem (τ ∈ (0, t)):

∂τϕ
∗ + ∆ϕ∗ − (V (x, τ) − 2λ) · ∇ϕ∗ +

(

|λ|2 − λ · V (x, τ)
)

ϕ∗ = 0, (1.9)

with linear terminal data ϕ∗(x, t; t, ω̂) ≡ 1, x ∈ Rd. We will show that
ϕ∗(x, 0; t, ω̂) grows exponentially in t with a rate equal to µ(λ):
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Theorem 1.4 If ϕ∗(x, τ ; t, ω̂) solves (1.9) with terminal data ϕ∗(x, t, ω̂) ≡
1, then for any r > 0

lim
t→∞

sup
|x|≤rt

∣

∣

∣

∣

1

t
log ϕ∗(x, 0; t, ω̂) − µ(λ)

∣

∣

∣

∣

= 0 (1.10)

holds almost surely with respect to the measure P̂ .

The function µ(λ) is related to the effective Hamiltonian that arises
from the theory of homogenization of “viscous” Hamilton-Jacobi equations
in stationary ergodic media (see [16, 17, 19]). For V that depends only on x,
Lions and Souganidis [19] showed that the front is governed by an effective
Hamilton-Jacobi equation (see Section 9 of [19]). It turns out that µ(λ) in
(1.6) is equal to an effective Hamiltonian H(λ). To see this clearly, define the
function η∗(x, τ ; t, ω̂) = eλ·yϕ∗(x, τ ; t, ω̂) which satisfies ∂τη + L∗η∗ = 0 for
τ < t and terminal data η∗(x, t; t, ω̂) = eλ·y. Here L∗η∗ = ∆xη

∗ −∇ · (V η∗)
denotes the adjoint operator. For ε > 0 and T > 0, define

ζε(x, τ ;T, ω̂) = ε log η∗(ε−1x, ε−1τ ; ε−1T, ω̂).

Then ζε solves the Hamilton-Jacobi equation

∂τ ζ
ε + ε∆ζε + |∇ζε|2 − V

(x

ε
,
τ

ε
, ω̂
)

· ∇ζε = 0, τ ∈ [0, T ) (1.11)

with terminal data ζε(x, T ;T, ω̂) = λ ·x. For a velocity field V (x, τ, ω̂) which
is uniformly bounded in τ (i.e. V ∈ L∞(Ω̂;L∞(Rd))), the result of Kosygina
and Varadhan [17] implies that as ε → 0, the function ζ ε converges locally
uniformly to a function ζ0(x, τ ; t) which solves an effective Hamilton-Jacobi
equation ∂τ ζ

0(z, τ ; t) + H(∇ζ0) = 0 with the same terminal data. The
effective Hamiltonian H(λ) is a deterministic function. In particular, by
choosing T = 1, we see that

H(λ) = lim
ε→0

ζε(0, 0; 1, ω̂) = lim
ε→0

ε log η∗(0, 0; ε−1, ω̂) = µ(λ) (1.12)

holds almost surely with respect to P̂ . Theorem 1.4 extends this connection
to the case of velocity fields V (x, t) which are not uniformly bounded in t,
a case not covered by the results in [16], [17], and [19].

We develop a new Eulerian approach to prove the results. The first step
is to use the Harnack-type inequality of Krylov and Safonov to establish
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continuity estimates of the solution. One technical difficulty that arises is
that the constants appearing in the Harnack inequality may be arbitrarily
bad. However, we show that the constants are well-behaved “on average”.
We use this observation and the subadditive ergodic theorem to establish
almost sure behavior of the tails of the linearized equation. To apply this
to the solution of the nonlinear equation, we construct sub- and super-
solutions and use the comparison principle. Our proof uses only the Harnack
inequality and the comparison principle, and so applies readily to a large
class of operators L. In fact, one can see that all of the proofs may be
modified slightly to treat the case that the diffusion is also variable. For
example, a variant of Theorems 1.1 - 1.4 hold in the case that u is governed
by an equation of the form

∂tu = ∇ · (A(x, t, ω̂)∇u) + V (x, t, ω̂) · ∇u+ f(u) (1.13)

where A(x, t, ω̂) = Aij(x, t, ω̂) is random, positive-definite matrix function
and uniformly C1,α. For clarity we concentrate on the case that Aij is the
identity.

Some previous analysis [12, 10, 24] of KPP fronts have been based on
analysis of the associated Itô diffusion processes that play the role of char-
acteristics in the Feynman-Kac formula for solutions of the linearized equa-
tion. This Lagrangian approach is particularly useful when there is either
an explicit solution formula [24] or a hitting time characterization of the Itô
paths in one space dimension [12, 10]. In the present Eulerian approach,
quantities like µ(λ) and H have a similar Lagrangian interpretation, and we
utilize both the Eulerian and Lagrangian aspects to prove bounds on the
front speeds.

The paper is organized as follows. In section 2, we employ the Krylov-
Safonov-Harnack inequality and the subadditive ergodic theorem to obtain
the large deviation estimates for solutions to the linearized evolution and
to identify the function H(c). In section 3, we construct sub- and super-
solutions to show that the large deviation rate function H indeed defines
the propagating interfaces in the large time limit. The proofs in this section
are related to those in previous works [10, 24]; the new twist is to rely on
comparison functions instead of the associated Itô paths and the Feynman-
Kac formula. In section 4, we prove Theorems 1.2 - 1.4. We study the
Lyapunov exponent µ, and establish its connection to the function H. The
variational principle for the front speeds is given in terms of µ, which is
easier to calculate and estimate than H. In section 5, we prove upper and
lower bounds on the front speeds. A Lagrangian method and random change
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of measure are used in a Feynman-Kac representation to deduce an upper
bound of µ in terms of second order flows statistics. These bounds extend
those on time random shear flows by the authors [24]. The bounds show that
front speed enhancement in incompressible flows can grow at most linearly
in the root mean square amplitude of the flows, and may have much slower
growth due to rapid temporal decorrelations of flows. Conclusions are in
section 6, and acknowledgments are in section 7.

2 Preliminary Estimates

2.1 Harnack Inequality

To prove Theorem 1.1, we will make use of the Harnack-type inequal-
ity proved by Krylov-Safonov [18]. First, we define Q(θ,R) = {(x, t) ∈
Rn+1| maxi|xi| ≤ R, t ∈ (0, θR2)}, and we state a well-known result of
Krylov and Safonov:

Theorem 2.1 (Krylov-Safonov [18]) Let θ > 1, R ≤ 2, and 0 ≤ ξ(x, t) ≤
1. Suppose η ∈W 1,2

d+1(Q(θ,R)), η ≥ 0, and ∂tη−Lη+ξ(x, t)η = 0 in Q(θ,R).
Suppose ‖V ‖L∞(Q(θ,R)) ≤ 1. Then there exists a constant Ko > 0 depending
only on θ and the dimension such that

inf
|x|≤R/2

η(x, θR2) ≥ Koη(0, R
2).

Remark 2.1 Throughout this paper, the constant θ from Theorem 2.1 will
appear. Our arguments do not depend on the precise value of θ, and we will
assume this constant is always fixed at θ = 2.

We wish to apply this estimate to the function u(x, t, ω̂) and to the func-
tion ϕ(x, t, ω̂) defined by (1.9). As we have stated the theorem, the drift V
and the source function ξ must be bounded uniformly in the region of inter-
est. Although we are working with a drift for which individual realizations
are not uniformly bounded for all t > 0, we may obtain a Harnack-type
inequality for u by rescaling the solution and iteratively applying Theorem
2.1. The constants that appear in the resulting inequality may become ar-
bitrarily large since V may not be uniformly bounded in t. However, in the
next section we will show that the constants are well-behaved on average.

Suppose η(x, t) ≥ 0 solves

∂tη = ∆η + V (x, t) · ∇η + ξ(x, t)η

7
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for (x, t) ∈ Q(θ,R), while V and ξ are not necessarily globally bounded.
Then for (x, t) ∈ Q(θ,R) and h ≥ 0 to be chosen, the function η̄(x, t) =
e−htη(M−1x,M−2t) solves

∂tη̄(x, t) = ∆η̄(x, t) + VM (x, t) · ∇η̄(x, t) + ξM (x, t)η̄(x, t),

where VM (x, t) = M−1V (M−1x,M−2t) and ξM(x, t) = −h+M−2ξ(M−1x,M−2t).
If we choose the constant M to be

M = max(1, sup
(x,t)∈Q(θ,R)

|V (x, t)|, sup
(x,t)∈Q(θ,R)

√

2|ξ(x, t)|) (2.1)

and set h = 1/2, then for any (x, t) ∈ Q(θ,R), we also have (M−1x,M−2t) ∈
Q(θ,R) and |VM (x, t)| ≤ 1. Also, −1 ≤ ξM (x, t) ≤ 0. Thus, Theorem 2.1
applies to η̄:

inf
|x|≤R/2

η̄(x, θR2) ≥ Koη̄(0, R
2).

Therefore, for the original η we have

inf
|x|≤R/2M

η(x, θ
R2

M2
) ≥ Koe

R2(θ−1)/2 η(0,
R2

M2
) ≥ Koη(0,

R2

M2
). (2.2)

We now summarize these observations in a manner that will be conve-
nient for our analysis. For x ∈ Rd and t ≥ 1, let us define the cylinder
set

Q′(x, t, θ, R) =

{

(y, τ) ∈ Rn+1| max
i

|yi − xi| ≤ R, τ − t ∈ (−R2, (θ − 1)R2)

}

and the constant

M(x, t, R, θ) = max

(

1, sup
(y,τ)∈Q′(x,t,θ,R)

|V (y, τ)|, sup
(y,τ)∈Q′(x,t,θ,R)

√

2|ξ(y, τ)|
)

,

(2.3)
which is a local upper bound on |V | and |ξ| over the cylinder set Q′. Theorem
2.1 and the above scaling analysis imply the following:

Corollary 2.1 Let θ > 1, R ≤ 2. Let M(x, t, R, θ) be defined by (2.3). For
any M ≥M(x, t, R, θ), let ∆t = (θ − 1)R2/M2. Then

η(x+ ∆x, t+ ∆t) ≥ Koη(x, t)

whenever |∆x| ≤ R
2M , where Ko = Ko(θ) is the constant from Theorem 2.1.
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Now we will use this estimate iteratively to relate η(x1, t1) to η(x2, t2)
for two points x1, x2 and two different times 1 ≤ t1 < t2 − 1. We will derive
a lower bound on infy∈Bδ(x2) η(y, t2) in terms of supy∈Bδ(x1) η(y, t1), where

Bδ(x) denotes the ball of radius δ > 0 centered at x ∈ Rd.
Let c ∈ Rd be defined by c = (x2 − x1)/(t2 − t1), and let γ(x1, t1;x2, t2)

denote the set of points in Rd+1 formed by the line segment with endpoints
at (x1, t1) and (x2, t2). Define T ⊂ Rd+1 to be the set

T =
⋃

s∈[0,t2−t1]

(Bδ(x1 + cs) × (t1 + s)) . (2.4)

This is a tubular region with the line segment γ as the central axis and
radius δ. Now choose R ≤ 1 small enough so that

|c| + 2δ ≤ 1

2R(θ − 1)
.

Then define the constant

Mx1,t1;x2,t2 = sup
(x,t)∈T

M(x, t, R, θ) (2.5)

with M(x, t, R, θ) given by (2.3). This constant bounds |V (x, t, ω̂)| and
√

|ξ|
over a neighborhood of the tube T .

Next, using M = Mx1,t1;x2,t2 , let ∆t be defined as in Corollary 2.1:

∆t =
(θ − 1)R2

(Mx1,t1;x2,t2)
2
.

Let k be the ratio k = (t2 − t1)/∆t. By increasing M slightly, we may
assume that k is an integer:

k =
t2 − t1

∆t
=

(t2 − t1)(Mx1,t1;x2,t2)
2

(θ − 1)R2
. (2.6)

Now suppose that x′1 ∈ Bδ(x1) and x′2 ∈ Bδ(x2). Define yj ∈ Rd by

yj = x′1 +
x′2 − x′1
t2 − t1

(∆t)j, j = 0, 1, 2, . . . , k.

The set of points {(yj , t1 + j∆t)}k
j=1 is contained in the tube T . Moreover,

from our choice of R, we see that |yj+1 − yj| ≤ R
2M for each j. Therefore,

we can iteratively apply Corollary 2.1 k times to conclude that

η(yj+1, t1 + (j + 1)∆t) ≥ Koη(yj , t1 + j∆t), j = 0, . . . , k − 1,
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and thus

inf
y∈Bδ(x2)

η(y, t2) ≥ Kk
o sup

y∈Bδ(x1)
η(y, t1).

The constant Ko is the same constant from Corollary 2.1, depending only
on θ. The integer k, however, depends on x1, x2, t1, and t2 through (2.5)
and (2.6). By putting together the above analysis, we have the following
Lemma:

Lemma 2.1 Fix θ > 1. Let δ > 0, and x1, x2 ∈ Rd. Let t1, t2 satisfy
1 ≤ t1 < t2 − 1. Then

inf
x∈Bδ(x2)

η(x, t2) ≥ Kk
o sup

y∈Bδ(x1)
η(y, t1) (2.7)

where Ko is the constant from Theorem 2.1, depending only on θ, and k is
an integer bounded by

k ≤ 5θ2(t2 − t1)(Mx1 ,t1;x2,t2)
2

( |x2 − x1|
t2 − t1

+ 2δ

)2

.

Although the constant Ko is universal, the integer k and the constant
Mx1,t1;x2,t2 depend on the x1, t1, x2, t2 and on the realization of V . Where
V is large, these constants also become large. However, when applying
Lemma 2.1 we will use the stationarity and ergodicity of V to show that, on
the average, the constants are not too bad.

2.2 Continuity Estimates

In this section we derive a continuity estimate on the function log u(x, t)
that holds asymptotically as t → ∞. By the maximum principle, u > 0
for all (x, t), and we define ξ(x, t, ω̂) = f(u(x, t, ω̂))/u(x, t, ω̂). Therefore,
equation (1.1) may be written as

∂tu = ∆u+ V (x, t, ω̂) · ∇u+ ξ(x, t, ω̂)u (2.8)

where ξ(x, t, ·) ∈ L∞(Ω̂;L∞(Rd+1)) and ξ(x, t, ω̂) ∈ [0, f ′(0)], almost surely
with respect to P̂ . In fact, the regularity of u implies that ξ(x, t, ω̂) is locally
C1, almost surely. For the following estimates, however, we assume only that
ξ(·, ·, ω̂) is almost surely continuous and that

|ξ(x, t, ω̂)| ≤ C(1 + |V (x, t, ω̂)|) (2.9)

for some deterministic constant C, P̂ -almost surely, for all (x, t).

10



2.2 Continuity Estimates KPP fronts in space-time random advection

Proposition 2.1 Let u(x, t, ω̂) > 0 solve (2.8) such that ξ(x, t, ω̂) satis-
fies (2.9). There is a set of full measure Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, such that
the following holds: if γ(t) ≥ 0 is any nondecreasing function satisfying
lim supt→∞ γ(t)/t ≤ ε, then for any c ∈ Rd

lim inf
t→∞

1

t

(

log inf
|z|≤γ(t)

u(ct+ z, t) − log sup
y∈Bδ(c(t−γ(t))

u(y, t− γ(t))

)

≥ −C(1 + |c| + δ)2ε(1 + V̄2)

and

lim sup
t→∞

1

t

(

log sup
|z|≤γ(t)

u(ct+ z, t) − log inf
y∈Bδ(c(t+γ(t))

u(y, t+ γ(t))

)

≤ C(1 + |c| + δ)2ε(1 + V̄2)

for all ω̂ ∈ Ω̂0. Here, V̄2 is defined by (1.3) and C = C(θ) is a constant.

To prove this continuity estimate we will make use of the following esti-
mates on the growth of the vector field V as t→ ∞:

Lemma 2.2 Almost surely with respect to P̂ ,

lim
n→∞

1

n

n−1
∑

j=0

sup
t∈[j,j+1]

x∈R
d

|V (x, t, ω̂)|2 = EP̂






sup

t∈[0,1]
x∈R

d

|V (x, t, ω̂|2






= V̄2 <∞. (2.10)

Proof: Due to the moment bound (1.3), this follows from the ergodic the-
orem and the assumption that V is stationary and ergodic with respect to
shifts in x and t. �

Corollary 2.2 There is a set of full measure Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, such that

lim sup
n→∞

1

n

n−1
∑

j=kn

sup
t∈[j−1,j]

x∈R
d

|V |2 ≤ εV̄2 (2.11)

whenever ε ∈ [0, 1) and {kn}∞n=1 is a nondecreasing sequence of positive
integers satisfying kn ≤ n for all n and lim infn→∞ kn/n ≥ (1 − ε).
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Proof: This follows from Lemma 2.2 and the fact that the number of terms
in the sum grows more slowly than O(εn). Specifically,

1

n

n−1
∑

j=kn

sup
t∈[j−1,j]

x∈R
d

|V |2 =
1

n

n−1
∑

j=1

sup
t∈[j−1,j]

x∈R
d

|V |2 −
(

kn − 1

n

)(

1

kn − 1

) kn−1
∑

j=1

sup
t∈[j−1,j]

x∈R
d

|V |2

Now the result follows from Lemma 2.2 and the fact that lim infn→∞(kn −
1)/n ≥ (1 − ε).

�

Proof of Proposition 2.1: We first prove the lower bound by a chaining
argument. Let Ω̂0 ⊂ Ω̂ be the set described in Corollary 2.2 with P̂ (Ω̂0) = 1.
Fix c ∈ Rd and suppose that lim supt→∞ γ(t)/t ≤ ε < 1. Let zt ∈ Rd satisfy
|zt| ≤ γ(t). Without loss of generality, we assume that γ(t) takes values in
Z. For t sufficiently large, t − γ(t) > 1. Let t1 = t − γ(t), and x1 = ct1 =
ct− cγ(t). For j = 2, . . . , Nt = γ(t) define the points (xj , tj) ∈ Rd+1 by

tj = t1 + j

and

xj =

(

1 − j

γ(t)

)

x1 +
j

γ(t)
(zt + ct)

Notice that for Nt = γ(t), xN = zt + ct, and that (xj , tj) is a sequence
of equally spaced points in Rd+1 along the line segment connecting (ct1, t1)
to (zt + ct, t). Now we apply Lemma 2.1 for each pair of points (xj , tj),
(xj+1, tj+1). Notice that

|xj+1 − xj

tj+1 − tj
| = | zt

γ(t)
+ c| ≤ |c| + 1. (2.12)

By applying Lemma 2.1 iteratively, we find that

inf
y∈Bδ(zt+ct)

u(y, t) ≥ Kk(t)
o sup

y∈Bδ(x1)
u(y, t1) (2.13)

where k(t) =
∑Nt

j=1 kj and the numbers kj are random variables bounded by

kj ≤ 5θ2(Mj)
2

(

|xj+1 − xj

tj+1 − tj
| + 2δ

)2

≤ 5θ2(Mj)
2 (|c| + 1 + 2δ)2(2.14)

and the numbers Mj (also depending on ω̂) are

Mj = Mxj ,tj ;xj+1,tj+1
. (2.15)

12



2.2 Continuity Estimates KPP fronts in space-time random advection

Although the choice of points (xj , tj) depends on zt, the term k = k(t)
can be bounded, independently of the choice of zt since

(Mxj ,tj ;xj+1,tj+1
)2 ≤ C(1 + sup

t∈[tj−a,tj+1+a]

x∈R
d

|V (x, t, ω̂)|2) (2.16)

for some integer a ≤ 5θ2 (since R ≤ 1). The right hand side of (2.16) is now
independent of the choice of zt, and we can bound log(Kk

o ) by

log(Kk(t)
o ) ≥ −|log(Ko)|C1

Nt
∑

j=1

(Mxj ,tj ;xj+1,tj+1
)2 (2.17)

≥ −|log(Ko)|C1C2

n−1
∑

j=kn






1 + sup

t∈[j−1,j]
x∈R

d

|V (x, t, ω̂)|2







where n ≤ t + a + 1 and kn ≥ t − γ(t) − a − 1 are integers satisfying
lim infn→∞ kn/n ≥ 1 − ε and kn ≤ n. The constant C1 may be bounded
uniformly by C1 ≤ (5θ2(|c| + 1 + 2δ)2), and the constant C2 depends only
on the integer a (which depends only on θ). The right hand side of (2.17) is
independent of the choice of zt, as long as |zt| ≤ γ(t).

Inequalities (2.13) and (2.17) now imply that

1

t

(

log inf
|z|≤γ(t)

u(ct+ z, t) − log sup
y∈Bδ(ct1)

u(y, t1)

)

(2.18)

≥ −|log(Ko)|C1C2
1

n

n−1
∑

j=kn






1 + sup

t∈[j−1,j]

x∈R
d

|V (x, t, ω̂)|2







Now we apply Corollary 2.2 to the sum on the right hand side to conclude
that

1

t

(

log inf
|z|≤γ(t)

u(ct+ z, t) − log sup
y∈Bδ(ct1)

u(y, t1)

)

≥ C3ε(1 + V̄2)

holds for any ω̂ ∈ Ω̂0, where Ω̂0 has full measure. The constant C3 now
satisfies C3 ≤ C4(|c|+1+ δ)2 for some other constant C4 depending only on
θ. This proves the lower bound.

13



2.3 Large Deviation Estimates KPP fronts in space-time random advection

The upper bound can be proved by following the same argument, except
that Lemma 2.1 is applied forward in time along points (xj , tj) ∈ Rd+1

defined by

xj =

(

1 − j

γ(t)

)

(zt + ct) +
j

γ(t)
(ct+ cγ(t)), tj = t+ j (2.19)

for j = 1, . . . , Nt = γ(t). Thus, (x1, t1) = (zt + ct, t) and (xN , tN ) = (c(t +
γ(t)), t + γ(t)). The remaining details are the same as in the case of the
lower bound.

�

2.3 Large Deviation Estimates

For δ > 0, x ∈ Rd, and t ≥ s ≥ 0, let φ(y, t;x, s) = φ(y, t;x, s, ω̂) satisfy the
advection-diffusion equation

∂tφ = ∆yφ+ V · ∇φ (2.20)

for t > s with the initial condition

φ(y, s;x, s, ω̂) =

{

1 y ∈ Bδ(x)
0 otherwise

(2.21)

at time t = s, where δ > 0 is a fixed parameter. In this section we will derive
tail estimates on φ that we will later use to bound the solution u(x, t, ω̂).
The main result of this section is the following:

Theorem 2.2 There is a set of full measure Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, and a
convex function H(c) : Rd → [0,∞) such that the following holds. For any
open set G ⊂ Rd,

lim inf
t→∞

1

t
log inf

z∈tG
φ(z, t; 0, 0, ω̂) ≥ − inf

c∈Go
H(c) (2.22)

and for any closed set F ⊂ Rd,

lim sup
t→∞

1

t
log sup

z∈tF
φ(z, t; 0, 0, ω̂) ≤ − inf

c∈F̄
H(c) (2.23)

for all ω̂ ∈ Ω̂0.

14



2.3 Large Deviation Estimates KPP fronts in space-time random advection

The function H appearing here is the same H described in Theorem 1.3.
Later in Section 4 we will show that this function H is characterized as in
Theorems 1.2 and 1.3.

Remark 2.2 The function φ(x, t; 0, 0) depends on the parameter δ. How-
ever, using the stationarity of the field V (x, t) and the linearity of the equa-
tion for φ(x, t; 0, 0), one can show that the function H(c) is actually inde-
pendent of δ and that Theorem 2.2 holds for any such φ with non-negative,
compactly supported initial data.

The proof of Theorem 2.2 will rely on the following lemma:

Lemma 2.3 There is a set of full measure Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, and a
convex function H(c) : Rd → [0,∞) such that the following holds: If γ(t) ≥ 0
is any nondecreasing function satisfying lim supt→∞ γ(t)/t ≤ ε, then for any
c ∈ Qd

lim sup
t→∞

1

t
log sup

|z|≤γ(t)
φ(ct+ z, t; 0, 0) ≤ C(1+ |c|+ δ)2ε(1+ V̄2)−H(c) (2.24)

lim inf
t→∞

1

t
log inf

|z|≤γ(t)
φ(ct+z, t; 0, 0) ≥ −C(1+ |c|+δ)2ε(1+ V̄2)−H(c) (2.25)

for all ω̂ ∈ Ω̂0. Here, V̄ is defined by (1.3) and C = C(θ) is a constant.

Proof of Lemma 2.3: Define the family of functions

φ−(y, t;x, s) = inf
y′∈Bδ(y)

φ(y′, t;x, s). (2.26)

(For clarity we will suppress the dependence of φ and φ− on ω̂). By the
maximum principle, it is easy to see that for any x, y, z ∈ Rd and r < s < t,

φ−(z, t;x, r) ≥ φ−(y, s;x, r)φ−(z, t; y, s). (2.27)

For c ∈ Rd fixed, define the random process qm,n(ω̂) = log φ−(cm,m; cn, n, ω̂)
indexed by m,n ∈ Z, 0 ≤ m < n. We observe that qm,n is stationary and
superadditive:

qm,n ≥ qm,k + qk,n, ∀m < k < n

qm+r,n+r(ω̂) = qm,n(τ(cr,r)ω̂). (2.28)

We will show in Lemma 2.4,

E [|q0,n|] <∞ (2.29)

15



2.3 Large Deviation Estimates KPP fronts in space-time random advection

for all n. Therefore, from the ergodic theorem (e.g. [1]) it now follows that
the limit

−H(c)
∆
= lim

n→∞
1

n
q0,n = sup

n>0

1

n
q0,n ≤ 0 (2.30)

exists almost surely and is non-random. The convexity of H follows from
the subadditivity relationship (2.27), as in [24].

Lemma 2.4 For any c ∈ Rd, δ > 0, and any integer n ≥ 1, E [|qo,n|] <∞.

Proof of Lemma 2.4: We will iteratively apply Lemma 2.1 to the function
φ(y, t; 0, 0). First, we claim that

E

[

|log inf
y∈Bδ(c)

φ(y, 1; 0, 0, ω̂)|
]

<∞. (2.31)

(Here t = 1.) To prove this, consider the function ρ(λ, t, ω̂) defined by

ρ(λ, t, ω̂) = t|λ|2 +

∫ t

0
sup
x∈Rd

|λ · V (x, s, ω̂)| ds. (2.32)

It is easy to verify that the function η = e−λ·x+ρ(λ,t) satisfies ∂tη ≤ Lη
for all t > 0. So, for any x, λ ∈ Rd, the maximum principle implies that
φ(x, t; 0, 0) ≤ e|λ|δe−λ·x+ρ(λ,t). For t = 1, we may construct an upper bound
on φ(x, t; 0, 0) using multiple such λ with |λ| = 1. This implies that

∫

|x|≥R
φ(x, 1/2; 0, 0) dx ≤ Keρ̄(1/2)e−RRd−1

where ρ̄(1/2) = 1/2 +
∫ 1/2
0 supx|V (x, s)| ds. Therefore, there is a constant

K such that for R > K + 4ρ̄(1/2), the right hand side is bounded by
1/2

∫

φ0(x) dx > 0, where φ0(x) = φ(x, 0; 0, 0). From the incompressibil-
ity of V (x, t, ω̂), we see that the integral of φ is preserved for all t > 0.
Thus

∫

|x|≤R
φ(x, 1/2; 0, 0) dx ≥ 1

2

∫

φ0(x)dx

and therefore, sup|x|≤R φ(x, 1/2; 0, 0) ≥ CR−d 1
2

∫

φ0(x)dx. Lemma 2.1 now
implies that

inf
|x|≤R

φ(x, 1; 0, 0) ≥ Kk
oCR

−d 1

2

∫

φ0(x) (2.33)
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2.3 Large Deviation Estimates KPP fronts in space-time random advection

where k is bounded by

k ≤ C2






1 + sup

x∈R
d

t∈[0,3]

|V (x, t)|







2

. (2.34)

Since the right hand side of (2.34) is integrable with respect to P̂ , by as-
sumption (1.3), the lower bound (2.33) implies (2.31).

Next, for any integer j ≥ 1, define xj = cj and tj = j, and let

Mj = Mxj ,tj ;xj+1,tj+1
(2.35)

where Mxj ,tj ;xj+1,tj+1
is given by (2.5). Now if we apply Lemma 2.1 itera-

tively, once at each of the n − 1 intervals [j, j + 1], j = 1, . . . n − 1, we see
that

log inf
y∈Bδ(cn)

φ(y, n; 0, 0) ≥ log sup
y∈Bδ(c(1))

φ(y, 1; 0, 0) + log(Ko)
n
∑

j=1

kj (2.36)

where the numbers kj are bounded by

kj ≤ 5θ2(tj+1 − tj)(Mj)
2

(

|xj+1 − xj

tj+1 − tj
| + 2δ

)2

= 5θ2(Mj)
2 (|c| + 2δ)2 (tj+1 − tj)

The kj are the exponents from estimate (2.7) when we replace (x1, t1;x2, t2)
by (xj, tj ;xj+1, tj+1).

Since each Mj is square integrable by assumption (1.3), it follows that
the sum

∑n
j=1 kj is integrable. This implies that

E [|qo,n|] = E

[

|log inf
y∈Bδ(cn)

φ(y, n; 0, 0)|
]

<∞

if (2.31) holds. This proves Lemma 2.4. �

So far we have shown that for a given c ∈ Rd,

lim
n→∞

1

n
q0,n = −H(c) (2.37)

holds almost surely with respect to P̂ , as n runs through the integers. Using
(2.7), we see that for any t ≥ 1

inf
y∈Bδ(c(t+r))

r∈[1,2]

φ(y, t+ r; 0, 0) ≥ Kk(t)
o sup

y∈Bδ(ct)
φ(y, t; 0, 0) (2.38)
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2.3 Large Deviation Estimates KPP fronts in space-time random advection

for some number k(t) that can be bounded by k(t) ≤ 10(θ2)(Mct,t;c(t+2),(t+2))
2 (|c| + δ)2 .

However, this bound and (2.37) imply that both

lim
t→∞

1

t
log inf

y∈Bδ(ct)
φ(y, t; 0, 0) = −H(c), (2.39)

and

lim
t→∞

1

t
log sup

y∈Bδ(ct)
φ(y, t; 0, 0) = −H(c), (2.40)

holds along continuous time provided that lim supt→∞
k(t)

t = 0. Since the
random variable Mt = Mct,t;c(t+2),(t+2) is square integrable and stationary
with respect to shifts in t, the ergodic theorem implies that

lim
N→∞

1

N

N
∑

n=1

(Mn)2 = E
[

(M1)
2
]

<∞

Therefore,

lim sup
t→∞

k(t)

t
= lim

t→∞
(Mt)

2

t
= 0

almost surely.
This proves Lemma 2.3 for γ(t) ≡ δ and c ∈ Rd fixed. For the general

case with lim supt→∞ γ(t)/t ≤ ε and |zt| ≤ γ(t), we may prove (2.24) and
(2.25) by applying the continuity estimates in Proposition 2.1 to the function
φ(y, t; 0, 0) (in this case, ξ(x, t, ω̂) ≡ 0). From the lower bound in Proposition
2.1, we see that there is a set Ω̂o of full measure such that

lim inf
t→∞

1

t

(

log inf
|z|≤γ(t)

φ(ct+ z, t; 0, 0) − log sup
y∈Bδ(c(t−γ(t)))

φ(y, t− γ(t); 0, 0)

)

≥ −C(1 + |c| + δ)2ε(1 + V̄2) (2.41)

holds for all c ∈ Rd. From (2.40) and (2.41), it now follows that for any
fixed c ∈ Rd

lim inf
t→∞

1

t
log inf

|z|≤γ(t)
φ(ct+ z, t; 0, 0)

≥ −C(1 + |c| + δ)2ε(1 + V̄2)

+ lim inf
t→∞

(t− γ(t))

t

1

(t− γ(t))
log sup

y∈Bδ(c(t−γ(t)))
φ(y, t− γ(t); 0, 0)

≥ −C(1 + |c| + δ)2ε(1 + V̄2) −H(c) (2.42)

18



2.3 Large Deviation Estimates KPP fronts in space-time random advection

holds almost surely with respect to P̂ . (Note that since H(c) ≥ 0, we
have discarded the extra εH(c) term that comes from the factor γ(t)/t.)
Similarly, the upper bound in Proposition 2.1 and (2.39) imply that for any
fixed c ∈ Rd

lim sup
t→∞

1

t
log sup

|z|≤γ(t)
φ(ct+ z, t; 0, 0)

≤ C(1 + |c| + δ)2ε(1 + V̄2)

+ lim sup
t→∞

(t+ γ(t))

t

1

(t+ γ(t))
log inf

y∈Bδ(c(t+γ(t))
φ(y, t− γ(t); 0, 0)

≤ C(1 + |c| + δ)2ε(1 + V̄2) −H(c) (2.43)

The subset of Ω̂ on which this convergence holds depends on c. However,
by taking the countable union of all such subsets for c ∈ Qd, we obtain a set
Ω̂0, P̂ (Ω̂0) = 1, such that both (2.42) and (2.43) hold for all c ∈ Qd and all
ω̂ ∈ Ω̂0. This completes the proof of Lemma 2.3.

�

Proof of Theorem 2.2: We first prove the upper bound (2.23). Sup-
pose that F is compact. For any ε > 0, there is a finite set {cj}N

j=1 ⊂ Qd,

such that F ⊂ ⋃N
j=1Bε(cj). Therefore,

sup
z∈tF

φ(z, t; 0, 0) ≤ sup
j=1,...,N

sup
|z|≤εt

φ(cjt+ z, t; 0, 0)

Since N is finite, and F is compact, (2.24) now implies that

lim sup
t→∞

1

t
log sup

z∈tF
φ(z, t; 0, 0) ≤ lim sup

t→∞

1

t
log sup

j=1,...,N
sup
|z|≤εt

φ(cjt+ z, t; 0, 0)

= −H(c) +O(ε).

So, for compact F , we obtain the upper bound (2.23) by letting ε→ 0. The
case of general closed F follows from Lemma 4.1.

The proof of the lower bound (2.22) is similar to the preceding argument,
except that we invoke (2.25) instead of (2.24). This completes the proof of
Theorem 2.2.

�
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3 Proof of Theorem 1.1

3.1 The upper bound (1.4)

The upper bound (1.4) of Theorem 1.1 follows easily form Theorem 2.2. Let
δ > 0 be large enough so that the support of u0 is contained in the ball
Bδ(0). Then by the maximum principle,

u(y, t) ≤ etf ′(0)φ(y, t; 0, 0) = et(f ′(0)+ 1
t

log φ(y,t;0,0)). (3.1)

Let F be a closed set satisfying F ⊂ Rd \ Ḡ where G is the bounded, convex
set

G =
{

c ∈ Rd| H(c) ≤ f ′(0)
}

.

Now, by Theorem 2.2,

lim
t→∞

1

t
log sup

c∈F
φ(ct, t; 0, 0) < −f ′(0). (3.2)

Combining this with (3.1), we have limt→∞ supc∈F u(ct, t) = 0, which proves
(1.4). �

3.2 The lower bound (1.5)

To prove the lower bound (1.5) we will use the following lower bound on the
decay rate of the solution u(x, t, ω̂) beyond the front interface. This bound
is modeled after a similar estimate of Freidlin in the case of steady, spatially
periodic drift (see Lemma 3.3 of [10]), and it relies on the assumption that
f ′(0) > 0, which holds for the KPP-type nonlinearity.

Lemma 3.1 For any compact set K ⊂ {c ∈ Rd| H(c) − f ′(0) > 0},

lim inf
t→∞

1

t
log inf

c∈K
u(ct, t) ≥ −max

c∈K
(H(c) − f ′(0)) (3.3)

holds almost surely with respect to the measure P̂ .

We will postpone the proof of Lemma 3.1 and conclude the proof of the
lower bound (1.5). In the following step, we construct subsolutions and use
a comparison argument to show that u ↗ 1 behind the interface. For each
s ≥ 0, define the bounded convex set Γs ⊂ Rd by

Γs =
{

c ∈ Rd | H(c) ≤ s
}

. (3.4)
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

Let ε1 > 0 and set s1 = f ′(0) − ε1. For h ∈ (0, 1), we will show that

lim
t→∞

inf
c∈Γs1

u(ct, t) ≥ h (3.5)

since ε1 and h are arbitrarily chosen, this implies the lower bound (1.5).
Now we construct a subsolution to (2.8) to which we will compare u and

obtain (3.5). Let h ∈ (0, 1) be fixed. Let us define the set

Jh(t) = {x ∈ Rd | u(x, t) < h} (3.6)

for each t > 0. The boundary of Jh(t) (if there is a boundary) is the level set
defined by u(·, t) = h, and this level set must be bounded, by the established
upper bound on u. For ε2 > 0, let s2 = f ′(0)+ε2. Let J1(t) and J2(t) denote
the sets

J1(t) = Jh(t)
⋂

tΓs1
, J2(t) = Jh(t)

⋂

tΓs2
.

Notice that these sets are bounded at each t, and that J 1(t) ⊂ J2(t) for
all t whenever the sets are nonempty, since Γs1

⊂ Γs2
. Lemma 3.1 and the

maximum principle imply that we can take ε2 sufficiently small and t0 > 0
sufficiently large so that

inf
c∈Γs2

u(ct, t) ≥ e−t2ε2 (3.7)

for all t ≥ t0. Thus, infx∈J2(t) u(x, t) ≥ e−t2ε2 also holds for t ≥ t0.
Let us define the positive number ξh = infu∈(0,h] f(u)/u. Thus, ξh →

f ′(0) as h → 0. For given h ∈ (0, 1), t0, and a parameter κ ∈ (0, 1) to be
chosen, we will compare the solution u(x, t) with a function ψ(x, t; t0) of the
form

ψ(x, t; t0) = hφ(x, t; t0) − g0e
−ξh(t−t0)u(x, t). (3.8)

We will compare u(x, t) and ψ(x, t; t0) for x ∈ J2(t) and t ∈ [t0, (1 + κ)t0].
The family of functions φ(x, t; t0) will be chosen to satisfy the following
properties:

(i) ∂tφ ≤ Lφ for all x ∈ Rd and t > t0.

(ii) φ(x, t; t0) ≤ 1, for all (x, t).

(iii) φ(x, t; t0) ≤ 0 for all x ∈ t∂Γs2
and t ∈ [t0, (1 + κ)t0].

(iv)
lim

t0→∞
inf

c∈Γs1

φ(c(1 + κ)t0, (1 + κ)t0; t0) = 1. (3.9)
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

The constant g0 will be positive. We choose the constant ε2 (appearing in
(3.7)) sufficiently small so that 2ε2 < ξhκ. Thus, ε2 and Γs2

depend on the
choice of κ and h. Then we set g0 = he2ε2t0 .

A straightforward calculation using property (i) shows that ψ(x, t; t0)
satisfies

∂tψ ≤ Lψ + ξψ − ξhφ+ ξhg0e
−ξh(t−t0)

= Lψ + ξψ − hφ(ξ − ξh) − ξhψ (3.10)

for t ≥ t0. For any x ∈ Jh(t), ξ(x, t) ≥ ξh > 0, by definition of ξh. Also, since
u > 0 and g0 > 0, (3.8) implies that φ(x, t) > 0 wherever ψ(x, t) ≥ 0. So, if
x ∈ Jh(t) and ψ(x, t) ≥ 0, (3.10) implies that ψ must satisfy the inequality

∂tψ ≤ Lψ + ξψ (3.11)

at the point (x, t). So, the function ψ is a subsolution to the equation solved
by u in the region of interest.

The function ψ also takes values less than u(x, t) on the parabolic bound-
ary of the region of interest. If the boundary ∂Jh(t) is nonempty and
x ∈ ∂Jh(t), then u(x, t) = h ≥ hφ(x, t) ≥ ψ(x, t). Since g0 > 0, ψ(x, t; t0) ≤
0 < u(x, t) for all x ∈ t∂Γs2

and t > t0. Moreover, by the choice of g0 and
φ(x, t; t0) ≤ 1, ψ satisfies

ψ(x, t0; t0) ≤ u(x, t0), ∀x ∈ J2(t0), (3.12)

since u satisfies the lower bound (3.7).
Inequality (3.11) holds if x ∈ J 2(t) and ψ(x, t) ≥ 0. Since u > 0 and

∂tu = Lu+ ξu, the maximum principle implies that u(x, t) ≥ ψ(x, t; t0) for
all x ∈ J2(t) and t ∈ [t0, (1 + κ)t0]. From (3.9) and the definition of ψ we
see that

lim
t0→∞

inf
x∈J1(t)

ψ(x, (1 + κ)t0; t0) = h. (3.13)

Here we have used the fact that 2ε2 < ξhκ. Since u(x, t) ≥ h for all x ∈
(Jh(t))C , the limit (3.13) now implies that

lim
t0→∞

inf
c∈Γs1

u(c(1 + κ)t0, (1 + κ)t0) ≥ h (3.14)

This is equivalent to the desired bound (3.5).
Therefore, to complete the proof, we must construct the function φ(x, t; t0)

satisfying the desired properties. Set ε3 = (ε1)/2 and s3 = f ′(0)−ε3, so that
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

Γs1
⊂ Γs3

⊂ Γs2
. Since Γs1

, Γs2
and Γs3

are convex, we can choose finite
sets {cj}Nc

j=1 ⊂ Γs3
and λj ⊂ Rd such that both

Γs1
⊂

Nc
⋂

j=1

{c ∈ Rd | λj · (c− cj) > 0} (3.15)

and

dist



∂Γs2
,
⋂

j

{c ∈ Rd | λj · (c− cj) > 0}



 > 0 (3.16)

are satisfied. Notice that properties (3.15) and (3.16) depend on the orien-
tation of the λj but not on the magnitude of the λj. Also, notice that the
sets ∂Γs1

and ∂Γs2
are both bounded away from the set ∂Γs3

by a distance
that is independent of κ. The sets Γs1

and Γs3
(and the vectors {cj}, {λj})

do not depend on κ. The sets Γs1
, Γs2

, and Γs3
are depicted in Figure 1.

������

������
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����

	
PSfrag replacements

∂Γs1

∂Γs2

∂Γs3

Figure 1: The convex sets ∂Γs1
, ∂Γs2

, and ∂Γs3
. The points represent cj ,

j = 1, . . . Nc, and the lines represent the sets {c | λj · (c − cj) = 0}. The
region bounded by these line segments represents

⋂

j{c | λj · (c− cj) > 0}.

Now for fixed t0, let xj = cjt0, and consider the function φ(x, t; t0)
defined by

φ(x, t; t0) = 1 −
Nc
∑

j=1

e−λj ·(x−xj)−ρ̄(λj)t0+ρ(λj ,t) (3.17)

where the function ρ(λ, t, ω̂) is defined by (2.32), and

ρ̄(λj) = |λj |2 +E

[

sup
x∈Rd

|λj · V (x, 0, ω̂)|
]

. (3.18)
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

It is easy to verify that ∂tφ ≤ Lφ for all t > t0. Thus, property (i) holds.
Clearly property (ii) is satisfied, as well.

Now we verify properties (iii) and (iv) for φ(x, t; t0). Since the sets ∂Γs1

and ∂Γs2
are both bounded away from the set ∂Γs3

by a distance that is
independence of κ, it follows from (3.15) and (3.16) that for κ sufficiently
small there exists δ1 > 0 such that

inf
j∈{1,...,Nc}

inf
c∈Γs1

λj · (c−
cj

(1 − κ)
) > δ1 (3.19)

is satisfied and such that

inf
c∈Γs2

sup
j∈{1,...,Nc}

−λj · (c−
cj

(1 − κ)
) > δ1 (3.20)

is also satisfied.
From the ergodic theorem, we see that

lim
t→∞

1

t
ρ(λj , t) = ρ̄(λ)

holds almost surely with respect to P̂ . Define R(λ, t) = |ρ̄(λ) − 1
t ρ(λ, t)|, so

that |R(λ, t)| → 0 as t→ ∞, P̂ -almost surely.
Now by (3.19), we find that for each j = 1, . . . , Nc,

sup
c∈Γs1

1

(1 + κ)t0
log e−λj ·(c(1+κ)−cj)t0−ρ̄(λj )t0+ρ(λj ,(1+κ)t0)

≤
(

κ

1 + κ

)

ρ̄(λj) + sup
c∈Γs1

−
(

λj · (c−
cj

(1 + κ)
)

)

+ |Rj((1 + κ)t0)|

=

(

κ

1 + κ

)

ρ̄(λj) − inf
c∈Γs1

(

λj · (c−
cj

(1 + κ)
)

)

+ |Rj((1 + κ)t0)|

≤
(

κ

1 + κ

)

ρ̄(λj) − δ1 + |Rj((1 + κ)t0)|. (3.21)

Thus, by taking κ smaller, the right hand side of (3.21) can be made negative,
for all j, for t0 sufficiently large. Therefore, returning to (3.17) we see that

lim
t0→∞

inf
c∈Γs1

φ(c(1 + κ)t0, (1 + κ)t0; t0) = 1.

This establishes (3.9).
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

Similarly, using (3.20) one can establish property (iii), as follows. We
now find that

inf
β∈[0,κ]

inf
c∈Γs2

sup
j

1

(1 + β)t0
log e−λj ·(c(1+β)−cj)t0−ρ̄(λj )t0+ρ(λj ,(1+β)t0)

≥ inf
β∈[0,κ]

inf
c∈Γs2

sup
j

(

−λj · (c−
cj

(1 + β)
) + ρ̄(λj)

(

β

1 + β

))

− sup
β∈[0,κ]

sup
j
|Rj((1 + β)t0)|. (3.22)

Using (3.20) and the fact that

lim
t0→∞

sup
β∈[0,κ]

sup
j
|R(λj , (1 + β)t0)| = 0,

we may take κ sufficiently small and t0 sufficiently large to make the right
hand side of (3.22) strictly positive. Then, returning to (3.17) we see that

lim sup
t0→∞

sup
β∈[0,κ]

sup
c∈Γs1

φ(c(1 + β)t0, (1 + β)t0; t0) = −∞. (3.23)

This establishes property (iii). Having verified all the necessary properties
for the family of functions φ(x, t; t0), this completes the proof of the lower
bound (1.5).

�

Proof of Lemma 3.1: For c ∈ Rd, t − 1 ≥ s ≥ 0 given, and b > 0
to be chosen, we define an auxiliary quantity φ−

b (t; s, c) as follows. First,

let z0 = c (t−s)
2 . Now, we will fix b > c/2 sufficiently large so that the

ball Bb(t−s)(z0) contains both Bδ(cs) and Bδ(ct). For z ∈ Bb(t−s)(z0) and

τ ∈ (s, t], let φ̃(z, τ ; s, t, c) satisfy

∂τ φ̃ = ∆zφ̃+ V (z, τ) · ∇φ̃ (3.24)

with the initial condition

φ̃(z, s; s, t, c) =

{

1 z ∈ Bδ(cs)
0 otherwise

(3.25)

at time τ = s, and Dirichlet boundary condition φ̃(z, τ ; s, t, c) = 0 for z ∈
∂Bb(t−s)(z0). Now define φ−b (t; s, c) by

φ−b (t; s, c) = inf
y∈Bδ(ct)

φ̃(y, t; s, t, c), (3.26)
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

Notice that the only difference between φ−
b (t; s, c) and φ−(ct, t; cs, s) (de-

fined by (2.26)) is the Dirichlet boundary condition used in the definition of
φ−b (t; s, c).

We will now make use of the following fact, which we prove later:

Theorem 3.1 There is a set of full measure Ω̂0 ⊂ Ω̂, P̂ (Ω̂0) = 1, such that
the following holds. For any c ∈ Qd there is b > 0 sufficiently large so that
for any κ ∈ (0, 1],

lim inf
t→∞

1

κt
log φ−b (t; (1 − κ)t, c) = H(c) (3.27)

for all ω̂ ∈ Ω̂0. The function H(c) is the same as in Theorem 2.2 and
Lemma 2.3.

Now we finish the proof Lemma 3.1. Pick c ∈ K ∩ Qd. Thus, H(c) >
f ′(0). Now take b > 1+|c| sufficiently large, as required by Theorem 3.1. The
upper bound (1.4) on u(x, t) implies that we may take κ ∈ (0, 1) sufficiently
small and t sufficiently large so that

ξ(x, s) ≥ ξh, ∀ x ∈ Bbκt((1 − κ

2
)ct), s ∈ [(1 − κ)t, t]. (3.28)

The maximum principle implies that

inf
z∈Bδ(ct)

u(z, t) ≥
(

eκtξhφ−b (t; (1 − κ)t, c)
)

inf
y∈Bδ(c(1−κ)t)

u(y, (1 − κ)t). (3.29)

We already know that

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) ≥ lim inf

t→∞
1

t
log inf

z∈Bδ(ct)
φ(z, t; 0, 0),

which is finite since it is bounded below by −H(c). Therefore, (3.29) and
Theorem 3.1 imply that

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) ≥ ξh + lim inf

t→∞
1

t
log φ−b (t; (1 − κ)t, c)

= ξh −H(c).

Since the left hand side is independent of h, we now let h → 0 so that
ξh → f ′(0). Therefore,

lim inf
t→∞

1

t
log inf

z∈Bδ(ct)
u(z, t) ≥ f ′(0) −H(c) (3.30)
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3.2 The lower bound (1.5) KPP fronts in space-time random advection

To finish the proof, we apply the continuity estimate of Proposition 2.1.
For γ(t) = εt, the lower bound of Proposition 2.1 implies that

lim inf
t→∞

1

t
log inf

|z|≤εt
u(ct+ z, t)

≥ lim inf
t→∞

1

t
log inf

y∈Bδ(c(1−ε)t
u(y, (1 − ε)t)

−C(1 + |c| + δ)2ε(1 + ‖ξ‖∞ + V̄2)

= f ′(0) −H(c) −O(ε) (3.31)

The last equality follows from (3.30).
Now we proceed as in the proof of Theorem 2.2. Since K is compact, we

can pick ε > 0 and a finite set {cj}N
j=1 ⊂ Qd, such that

K ⊂ K ′(ε)
∆
=

N
⋃

j=1

Bε(cj)

while ε is small enough so that H(c) < f ′(0) − ε/2 for all c ∈ K ′(ε). There-
fore,

inf
z∈tK

u(z, t) ≥ inf
j=1,...,N

inf
|z|≤εt

u(cjt+ z, t)

Since N is finite, and K is compact, (3.31) now implies the result (3.3). �

Proof of Theorem 3.1: The only difference between φ̃(z, τ ; s, t, c) and
φ(z, τ ; cs, s) (defined by (2.20)) is the Dirichlet boundary condition in the
definition of φ̃. Therefore, the maximum principle implies that for τ ∈
[s, t] and z ∈ Bb(z0) φ̃(z, τ ; s, t, c) ≤ φ(z, τ ; cs, s). For given s < t, let
π(z, τ ; s, t, c) be defined by

π(z, τ ; s, t, c) = φ(z, τ ; cs, s) − φ̃(z, τ ; s, t, c) (3.32)

for τ ∈ (s, t] and z ∈ Bb(z0), z0 = c (t−s)
2 . Then π(z, τ ; s, t, c) satisfies

∂τπ = Lπ with

π(z, s; s, t, c) = 0, ∀ z ∈ Bb(z0)

0 < π(z, τ ; s, t, c) < 1, ∀ z ∈ ∂Bb(z0), τ ∈ (s, t]. (3.33)

Now we choose s = (1 − κ)t, and we claim that

lim
b→∞

lim sup
t→∞

1

κt
log sup

z∈Bδ(ct)
π(z, t; (1 − κ)t, t, c) = −∞. (3.34)
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However, we already know that

lim inf
t→∞

1

κt
log inf

z∈Bδ(ct)
φ(z, t; c(1 − κ)t, (1 − κ)t) = −H(c) > −∞. (3.35)

Since π(z, τ ; (1−κ)t, t, c) > 0 for all t, the combination of (3.34), (3.35) and
the definition of π imply Theorem 3.1.

We prove the claim (3.34) for κ = 1. The proof in the case κ < 1 is
similar. We compare π(z, τ ; 0, t, c) with a function η(z, τ) of the form

η(z, τ) =

N
∑

j=1

e−λj ·(z−zj)+ρ(λj ,τ) (3.36)

where ρ(λj , τ) is defined by (3.17) (here, t0 = (1 − κ)t = 0). The function
η(z, τ) satisfies ∂τη ≥ Lη. Next, we choose b, xj and λj and use the maxi-
mum principle to show that η(z, τ) ≥ π(z, τ ; 0, t, c) for all τ > 0 whenever t
and b are sufficiently large. The constructed function η(z, τ) depends on t,
c, and b, but for clarity we suppress this dependence in the notation.

We choose b > 10(1 + |c|). By choosing zj in the set ∂Bbt/2(z0), we have
Bδ(ct) ⊂ Bbt/4(z0) so that

inf
j

inf
z∈Bδ(ct)

|z − zj |
t

≥ b/4. (3.37)

We choose the λj ∈ Rd independently of t so that |λj| = 1 and

inf
j

inf
z∈Bbt/4(z0)

λj ·
(z − zj)

|z − zj |
> Cb (3.38)

and

inf
z∈∂Bbt(z0)

inf
j
−λj ·

(z − zj)

|z − zj |
> Cb (3.39)

hold for all t > 1, for some constant C > 0.
Clearly η(z, τ) > 0 for all z ∈ Rd, τ ≥ 0. Moreover, for b sufficiently

large and t sufficiently large, η(z, τ) > 1 for all z ∈ ∂Bbt(z0). This follows
from (3.39) since

inf
z∈∂Bbt(z0)

inf
j
e−λj ·(z−zj)+ρ(λj ,τ) ≥ eCbt+ρ(λ,τ) ≥ eCbt. (3.40)

So, we can take t sufficiently large so that the right hand side of (3.40) is
greater than 1 for all τ ∈ [0, t].
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For any z ∈ Bδ(ct) ⊂ Bbt/4(z0), (3.38) implies that

1

t
log η(z, t) ≤ N max

j=1,...,N
−λj ·

(z − zj)

t
+
ρ(λj , t)

t

≤ N max
j=1,...,N

−Cb+
ρ(λj, t)

t

Since limt→∞ ρ(λj , t)/t = ρ̄(λj) is finite, this implies that

lim sup
b→∞

lim sup
t→∞

1

t
log sup

z∈Bδ(ct)
η(z, t) = −∞.

This implies the claim (3.34) since π(z, t) ≤ η(z, t) for z ∈ Bδ(ct). This
completes the proof of Theorem 3.1.

�

4 The Lyapunov Exponent

In this section we prove Theorem 1.2, Theorem 1.3, and Theorem 1.4. For
λ ∈ Rd, let ϕ = ϕλ be defined by (1.9) with ϕλ(x, 0) ≡ 1. If ηλ(x, t) =
e−λ·xϕλ(x, t) , then ηλ solves

∂t(ηλ) = ∆ηλ + V · ∇ηλ (4.1)

with initial data ηλ = e−λ·x. When the dependence of ηλ and ϕλ on λ is
clear from the context, we will just write η and ϕ respectively.

Lemma 4.1 For any c ∈ Rd,

φ(ct, t; 0, 0, ω̂) ≤ exp

(

−t(V̄t(ω̂) − |c| + δ/t)2

4

)

(4.2)

for all t > 0, where V̄t(ω̂) = 1
t

∫ t
0 supy∈Rd |V (y, s, ω̂)| ds and limt→∞ V̄t =

E[supx|V (x, 0, ω̂)|] almost surely.

Proof: By the maximum principle, φ(x, t; 0, 0) ≤ ηλ(x, t)e|λ|δ. Therefore,

φ(ct, t; 0, 0) ≤
(

ϕλ(ct, t)e−λ·ct+|λ|δ
)

(4.3)

By Grownwall’s inequality, it is easy to see that

sup
x∈Rd

ϕλ(x, t) ≤ exp

(

|λ|2t+

∫ t

0
sup
y∈Rd

|λ · V (y, s, ω̂)| ds
)

(4.4)
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so that by choosing λ = r c
|c| , we have

φ(ct, t; 0, 0) ≤ e−λ·ct+|λ|2t+
R t
0

sup
y∈Rd |λ·V (y,s,ω̂)| ds+|λ|δ

≤ et(r
2+r(V̄t−|c|+δ/t)) (4.5)

The result follows by optimizing (4.5) over r. �

Proof of Theorem 1.3: We have already established that (1.7) holds. It
remains to prove that H is characterized by

H(c) = sup
λ∈Rd

(c · λ− µ(λ)) . (4.6)

Let φ(x, t) = φ(x, t; 0, 0), and consider the family of probability measures Pt

on Rd (for fixed ω̂) defined by

Pt(A) =
1

Zt

∫

A
φ(ct, t) dc, (4.7)

where Zt is the normalizing constant Zt =
∫

Rd φ(ct, t) dc = 1
td

∫

Rd φ(x, 0) dx.

Using Theorem 2.2, one can show that (almost surely with respect to P̂ ) the
family of measures Pt satisfy a large deviation principle with rate function
H(c). Let F (c) = λ · c. Then using Lemma 4.1, one can show that

lim
L→∞

lim sup
t→∞

1

t
log

∫

F (c)≥L
etλ·c Pt(dc) = −∞.

Now, by Varadhan’s Theorem (see [30], Section 3) the limit

lim
t→∞

1

t
logEPt

[

etF (c)
]

= sup
c∈Rd

(F (c) −H(c)) (4.8)

holds. Hence,

lim
t→∞

1

t
log

∫

Rd

etλ·cφ(ct, t) dc = lim
t→∞

1

t
log

∫

Rd

eλ·xφ(x, t) dx

= sup
c∈Rd

(λ · c−H(c)) . (4.9)

The convexity and super-linearity of H(c) now imply that

H(c) = sup
λ∈Rd

(c · λ− µ(λ)) (4.10)
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where µ(λ) is defined by the almost sure limit

µ(λ) = lim
t→∞

1

t
log

∫

Rd

eλ·xφ(x, t) dx.

�

Proof of Theorem 1.4: Observe that the function ϕλ = ηλ(x, t)eλ·x and
the function φ(x, t)eλ·x solve the same equation (1.9) with different initial
data, since ηλ and φ solve the same equation.

Let η∗(y, s; t) solve the adjoint equation ∂sη
∗ + L∗η∗ = 0 for s ∈ (0, t)

with terminal data η∗(y, t; t) = eλ·y. Let ϕ∗
λ(y, s; t) = e−λ·yη∗λ(y, s; t). The

function ϕ∗(y, t; t) solves

∂sϕ
∗+∆yϕ

∗−(V (y, s)−2λ)·∇yϕ
∗+(|λ|2−λ·V (y, s)−∇·V )ϕ∗ = 0. (4.11)

for s ∈ (0, t) with terminal data ϕ∗(y, t; t) ≡ 1. Using the fact that η∗(x, t; t) =
eλ·x, the equations satisfied by φ and η∗, and integration by parts, we see
that for each t > 0,
∫

Rd

φ(x, t)eλ·x dx =

∫

Rd

φ(x, t)η∗λ(x, t; t) dx (4.12)

=

∫

Rd

φ(y, 0)η∗λ(y, 0; t) dy =

∫

Rd

φ0(y)ϕ
∗
λ(y, 0; t)eλ·y dy.

Since φ0(y) is compactly supported,

K1 inf
y∈Bδ(0)

ϕ∗
λ(y, 0; t) ≤

∫

Rd

φ0(y)ϕ
∗(y, 0; t)eλ·y dy ≤ K2 sup

y∈Bδ(0)
ϕ∗

λ(y, 0; t)

for some constants K1,K2. This implies that

lim sup
t→∞

1

t
log inf

y∈Bδ(0)
ϕ∗(y, 0; t) ≤ µ(λ) ≤ lim inf

t→∞
1

t
log sup

y∈Bδ(0)
ϕ∗(y, 0; t)

(4.13)
Then by applying Harnack estimates to the function ϕ∗

λ, as in Proposi-
tion 2.1, we can use (4.13) to show that

lim sup
t→∞

1

t
log inf

y∈Bδ(0)
ϕ∗(y, 0; t) = µ(λ) = lim inf

t→∞
1

t
log sup

y∈Bδ(0)
ϕ∗(y, 0; t)

This and the stationarity of V with respect to x implies that, for any x ∈ Rd,

lim
t→∞

sup
y∈Bδ(x)

∣

∣

∣

∣

1

t
log ϕ∗(y, 0; t) − µ(λ)

∣

∣

∣

∣

= 0. (4.14)
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holds almost surely with respect to P̂ . Finally, the convergence stated in
Theorem 1.4 follows from (4.14) by applying Harnack type estimates (as in
the proof of Lemma 2.3) to the function ϕ∗ and proceeding just as in the
proof of Theorem 2.2.

�

5 Bounds on Front Speeds

In this section, we prove lower and upper bounds of c∗ in terms of statistics
of V and the front speed c0 in the absence of advection. We define c0 to be
the front speed corresponding to V ≡ 0.

Proposition 5.1 Suppose V is divergence free and mean zero: E[V (j)] = 0
for j = 1, . . . , d. The front speed c∗ satisfies the upper bound:

(1) c∗(e) ≤ c0 + EP̂ [‖V ‖L∞
x

], implying at most linear growth in δ � 1 if V
is scaled according to V 7→ δ V .

If V (x, t) is uniformly bounded, then c∗ also satisfies the lower bound

(2) c∗(e) ≥ c0.

Proof: Consider the function ϕ∗(x, τ ; t, ω̂) which solves the terminal value
problem (1.9). The maximum principle implies that the function ϕ∗ is
bounded by

ϕ∗(x, 0; t, ω̂) ≤ eρ(t,λ,ω̂) = et|λ|
2+

R t
0

supx|λ·V (x,s)| ds (5.1)

Therefore,

µ(λ) = lim
t→∞

1

t
logϕ∗(x, 0; t) ≤ |λ|2 + lim

t→∞
1

t

∫ t

0
sup

x
|λ · V (x, s)| ds

= |λ|2 +E

[

sup
x
|λ · V (x, 0)|

]

≤ |λ|2 + |λ|E
[

sup
x
|·V (x, 0)|

]

(5.2)

Letting λe = λ · e, we have:

c∗(e) ≤ inf
λe>0

λ2
e + f ′(0) + λeEP̂ [‖V ‖L∞

x
]

λe
= c0 +EP̂ [‖V ‖L∞

x
]. (5.3)
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For (2), consider the function ζ(x, τ) = log ϕ∗(x, τ) − |λ|2(t − τ) which
satisfies

∂τ ζ + ∆ζ + |∇ζ|2 − (V (x, τ) − 2λ) · ∇ζ − λ · V (x, τ) = 0, (5.4)

with terminal data ζ(x, t) ≡ 0. For R > 0, let g(x) be a smooth cutoff
function satisfying 0 ≤ g(x) ≤ 1 for all x, g(x) = 0 for |x| > R, g(x) = 1 for
|x| ≤ R − 1, and ‖∇g‖∞ + ‖∆g‖∞ ≤ K. Multiplying by g and integrating
over Rd and [0, t] we have

0 ≤ 1

t|BR|

∫ t

0

∫

BR

ζ∆g dx dt+
1

t|BR|

∫ t

0

∫

BR

ζ(V − 2λ) · ∇g dx dt

+
1

t|BR|

∫ t

0

∫

BR

λ · V g dx dt+
1

t|BR|

∫

BR

ζ(x, 0)g dx. (5.5)

Since V is uniformly bounded, it is easy to see that 0 ≤ |ζ(x, τ ; t)| ≤
K3(t− τ) for some constant K3 sufficiently large. This and the fact that ∆g
is supported in the set R− 1 ≤ |x| ≤ R imply that

1

t|BR|

∫ t

0

∫

BR

|ζ||∆g| dx dt ≤ K1t|BR \ BR−1|
|BR|

≤ tK2

R
(5.6)

Similarly,

1

t|BR|

∫ t

0

∫

BR

|ζ||(V − 2λ)||∇g| dx dt ≤ K3t|BR \ BR−1|
2|BR|

≤ K4t

R
(5.7)

For ε > 0, let R = R(t) = 2K4t/ε, so that the right hand sides of (5.6)
and (5.7) are bounded by O(ε) for t sufficiently large. By Theorem 1.4,

lim
t→∞

∣

∣

∣

∣

1

t|BR|

∫

BR

ζ(x, 0)g dx− µ(λ) + λ2

∣

∣

∣

∣

= 0 (5.8)

Moreover, the ergodic theorem implies that

lim
t→∞

1

t|BR|

∫ t

0

∫

BR

λ · V g dx dt = E[λ · V ] = 0 (5.9)

Therefore (5.5) - (5.8) and our choice of R imply that µ(λ) ≥ |λ|2 − O(ε).
Letting ε→ 0 we have µ(λ) ≥ |λ|2 and

c∗(e) ≥ inf
λ·e>0

|λ2| + f ′(0)
λ · e = c0
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This proves (2). �

The above proposition extends similar bounds in the time random shear
flows [24] as well as bounds for deterministic, periodic flows. For example,
if the velocity field is periodic, mean-zero, and divergence-free, then it is
known that the KPP front speed can only be enhanced by the flow and that
the enhancement can be at most linear with respect to ‖V ‖∞ (see references
[4, 8]). Numerical computation of c∗ in randomly perturbed cellular flows
by the authors [25] suggest that c∗ ∼ O(δp) at large δ may occur for any
exponent p ∈ (0, 1), when V is scaled according to V 7→ δ V . So the above
bounds are optimal in time random incompressible flows. The other type of
bound on c∗ for δ V with Gaussian statistics in time is obtained in Theorem
5 of [24], namely c∗ ≤ c0

√

1 + δ2p1, where p1 is the integral of correlation
function. We give an extension of such bound for non-shear space time
random flows next.

Remark 5.1 The following computation is formal, but illustrative. A veloc-
ity field that is white-noise in time, could be incorporated rigorously through
a term of the form V · ∇u ◦ dW in the original equation (1.1), where ◦ de-
notes the Stratonovich integral. Although this scenario does not fall within
our assumptions on V given in the introduction, the following computation
illustrates the difficulty in estimating c∗ when the velocity V is correlated in
time.

Proposition 5.2 Suppose in that V has the form

V (x, t, ω̂) =
∑

k

Xk(x)Fk(t, ω̂) (5.10)

where {Xk(x)} are periodic or almost-periodic, divergence free fields and
{Fk} are white-noise processes in time, so that the covariance matrix func-
tion is:

Γij = Γij(x1, x2, t1−t2) = EP̂ [V (i)(x1, t1)V
(j)(x2, t2)] ≤ p1δ0(t1−t2)Aij(x1, x2),

where δ0 is the standard delta function centered at zero, p1 is a constant.
Then c∗ ≤ c0

√
1 + C2 p1, where C2 depends only on the dimension d and

f ′(0).

Proof: The Feynman-Kac formula for ϕ∗ of equation (1.9) gives:

ϕ∗(x, 0) = E[e−λ·
R t
0

V (Zλ,s) ds] e|λ|
2 t,
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where Zλ is the diffusion process obeying the Ito equation:

dZλ(s) = (V (Zλ, s) − 2λ) ds+
√

2 dW (s), s ∈ [0, t],

Zλ(0) = z, W (s) = {W i(s)}d
i=1 a d-dimensional Wiener process. Changing

measure by the Girsanov Theorem ([14], Theorem 5.1) yields the following
representation of ϕ∗:

E[exp{−λ
√

2·W (t)+
√

2
d
∑

i=1

∫ t

0
V (i)(Wz(r), r) dW

(i)(r)−1

2

∫ t

0
‖V (Wz(s), s)‖2 ds}],

(5.11)
where Wz(s) = z + W (s), E is expectation with respect to W . It follows
that:

ϕ∗ ≤ E[exp{−λ
√

2 ·W (t) +
√

2

d
∑

i=1

∫ t

0
V (i)(Wz(r), r) dW

(i)(r)}],

and

EP̂ϕ
∗ ≤ E[e−λ

√
2·W (t)EP̂ [exp{

√
2

d
∑

i=1

∫ t

0
V (i)(Wz(r), r) dW

(i)(r)}]].

(5.12)
Notice that inside the inner expectation (with Wz(r) fixed), the sum of

stochastic integrals is a linear combination of Gaussian variables. In other
words, the inner expectation is over a log-normal variable, and so:

EP̂ϕ
∗ ≤ E[exp{−λ

√
2·W (t)+

∫ t

0

∫ t

0

∑

ij

Γij(W (s),W (τ), s, τ) dW (i)(s) dW (j)(τ)}].

(5.13)
As V is white in time, e.g. Γij = Aij(x1, x2)p1δ0(t1 − t2), the integral in

(5.13) is bounded from above by p1 C1

∫ t
0 ‖dW (s)‖2. The right hand side

expectation of (5.13) is bounded from above by:

E[exp{
∫ t

0
p1C1 ‖dW (s)‖2 −

√
2λ · dW (s)]

=

N
∏

j=1

d
∏

l=1

E[exp{p1 C1 (dW (l)(s))2 −
√

2λ(l)dW (l)}], (5.14)

where dW (l) is the Wiener increment over interval of length t/N . We have
used independence of Wiener increments in each component and among
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components. The last expression of (5.14) can be calculated explicitly, and
equals upon taking the limit N → ∞:

exp{|λ|2t+ p1 dC1 t}.

It follows that:

µ = lim
t→∞

1

t
EP̂ log ϕ∗

≤ lim
t→∞

1

t
log EP̂ϕ

∗ ≤ |λ|2 + C1 d p1 (5.15)

or
c∗ ≤ 2

√

f ′(0) + C1 d p1 = c0
√

1 + C2 p1. (5.16)

�

Remark 5.2 If V is Gaussian but nonwhite in time, the p1δ0 in the upper
bound of the covariance matrix function is replaced by a nonnegative L1 func-
tion with integral equal to p1. The estimate of the right hand side expectation
of (5.13) will be more complicated. One may write the double integral into
discrete sums, and carry out a direct evaluation. It is interesting to establish
a similar result. Inequality (5.16) implies that rapid temporal decorrelation
can reduce speed enhancement, as known for temporally random shear flows
[24] among other time dependent flows in the literature [2, 5, 9, 15, 22].

6 Conclusions

A new Eulerian method is developed to prove the large time asymptotic
spreading of KPP reactive fronts in incompressible space-time random flows
in several space dimensions. The random flows are mean zero, stationary,
ergodic, and can be unbounded in time as long as the moment condition (1.3)
is satisfied. The flow field is locally Hölder continuous, which is the case for
turbulent flow fields [20, 32]. The large time front speed is almost surely
deterministic and obeys a variational principle in terms of the Legendre
dual of the large deviation rate function. This addresses the existence of
a turbulent flame speed for KPP fronts, a long standing open problem in
turbulent combustion [28].

A variational principle for the front speeds lead to analytical bounds that
reveal upper and lower limits of speed enhancement in incompressible flows.
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In future work, it will be interesting to further relax the moment condition
(1.3), so the flow field can be unbounded in space as well. Another open
question is to study non-KPP reactive fronts in random flows [23], and to
show that KPP front speeds qualitatively agree with non-KPP ones as seen
in many deterministic front problems [3, 4, 8, 13, 22, 31, 35].
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