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In this paper we present a hybrid mathematical model of the invasion of healthy tissue by a solid tumour.
In particular we consider early vascular growth, just after angiogenesis has occurred. We examine how
the geometry of the growing tumour is affected by tumour cell heterogeneity caused by genetic muta-
tions. As the tumour grows, mutations occur leading to a heterogeneous tumour cell population with
some cells having a greater ability to migrate, proliferate or degrade the surrounding tissue. All of these
cell properties are closely controlled by cell–cell and cell–matrix interactions and as such the physical
geometry of the whole tumour will be dependent on these individual cell interactions. The hybrid model
we develop focuses on four key variables implicated in the invasion process: tumour cells, host tissue
(extracellular matrix), matrix-degradative enzymes and oxygen. The model is considered to be hybrid
since the latter three variables are continuous (i.e. concentrations) and the tumour cells are discrete (i.e.
individuals). With this hybrid model we examine how individual-based cell interactions (with one an-
other and the matrix) can affect the tumour shape and discuss which of these interactions is perhaps most
crucial in influencing the tumour’s final structure.

1. Introduction

The development of a primary solid tumour (e.g. a carcinoma) begins with a single normal cell becoming
transformed as a result of mutations in certain key genes. This transformed cell differs from a normal
one in several ways, one of the most notable being its escape from the body’s homeostatic mechanisms,
leading to inappropriate proliferation. An individual tumour cell has the potential, over successive
divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and proliferation leads
to the development of an avascular tumour consisting of approximately 106 cells. Since the tumour is
dependent on diffusion as the only means of receiving nutrients and removing waste products, its growth
is limited. For any further development to occur the tumour must initiate angiogenesis—the recruitment
of blood vessels from a pre-existing vascular network. Once angiogenesis is complete, the perfused
vascular network can supply the tumour with the nutrients it needs to grow further. There is also now
the possibility of tumour cells finding their way into the circulatory system (via the vascular network)
and being deposited at distant sites in the body, resulting in metastases (secondary tumours). Clearly
angiogenesis, the process which results in the tumour having a vascular network, is a key process for
metastatic invasion.

Central to the invasive process are the molecules that facilitate interactions between cells and
between cells and the extracellular matrix (ECM), known as cell adhesion molecules. A common fea-
ture of cell adhesion molecules is their ability to function as a molecular bridge between an external
ligand and the cytoskeleton within the cell (Burridge & Chrzanowska-Wodnicka, 1996). Over the past
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few years, it has become clear that receptors that mediate cell adhesion do not just affect cell migra-
tion, since occupancy of cell-surface receptors results in the initiation of signal-transduction pathways
that regulate many aspects of cell function (Burridge & Chrzanowska-Wodnicka, 1996; Hynes, 1992),
including transcription, proliferation, differentiation, cytoskeletal organisation and receptor activation
(Clark & Brugge, 1995).

A crucial part of the invasive/metastatic process is the ability of the cancer cells to degrade the
surrounding tissue or ECM (Liotta et al., 1983; Stetler-Stevenson et al., 1993; Lawrence & Steeg,
1996). This extracellular material is a complex mixture of macromolecules (MM), some of which, like
the collagens, play a structural role and others, such as laminin, fibronectin and vitronectin, are important
for cell adhesion, spreading and motility. We note that all of these MM are bound within the tissue, i.e.
they are non-diffusible. The ECM can also sequester growth factors and itself be degraded to release
fragments which can have growth-promoting activity. Thus, while ECM may have to be physically
removed in order to allow a tumour to spread, its degradation may, in addition, have biological effects
on tumour cells.

A number of matrix-degradative enzymes (MDEs) such as the plasminogen activator (PA) sys-
tem and the large family of matrix metalloproteinases (MMPs) have been described (Matrisian, 1992;
Mignatti & Rifkin, 1993; Thorgeirsson et al., 1994) and both of these have been repeatedly implicated
in tumour invasion and metastasis. In addition to opening migratory pathways, MDEs can alter cell ad-
hesion properties regulated through several classes of cell-surface receptors. These receptors, including
cadherins, CD-44, integrins and receptors for fibronectin, laminin and vitronectin, negatively regulate
cell motility and growth through cell–cell and cell–matrix interactions (Stetler-Stevenson et al., 1993).
Therefore, proteolytic degradation of receptor and/or ECM components could release tumour cells from
these constraints. Recent studies have shown that CD-44 mediates the attachment of cells to various
MM (Radotra et al., 1994). In fact, invasion of human glioma cells has been inhibited by antibodies
against CD-44 (Koochekpour et al., 1995). It is therefore important for any model that considers tumour
invasion to include both cell–cell and cell–matrix interactions.

Tumour heterogeneity at the genetic level is well known. A mutation in the p53 gene, the so-called
‘Guardian of the Genome’, is widely considered as a precursor to much wider genetic variation (Lane,
1994). The p53 protein links three cellular functions: proliferation, death and DNA repair. In normal
cells, p53 blocks proliferation and enables damaged DNA to be repaired. If DNA repair is incomplete,
then apoptosis is initiated and the cell dies. Loss of p53 function (e.g. through mutation) allows for the
propagation of damaged DNA to daughter cells (Barnes et al., 1993; Lane, 1994). Whilst p53 mutations
do not occur in all tumours it has been estimated that on average 50% of all human tumours have p53
mutations, although, it depends very much upon the tissue in which the tumour originated, e.g. in lung
cancer the p53 mutation rate is 75%, whereas in breast cancer it is only 30% (Slee et al., 2004). It has
also been shown that in some cancers the incidence of p53 mutations increases with the stage of the
tumours progression (Boyle et al., 1993).

As a step towards the inclusion of true tumour heterogeneity we shall consider a tumour that has
phenotypic heterogeneity, with p53 being the only specific gene considered. Its effect is simply to
allow the genetic mutations to begin and of course to allow the tumour cell to survive. The tumour
cell phenotype will be defined here by the level of the cell’s aggressiveness, i.e. a combination of its
cell–cell adhesiveness, proliferation, degradation and migration rates (further details will be discussed
below).

Over the last 10 years or so, many mathematical models of tumour growth, both temporal and
spatio-temporal, have appeared in the research literature (see Chaplain, 1996, for a review of many of
these). Much of the experimental data that exist on the growth kinetics of avascular tumours have been
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incorporated into mathematical models using various growth laws such as Gompertzian growth, logistic
growth and exponential growth, to name but a few (see, e.g. Wheldon, 1986; Retsky et al., 1990;
Marusic et al., 1994, and references therein). Modelling of the important process of tumour-induced
angiogenesis and capillary network formation has also been undertaken (Chaplain, 1996; Anderson &
Chaplain, 1998). Deterministic reaction–diffusion equations have been used to model the spatial spread
of tumours both at an early stage in its growth (Sherratt & Nowak, 1992; Ward & King, 1999) and
at the later invasive stage (Orme & Chaplain, 1996; Gatenby & Gawlinski, 1996; Perumpanani et al.,
1996; Anderson et al., 2000). Typical solutions observed in all these models (Orme & Chaplain, 1996;
Gatenby & Gawlinski, 1996; Perumpanani et al., 1996; Byrne et al., 1999) appear as invading travelling
waves of cancer cells. An alternative framework is to adopt a continuum/solid mechanics approach or
a mechano-chemical modelling approach (Chaplain & Sleeman, 1993; Tracqui, 1995) and to consider
physical pressure and forces between cells and matrix. Whilst these models are able to capture the
tumour structure at the tissue level, they fail to describe the tumour at the cellular level and subsequently
the subcellular level. On the other hand, cellular automata models provide such a description and allow
a more realistic stochastic approach at both the cellular (Kimmel & Axelrod, 1991; Smolle & Stettner,
1993; Qi et al., 1993; Anderson & Pitcairn, 2003; Kansal et al., 2000; Dormann & Deutsch, 2002) and
subcellular levels (Düchting, 1990; Düchting et al., 1996).

The model presented in this paper is of a different type: we classify this as ‘hybrid’, since a contin-
uum deterministic model (based on a system of reaction–diffusion–chemotaxis equations) controls the
chemical/ECM dynamics and a discrete cellular automata-like model (based on a biased random-walk
model) controls the cell migration and interaction. Initially, we define a system of coupled non-linear
partial differential equations to model tumour invasion of surrounding tissue. We then use a discretised
form of the partial differential equation governing cell migration as the basis for the hybrid discrete-
continuum model. This then enables specific cell properties to be modelled at the level of the individual
cell, we shall consider proliferation, death, cell–cell adhesion, mutation and production/degradation at
the individual cell level. The crucial point of this technique is that it allows cells to be treated as dis-
crete individuals and the cell processes to be modelled at the level of the cell whilst allowing the the
chemicals/ECM to be treated as continuous. Certain cell processes, however, such as cell–cell adhesion,
would be difficult, if not impossible, to model at the continuum level. Even though the simulations
presented in this paper consider up to 160,000 individual cells, the results obtained are driven explicitly
by local interactions between cells and between cells and the ECM and could not be recovered from a
purely continuum model.

The aim of this paper is to examine the effects of tumour cell heterogeneity upon the overall spatial
structure of the tumour and to discuss the importance of the roles of cell–cell and cell–matrix interac-
tions. To ensure that the manner in which we model tumour cell mutation is not the controlling factor in
the resulting tumour heterogeneity, we consider two different mutation algorithms, (i) linear mutations
and (ii) random mutations. Further details will be discussed in later sections.

2. The PDE model of invasion

We will base our mathematical model on the growth of a generic solid tumour, which we will assume
has just been vascularised, i.e. a blood supply has been established. We choose to focus on four key
variables involved in tumour cell invasion, thereby producing a minimal model, namely tumour cell
density (denoted by n), MDE concentration (denoted by m), MM concentration (denoted by f ) and
oxygen concentration (denoted by c). Each of the four variables (n, m, f, c) is a function of the spatial
variable x and time t . Initially, we define a system of coupled non-linear partial differential equations to
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model tumour invasion of surrounding tissue and use these as the basis for the hybrid discrete-continuum
technique.

We will assume that the ECM consists of a mixture of MM (e.g. collagen, fibronectin, laminin and
vitronectin) only and not any other cells. Most of the MM of the ECM which are important for cell
adhesion, spreading and motility are fixed or bound to the surrounding tissue. As already discussed in
Section 1, MDEs are important at many stages of tumour growth, invasion and metastasis, and the man-
ner in which they interact with inhibitors, growth factors and tumour cells is very complex. However, it
is well known that the tumour cells produce MDEs which degrade the ECM locally. As well as making
space into which tumour cells may move by simple diffusion (random motility), we assume that this
also results in a gradient of these bound cell-adhesion molecules, such as fibronectin. Therefore, while
the ECM may constitute a barrier to normal cell movement, it also provides a substrate to which cells
may adhere and upon which they may move. Most mammalian cell types require at least some elements
of the ECM to be present for growth and survival and will indeed migrate up a gradient of bound (i.e.
non-diffusible) cell-adhesion molecules in culture in vitro (Carter, 1965; Quigley et al., 1983; Lacovara
et al., 1984; McCarthy & Furcht, 1984; Klominek et al., 1993; Lawrence & Steeg, 1996).

By definition, haptotaxis is the directed migratory response of cells to gradients of fixed or bound
chemicals (i.e. non-diffusible chemicals). While it has not yet been explicitly demonstrated that hapto-
taxis occurs in an in vivo situation, given the structure of human tissue, it is not unreasonable to assume
that haptotaxis is a major component of directed movement in tumour cell invasion. Indeed, there has
been much recent effort to characterise such directed movement (Klominek et al., 1993; Lawrence &
Steeg, 1996; Debruyne et al., 2002). We therefore refer to this directed movement of tumour cells in our
model as haptotaxis, i.e. a response to gradients of bound MM such as fibronectin. To incorporate this
response in our mathematical model, we take the haptotactic flux to be Jhapto = χn∇ f , where χ > 0 is
the (constant) haptotactic coefficient.

As mentioned above, the only other contribution to tumour cell motility in our model is assumed to
be random motion. To describe the random motility of the tumour cells, we assume a flux of the form
Jrand = −Dn∇n, where Dn is the constant random motility coefficient.

We only model the tumour cell migration at this level as all other tumour cell processes, such as
proliferation, adhesion and death, will be considered at the single cell level within the hybrid discrete-
continuum model. The conservation equation for the tumour cell density n is therefore given by

∂n

∂t
+ ∇ · (Jrand + Jhapto) = 0,

and hence the partial differential equation governing tumour cell motion (in the absence of cell prolifer-
ation) is

∂n

∂t
= Dn∇2n − χ∇ · (n∇ f ). (1)

The ECM is known to contain many MM, including fibronectin, laminin and collagen, which can
be degraded by MDEs (Stetler-Stevenson et al., 1996; Chambers & Matrisian, 1997). We assume that
the MDEs degrade ECM upon contact and hence the degradation process is modelled by the following
simple equation:

∂ f

∂t
= −δm f, (2)

where δ is a positive constant.
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Active MDEs are produced (or activated) by the tumour cells, diffuse throughout the tissue and
undergo some form of decay (either passive or active). The equation governing the evolution of MDE
concentration is therefore given by:

∂m

∂t
= Dm∇2m + g(n, m) − h(n, m, f ), (3)

where Dm is a positive constant, the MDE diffusion coefficient, g is a function modelling the production
of active MDEs by the tumour cells and h is a function modelling the MDE decay. For simplicity we as-
sume that there is a linear relationship between the density of tumour cells and the level of active MDEs
in the surrounding tissues (regardless of the amount of enzyme precursors secreted and the presence of
endogenous inhibitors) and so these functions are taken to be g = µn (MDE production by the tumour
cells) and h = λm (natural decay), respectively.

As already discussed in Section 1, it is well known that solid tumours need oxygen to grow and
invade. Oxygen is assumed to diffuse into the MM, decay naturally and be consumed by the tumour.
For simplicity oxygen production is proportional to the MM density. This is a crude way of modelling
an angiogenic oxygen supply, see Anderson & Chaplain (1998) for a more appropriate way of modelling
the angiogenic network. The oxygen equation therefore has the form,

∂c

∂t
= Dc∇2c + β f − γ n − αc, (4)

where Dc, β, γ, α are positive constants representing the oxygen diffusion coefficient, production, up-
take and natural decay rates, respectively. Necrosis (cell death induced by lack of oxygen) will occur in
our model if the oxygen concentration falls below a critical level; however, since this is considered as
an individual-based process it will be discussed in more detail in the hybrid discrete-continuum model
section below.

The complete system of equations describing the interactions of the tumour cells, MM, MDEs and
oxygen as detailed in the previous paragraphs is

∂n

∂t
=

random motility︷ ︸︸ ︷
Dn∇2n −

haptotaxis︷ ︸︸ ︷
χ∇ · (n∇ f ) ,

∂ f

∂t
= −

degradation︷︸︸︷
δm f ,

∂m

∂t
=

diffusion︷ ︸︸ ︷
Dm∇2m +

production︷︸︸︷
µn −

decay︷︸︸︷
λm ,

∂c

∂t
=

diffusion︷ ︸︸ ︷
Dc∇2c +

production︷︸︸︷
β f −

uptake︷︸︸︷
γ n −

decay︷︸︸︷
αc ,

(5)

where Dn , Dm and Dc are the tumour cell, MDE and oxygen diffusion coefficients, respectively, χ is the
haptotaxis coefficient and δ, µ, λ, β, γ and α are positive constants. We should also note that cell–matrix
adhesion is modelled here by the use of haptotaxis in the cell equation, i.e. directed movement up
gradients of MM. Therefore, χ maybe considered as relating to the strength of the cell–matrix adhesion.

This system is considered to hold on some square spatial domain Ω (a region of tissue) with appropri-
ate initial conditions for each variable. We assume that the MM, oxygen, tumour cells and consequently
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the MDEs remain within the domain of tissue under consideration and therefore no-flux boundary con-
ditions are imposed on ∂Ω , the boundary of Ω .

2.1 Non-dimensionalisation and parameterisation

In order to use realistic parameter values, we first of all non-dimensionalise the equations in the standard
way. We rescale distance with an appropriate length scale L (e.g. the maximum invasion distance of
the cancer cells at this early stage of invasion, approximately 1 cm), time with τ (e.g. the average time
taken for mitosis to occur, approximately 8–24 h, Calabresi & Schein, 1993), tumour cell density with
n0, ECM density with f0, MDE concentration with m0 and oxygen concentration with c0 (where n0, f0,
m0 and c0 are appropriate reference variables). Therefore, setting

ñ = n

n0
, f̃ = f

f0
, m̃ = m

m0
, c̃ = c

c0
, x̃ = x

L
, t̃ = t

τ
,

in (5) and dropping the tildes for notational convenience, we obtain the scaled system of equations:

∂n

∂t
=

random motility︷ ︸︸ ︷
dn∇2n −

haptotaxis︷ ︸︸ ︷
ρ∇ · (n∇ f ) ,

∂ f

∂t
= −

degradation︷︸︸︷
ηm f ,

∂m

∂t
=

diffusion︷ ︸︸ ︷
dm∇2m +

production︷︸︸︷
κn −

decay︷︸︸︷
σm ,

∂c

∂t
=

diffusion︷ ︸︸ ︷
dc∇2c +

production︷︸︸︷
ν f −

uptake︷︸︸︷
ωn −

decay︷︸︸︷
φc ,

(6)

where dn = τ Dn/L2, ρ = τχ f0/L2, η = τm0δ, dm = τ Dm/L2, κ = τµn0/m0, σ = τλ, dc =
τ Dc/L2, ν = τ f0β/c0, ω = τn0γ/c0, φ = τα.

The cell cycle time can be highly variable (particularly the G1 phase) and really depends on the
specific tumour under consideration. As a rough guide we take τ = 16 h, halfway between 8–24 h
(Calabresi & Schein, 1993). The cell motility parameter Dn ∼ 10−9 cm2 s−1 was estimated from
available experimental evidence (Bray, 1992). Tumour cell diameters again will vary depending on the
type of tumour being considered but are in the range 10–100 µm (Melicow, 1982) with an approximate
volume of 10−9 to 3 × 10−8 cm3 (Folkman & Hochberg, 1973; Casciari et al., 1992). We will assume
that a tumour cell has the volume 1.5 × 10−8 cm3 and therefore take n0 = 6.7 × 107 cells cm−3.
The haptotactic parameter χ ∼ 2600 cm2 s−1 M−1 was estimated to be in line with that calculated
in Anderson et al. (2000) and the parameter f0 ∼ 10−8–10−11 M was taken from the experiments
of Terranova et al. (1985). We took Dm to be 10−9 cm2 s−1, which is perhaps small for a diffusing
chemical, but recent experimental evidence implies that it is in fact a combination of the MDE and MM,
which results in degradation of the MM and that this bound chemical diffuses very little (Hotary et al.,
2000). An in vivo estimate for the MDE concentration m0 is somewhat difficult to obtain since there is
currently no published value (that we are aware of) and we also know that certain inhibitors (e.g. tissue
inhibiting metalloproteases) are produced within the ECM which will affect the MDE concentration.
Plasma levels of specific MDEs have been measured (e.g. MMP-2, Zervoudaki et al., 2004) and are
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approximately 130 ng ml−1 with further increases observed in patients with cancer (Johansson et al.,
2000). How this relates to the MDE concentration within the ECM is not clear, we have therefore
left this parameter undefined. Estimates for the kinetic parameters µ, λ and δ were not available since
these are very difficult to obtain experimentally, we therefore use the values of Anderson et al. (2000).
Oxygen is known to diffuse through water at a rate of Dc = 10−5 cm2 s−1 and cells consume oxygen at a
rate of 6.25×10−17 M cells−1 s−1 (Casciari et al., 1992). The background oxygen concentration within
the tissue was somewhat difficult to estimate as this depends on how well the tissue is vascularised. If
we take the concentration of oxygen in the blood supplying the tumour/tissue to be 0.15 ml O2 per
ml of blood and since we know that 1 M of oxygen occupies 22400 ml then there is 0.15/22400 M O2
ml−1 = 6.7 × 10−6 M O2 ml−1, and since 1 ml = 1 cm3 then we calculate c0 = 6.7 × 10−6 M
O2 cm−3 (Sherwood, 2001). Clearly, this would be an overestimate, since not all of the domain will
be fully vascularised but this at least gives us a reference value.

3. The hybrid discrete-continuum model

The hybrid discrete-continuum technique (see Anderson et al., 1997 to Anderson & Pitcairn, 2003) will
be used to follow the path of an individual tumour cell and first of all involves discretising (using stand-
ard finite-difference methods) the system of partial differential equations (6). We then use the resulting
coefficients of the five-point finite-difference stencil to generate the probabilities of movement of an in-
dividual cell in response to its local milieu (see Appendix of Anderson et al., 2000, for the full discrete
system).

As an illustration of the technique we only consider the tumour cell equation,

nq+1
i, j = nq

i, j P0 + nq
i+1, j P1 + nq

i−1, j P2 + nq
i, j+1 P3 + nq

i, j−1 P4. (7)

The coefficient P0, which is proportional to the probability of no movement, has the form

P0 = 1 − 4kDn

h2
− kρ

h2

(
f q
i+1, j + f q

i−1, j − 4 f q
i, j + f q

i, j+1 + f q
i, j−1

)
, (8)

and the coefficients P1, P2, P3 and P4, which are proportional to the probabilities of moving left, right,
down and up, respectively, have the forms

P1 = kD

h2
− kρ

4h2
[ f q

i+1, j − f q
i−1, j ],

P2 = kD

h2
+ kρ

4h2
[ f q

i+1, j − f q
i−1, j ],

P3 = kD

h2
− kρ

4h2
[ f q

i, j+1 − f q
i, j−1],

P4 = kD

h2
+ kρ

4h2
[ f q

i, j+1 − f q
i, j−1],

(9)

where the subscripts specify the location on the grid and the superscripts the time steps, i.e. x = ih,
y = jh and t = qk, where i , j , k, q and h are positive parameters.

The central assumption in the hybrid discrete-continuum technique is that the five coefficients P0 to
P4 are proportional to the probabilities of the tumour cell being stationary (P0) or moving left (P1), right
(P2), down (P3) or up (P4). From the above probabilities we see that if there were no MM, the values
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of P1 to P4 would be equal, with P0 smaller (or larger, depending on the precise values chosen for the
space and time steps), i.e. there is no bias in any one direction and the tumour cell is less (more) likely
to be stationary—approximating an unbiased random walk. However, if there are gradients in the MM,
haptotaxis contributes to the migration process and the coefficients P0 to P4 will become biased towards
the direction of increased MM concentration. The motion of an individual cell is therefore governed by
its interactions with the matrix MM in its local environment. Of course, the motion will also be modified
by interactions with other tumour cells.

Note that using the coefficients of the discrete cell equation as probabilities of movement is only
one of many ways that movement probabilities could be defined, e.g. one could start from a reinforced
random-walk model and define transition probabilities that have a random component and ‘taxis’ com-
ponent which would depend on variations in ECM density. In fact, Othmer & Stevens (1997) derive a
reinforced random-walk model with transition probabilities that have both of these components, classed
as gradient models in their paper. They then derive a partial differential equation in the continuous limit
that consists of a diffusion term and a chemotaxis term. It is possible to show this for our model by defin-
ing transition probabilities of the form P1 to P4. The original equation governing the rate of change of
tumour cell density (6) can then be recovered. For more details on how this can be done and on the hybrid
discrete-continuum technique and its application see Anderson (2003) and Anderson & Pitcairn (2003).

Also, note that we could instead consider a nine-point finite-difference stencil to generate the prob-
abilities of movement, whilst this would give a cell an extra four possible movements along the diag-
onals, it would also greatly increase the computation time. There is no obvious advantage to having nine
movement probabilities as opposed to four in our simulations, with regards to migration, as the unbiased
movement term (e.g. kD

h2 ) insures that any grid effects (e.g. orthogonal bias) are minimal.

3.1 Individual-based processes

We shall now discuss in detail the processes each tumour cell will experience as it migrates through the
MM field, driven by the movement probabilities defined in the previous section.

3.1.1 Life cycle

Figure 1 shows a flowchart of a tumour cell’s ‘life cycle’ within the hybrid discrete-continuum simula-
tion. At each time step, a tumour cell will initially check if it can move with regards to cell–cell adhesion
restrictions (see the next paragraph for criteria), if it can, then the movement probabilities (above) are
calculated and the cell is moved. A check is then made if the cell should die (see Section 3.1.3 for
criteria) or not. If it does not die, its age is increased and a check to see if it has reached proliferation
age is performed. If it has not reached this age, then it starts the whole loop again. If proliferation age
has been reached, then a check is made to see if the criteria for proliferation are satisfied (see Section
3.1.4 for details). If proliferation criteria are not met, then the cell becomes quiescent. If they are sat-
isfied, then we check to see if this mitosis results in a p53 mutation. If a p53 mutation does not result,
then death occurs, but if it does, then further mutations are possible (see Section 3.1.5 for details). This
whole process is repeated at each time step of the simulation.

3.1.2 Cell–cell adhesion

To model cell–cell adhesion explicitly, we assume each cell has its own internal adhesion value (Ai , see
Table 1), i.e. the number of neighbours that it will preferentially adhere to. We therefore examine the
number of external neighbours each cell has (Ae) and if Ae � Ai , then the cell is allowed to migrate,
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FIG. 1. Flowchart of a tumour cell life cycle within the hybrid discrete-continuum simulation. Note, a full colour version of this
figure is available in the online publication.
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TABLE 1 Parameter values for each of the four different phenotypes. Colours are used
to identify the different phenotypes in the simulation results below

Phenotype Proliferation age M O2 uptake MDE production Ai Haptotaxis
I (orange) 16 h ω κ 3 ρ
II (green) 14 h 4/3ω 4/3κ 2 4/3ρ
III (cyan) 12 h 2ω 2κ 1 2ρ
IV (blue) 8 h 4ω 4κ 0 4ρ

otherwise it remains stationary. Whilst this is a somewhat crude way of modelling cell adhesion, it does
capture some features of cell–cell adhesion, e.g. certain cells are more likely to bind to others and in so
doing restrict their own ability to migrate.

3.1.3 Death

For the tumour cell to survive, it requires sufficient oxygen, since some tumour cells have been found to
survive in very poorly oxygenated environments, we make the assumption that the concentration has to
drop to 0.05 non-dimensional units (where 1 would be the initial concentration) for cell death to occur.
This assumption is also applied to quiescent tumour cells. The space that dead cells occupy becomes
available to new cells as soon as they die. Cell death can also occur due to apoptosis, if the cell does
not undergo a p53 mutation after the first proliferation and in undergoing mutation, we assume that each
cell has a probability Pp53 = 0.1 of a p53 mutation. Whilst this maybe very much an overestimate of
the true mutation probability, which is probably much smaller, once a p53 mutation occurs in a cell,
all subsequent daughter cells will have the same mutation. Therefore, by considering smaller values of
Pp53, we would be simply slowing down the initiation of the phenotype mutation process which once
established would produce very similar simulation end results to a simulation with Pp53 = 0.1. As with
all the mutations considered here, they can only occur as a result of proliferation.

3.1.4 Proliferation

In our model we assume that each individual cell has the capacity for proliferation and will produce two
daughter cells, provided: (i) the parent cell has reached maturity (M h, see Table 1) and (ii) there is
sufficient space surrounding the parent cell for the two new daughter cells to occupy. In order to satisfy
condition (ii), we assumed that one daughter cell replaces the parent cell and the other daughter cell will
move to any one of the parent cell’s four orthogonal neighbours that is empty. If more than one of the
neighbouring grid points is empty, then the new cell position is chosen randomly from these points. If no
empty neighbours exist, then the cell becomes quiescent and proliferation is delayed until space becomes
available. We therefore do not consider the possibility that cells may push neighbouring cells to create
free space in which to proliferate. Quiescent tumour cells are assumed to consume half the oxygen of
tumour cells. This is based on the observation that in tumour spheroids quiescent cells certainly do
consume less oxygen than proliferating cells, although since many other factors are involved, it is not
clear as to precisely how much less and could in fact be up to five times less (Freyer et al., 1984).

3.1.5 Linear mutation

Initially, all cells are assumed to have wild-type p53, i.e. non-mutated. After a p53 mutation occurs,
the genome becomes unstable and is then open to many more mutations. So after the p53 mutation has
occurred, the cell now has predefined phenotypic traits that describe its behaviour. For simplicity we
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consider four phenotypes, each progressively more aggressive (in terms of invasiveness) than before.
Table 1 shows the different values each phenotype takes and clearly type IV is the most aggressive,
having the shortest proliferation age, consuming the most O2, producing the most MDE, having the
largest haptotaxis coefficient and requiring no neighbours for migration. We have chosen to correlate tu-
mour cell aggressiveness with proliferation age, O2 uptake, MDE production, cell adhesion coefficient
and haptotaxis coefficient. We assume that O2 uptake, MDE production and haptotaxis coefficients all
increase and the proliferation age and adhesion coefficients decrease as the tumour cell phenotype
becomes increasingly aggressive. This assumption is based on mixture of fact and logic, as more ag-
gressive cells are more likely to be less adhesive to one another, be better migrators and have a shorter
proliferation age. Its seems logical to assume that they will also be better at degrading the ECM and
therefore produce more MDE and given all this increased activity they will consume more oxygen (cf.
random mutation model, Section 4). The phenotypes defined in Table 1 are just one possible set of
phenotypes, other sets could have been chosen and produced similar results (e.g. the random mutation
model, Section 4), the important feature is that they have different levels of aggressiveness. Following
the first p53 mutation, a cell is assigned the values of phenotype I (as defined in Table 1) and for each
subsequent proliferation, there is a small probability (Pmutat) of further mutations occurring which will
lead to phenotype II and so on in a linear fashion. All mutations are assumed to be irreversible.

3.1.6 Production/degradation/diffusion

Since we are modelling individual tumour cells, we must consider MDE production at the level of a sin-
gle cell. In the continuum model (6), we have MDE production as being proportional to the tumour cell
density. Now MDE is only produced at a grid point if a tumour cell is occupying that grid point. Since
we have no precise parameter estimates for this production rate, we take n = 1 in the discrete form of the
MDE equation when a tumour cell is occupying the current location and take n = 0 otherwise. Similarly
for O2 uptake, we take n = 1 (since ω is scaled as per cell) in the discrete form of the oxygen equation
when a cell is consuming oxygen at the current location and n = 0 otherwise. Since the tumour cells oc-
cupy physical space within the ECM, we should consider how this might impact upon oxygen diffusion.
It seems logical that oxygen diffusion will be reduced as the space occupied by the tumour increases,
this is consistent with tumour spheroid results, i.e. as the spheroid diameter increases, the necrotic re-
gion also increases. To model this at the individual level, we assume that oxygen diffusion decreases at
the grid point a tumour cell occupies, i.e. the oxygen diffusion rate at that grid point will be dccell < dc.

3.2 Simulation process for the hybrid discrete-continuum model

Each time step of the simulation process involves solving the discrete form of the system (6) numerically
to generate the five coefficients P0 to P4, (8) and (9). We then normalise these coefficients to obtain five
corresponding final probabilities of motion, where normalisation simply means division by the total of
the five coefficients. Probability ranges are then computed by summing the coefficients to produce five
ranges, R0 = 0 to P0 and Ri = ∑i−1

j=0 Pj to
∑i

j=0 Pj , where i = 1 to 4. We then generate a random
number between 0 and 1, and depending on the range which this number falls in, the current individual
tumour cell under consideration will remain stationary (R0) or move left (R1), right (R2), down (R3) or
up (R4). The larger a particular range, the greater the probability that the corresponding coefficient will
be selected. Each tumour cell is therefore restricted to move to one of its four orthogonal neighbouring
grid points or remain stationary at each time step.

All cells are given a unique identification number which is assigned as each new cell is produced
(or is assigned initially for the first 50 cells). Each time step of the simulation involves firstly updating
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all of the cells positions (via the identification number, i.e. the larger the identification number, the later
the update) then secondly updating the individual-based processes for all the cells, e.g. proliferation,
death and mutation. Therefore, cells are not updated simultaneously or in a left-to-right, top-to-bottom
manner but as per the identification number. For the migration part of the update, the identification
method gives preference to cells which have smaller identification values (since they get to move before
the others do) but since the cells are distributed all over the tumour this should not introduce any visible
bias. Once the cells have moved, the individual-based processes are updated and this is done again per
cell identification number but this time the cells update as soon as a process occurs, e.g. proliferation,
this should avoid any conflicts for space.

3.3 Linear mutation hybrid discrete-continuum model simulation results

The following simulations were carried out on a 400 × 400 grid, which is a discretisation of the unit
square, [0, 1] × [0, 1], with a space step of h = 0.0025 and a time step of k = 0.0005. Note that
with this choice of space step, each square of grid is approximately the same area as a tumour cell, i.e.
6.25 × 10−6 cm2 (or 1.56 × 10−8 cm2 as a volume, with cells of side 0.0025 cm). No-flux boundary
conditions were imposed on the square grid, restricting the tumour cells, MDE, MM and oxygen to
within the grid. Initially, 50 tumour cells are centred around (0.5, 0.5) with an assigned phenotype I,
a random age between 0–16 h, the MDE concentration is zero throughout the domain (m(x, y) = 0)
and the oxygen concentration is taken to be one (c(x, y) = 1). We consider the effects, upon tumour
invasion, of three different MM initial distributions: (i) homogeneous ( f (x, y) = 1), (ii) heterogeneous
(0 � f (x, y) � 1), with f (x, y) being generated from a combination of sin and cos functions of the x
and y directions and (iii) random (0 � f (x, y) � 1). For clarity we shall label the resulting tumour cell
distributions as (i) homogeneous tumour, (ii) heterogeneous tumour and (iii) random tumour. The non-
dimensional parameter values used in all the following simulations are dn = 0.0005, dm = 0.0005, dc =
0.5, dccell = 0.25, ρ = 0.01, η = 50, κ = 1, σ = 0, ν = 0.5, ω = 0.57 and φ = 0.025. We also take the
phenotype mutation probability to be Pmutat = 0.1. Other values were considered and produced similar
results but for shorter or longer times depending on whether the probability was larger or smaller.

Figure 2 shows the simulation results for each of the four variables for the the homogeneous initial
MM distribution at t = 200 time units. The tumour cell distribution shows a mainly dead central region
with a thin dispersed proliferating boundary. As might be expected, it is the most aggressive cells of
phenotype IV which have survived and continue to proliferate on the boundary, although a small cluster
of cells has survived in the centre of the tumour. This is partly due to the fact that quiescent cells
consume less oxygen and therefore allow for the diffusion of a little oxygen back into the centre of the
tumour. Given more time, these cells will also die due to lack of oxygen. However, this does imply
that even necrotic regions may still offer some potential for tumour cell survival (in the short term).
Since the cells were invading through an initially homogeneous distribution of MM, it is perhaps not
too surprising that this has produced a symmetric tumour (this symmetry is also seen in all three of the
other variables). The homogeneous tumour has also produced a large number of individual cells, due to
the combined effects of a faster invasion rate and subsequently access to empty space for proliferation
leading to further invasion. The faster invasion is mainly driven by the cell–matrix interactions via
haptotaxis, giving directed motion towards higher concentrations of MM. Since the type IV cells are
on the boundary, they exploit this gradient the most by having the largest haptotaxis coefficient and no
cell–cell adhesion dependence.

Figure 3 shows the simulation results for an initially heterogeneous MM distribution. The tumour
cell distribution is now radically different geometrically, showing a more fingered morphology, although
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FIG. 2. Homogeneous tumour simulation results: spatial distribution of tumour cells, MDE, MM and oxygen (clockwise) at time
t = 200 units (i.e. 200 generations, approximately 133 days). Colouration of the tumour cells represents phenotype, see colour bar
for details. For the MDE, MM and oxygen concentration, the grey colour map is used, i.e. white = high concentration, black =
low concentration and grey is in between. Note, a full colour version of this figure is available in the online publication.

it still consists of just two cell types, dead cells and type IV cells. Again the most aggressive cells
dominate the population and lead the way for invasion at the boundary of the tumour. Since these cells
have no cell–cell adhesion dependence, their migration is mainly driven by haptotaxis via the local MM
gradients and it is these local gradients that ultimately define the tumour geometry. Since the initial
MM distribution is somewhat artificially smooth in Figs 2 and 3, we now consider a completely random
initial MM distribution in Fig. 4.

Figure 4 shows that the tumour cell distribution again displays the fingered morphology, in a slightly
more symmetric manner than the heterogeneous tumour. We also see that the tumour consists of dead
cells and type IV cells, again leading the invading tumour boundary.

To give a better idea of the manner in which the tumour invasion evolves in Fig. 4, we generated a
series of 15 time snapshots, one every 15 time units (10 days), of the growing tumour. Figure 5 shows a
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FIG. 3. Heterogeneous tumour simulation results: spatial distribution of tumour cells, MDE, MM and oxygen (clockwise) at time
t = 200 units. Colouration as in Fig. 2.

detailed evolution of tumour invasion and we can see that the tumour, more or less, evolves as a growing
disk from 4 to 75 days and is made up of a mixture of all four phenotypes as well as dead cells. How-
ever, from 85 days onwards, we begin to see the emergence of fingering and the dominance of the most
aggressive type IV cells on the boundary with a dead central region. Clearly, these results emphasise the
fact that it is the type IV cells that really drive the fingering and these are the cells that have no cell–cell
adhesion.

Given that all three simulations above (Figs 2–5) use the same parameters, with the exception of
the MM initial distributions, these results illustrate the importance of tumour cell–matrix interactions in
aiding or hindering the migration of individual cells that define the tumour geometry. The fact that the
resulting tumour cell populations consist of only one living cell type IV might not be surprising due to
the linear nature of the mutations. However, it seems logical to assume that it will be the most aggressive
tumour cells that dominate the tumour population.
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FIG. 4. Random tumour simulation results: spatial distribution of tumour cells, MDE, MM and oxygen (clockwise) at time
t = 200 units. Colouration as in Fig. 2. Note, a full colour version of this figure is available in the online publication.

4. Random mutation hybrid discrete-continuum model

The impact of the way in which tumour cell mutation is modelled can be seen from the previous section,
where the linear mutations always lead each cell to either the most aggressive phenotype (IV) or death.
To gauge the effect of such a linear mutation sequence, we now consider a completely random mutation
sequence and compare how these impact on the resulting tumour cell populations and overall tumour
geometry.

Given that the hybrid discrete-continuum model is identical to the one above with the exception of
the manner in which mutations occur, we shall only discuss how we now model random mutations.

Random mutation: Initially all cells are assumed to have wild-type p53, i.e. non-mutated. After a p53
mutation occurs, the genome becomes unstable and is then open to many more mutations (as before).
So after the p53 mutation has occurred, the cell now has predefined phenotypic traits that specify its
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FIG. 5. Random tumour simulation results: 15 time snapshots of the spatial distribution of tumour cells at times t = 5–145 days.
Colouration as in Fig. 2. Note, a full colour version of this figure is available in the online publication.

behaviour. Here we shall consider 100 randomly defined phenotypes (although we could choose more
or less), and each phenotype has an equal probability of being selected. We define each phenotype to
be a set of parameter values that describe the behaviour of the cell expressing it. Therefore, a particu-
lar phenotype will have a randomly selected proliferation age (Phenage = 8–16 h), O2 consumption
(PhenO2 = ω–4ω), MDE production (Phenmde = κ–4κ), haptotaxis coefficient (Phentaxis = ρ–4ρ) and
adhesion value (PhenA = 0–3). In most cases the range of values each parameter can take to define
the phenotype were chosen to represent biologically realistic limits. Following the first p53 mutation a
cell is assigned the values of one of the 100 randomly selected phenotypes and for each subsequent pro-
liferation there is a small probability (Pmutat) of further mutations occurring which will lead to another
randomly selected phenotype and so on.

4.1 Random mutation hybrid discrete-continuum simulation results

The following simulations were carried out on the same grid with the same parameter values, initial and
boundary conditions as in Section 3.3. The only difference is that when a phenotype mutation occurs it
leads to one of the randomly selected phenotypes; we again take this probability to be Pmutat = 0.1. We
consider the effects, upon tumour invasion, of two different MM initial distributions: (i) homogeneous
( f (x, y) = 1) and (ii) random (0 � f (x, y) � 1). For clarity we shall label the resulting tumour cell
distributions as (i) homogeneous tumour and (ii) random tumour.

Figure 6 shows the simulation results for each of the four variables for the the homogeneous initial
MM distribution at t = 200 time units. The tumour cell distribution shows a dead central region with
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FIG. 6. Homogeneous tumour simulation results: spatial distribution of tumour cells, MDE, MM and oxygen (clockwise) at time
t = 200 units (i.e. 200 generations, approximately 133 days). Colouration of the tumour shows the cell–cell adhesion value: dark
grey (Ai = 0) and light grey represents dead cells. For the MDE, MM and oxygen concentration, the grey colour map is used, i.e.
white = high concentration, black = low concentration and grey is in between. Note, a full colour version of this figure is available
in the online publication.

a thin proliferating boundary. The dark coloured cells which have survived and continue to proliferate
have the least adhesive phenotype, i.e. they have an adhesion value Ai = 0.

From Fig. 7 we can see the evolution of the tumour cell mutation population and note that there are
approximately four phenotypes that dominate (mutation identification numbers [MID] being 25, 40, 55
and 88) the tumour population and survive most of the simulation. Of these phenotypes all have a zero
cell adhesion value and two (MID 25, 88) have a short proliferation age (8.9 and 9.4 h, respectively) as
well as high haptotaxis coefficients (3.9ρ and 2.4ρ, respectively). Interestingly, one of these phenotypes
is the most dominant phenotype, always being expressed by the largest fraction of cells in the tumour
population, and has the shortest proliferation age, highest haptotaxis coefficient, no cell–cell adhesion
restrictions and, in contrast to the most aggressive type IV cells of the linear mutation model, one of
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FIG. 7. Homogeneous tumour simulation results: evolution of mutation population. Colouration relates to cell numbers defined
in the colour bar. Note, a full colour version of this figure is available in the online publication.

the smallest oxygen consumption rates. In some sense, through random mutation the most aggressive
phenotype (in comparison with all 100 phenotypes) has been naturally selected.

Since the cells were invading through an initially homogeneous distribution of MM, we again see a
more symmetric tumour (this symmetry is also seen in all three of the other variables). Comparing the
tumour produced in Fig. 2 with the one in Fig. 6 it is clear that there is little difference geometrically
between them. However, one has evolved from a linear mutation sequence of four phenotypes each
progressively more aggressive and the other has evolved from a purely random mutation sequence of
100 possible phenotypes. This implies that the geometry of the resulting tumour is governed more by
cell–matrix interactions than cell–cell interactions as the common factor in these two simulations is the
homogeneous matrix.

Figure 8 shows the simulation results for an initially random MM distribution. The tumour cell dis-
tribution is now radically different geometrically, showing a more fingered morphology, although it still
consists of dead cells and a thin proliferating outer layer of cells. The same finger-like protrusions seen
in Figs 3 and 4 for the linear mutations are again obtained for the random mutations. This certainly adds
further weight to the hypothesis that tumour cell–matrix interactions are really what govern the evolving
tumour geometry and as a result the actual MM distribution is an important factor in deciding how the
tumour will grow.

The dark cells in Fig. 8 are mostly from one phenotype which has dominated the tumour population
for the whole of the simulation. This is clearly seen from the evolution of the tumour cell population
in Fig. 9. This phenotype (MID 15) has an adhesion value Ai = 0, a proliferation age of 8.2 h and a
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FIG. 8. Random tumour simulation results: spatial distribution of tumour cells, MDE, MM and oxygen (clockwise) at time
t = 200 units (i.e. 200 generations, approximately 133 days). Colouration of tumour cells, MDE, MM and oxygen concentration
is the same as in Fig. 5. Note, a full colour version of this figure is available in the online publication.

haptotaxis coefficient of 2.6ρ as well as a low oxygen consumption rate (approximately, 1.3ω). Again
one of the most aggressive phenotypes has been naturally selected to lead the way for invasion at the
boundary of the tumour. Since these cells have no cell–cell adhesion dependence, their migration is
mainly driven by haptotaxis via the local MM gradients and it is these local gradients that ultimately
define the tumour geometry.

The simulation that produced Fig. 8 and several other simulations (not shown), always resulted in
only one or two main phenotypes completely dominating the tumour population. Whilst this result is
only from a few runs, it would appear that tumours which evolved from the random MM distribution as
opposed to the homogeneous MM distribution were more likely to have a single dominant phenotype.
This might suggest that the MM heterogeneity somehow aids the more aggressive cells in dominating
the tumour population, i.e. MM heterogeneity enhances natural selection.
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FIG. 9. Random tumour simulation results: evolution of mutation population. Colouration relates to cell numbers defined in the
colour bar. Note, a full colour version of this figure is available in the online publication.

5. Discussion

In this paper we examined the effects of cell–cell and cell–matrix adhesion upon a growing invading
tumour. In particular, we examined the effects of cell–matrix adhesion by considering three different
initial matrix MM distributions, homogenous, heterogeneous and random. To examine the effects of
cell–cell adhesion, we considered a heterogeneous tumour cell population that consisted of either four
selected phenotypes each with different levels of cell–cell adhesion or 100 randomly selected pheno-
types with random levels of adhesion. For the four selected phenotypes, we used a linear mutation
sequence where all the cells are initially phenotype I (the least aggressive type with the highest cell–cell
adhesion) and through mutation can become more aggressive via types II, III and IV (the most aggres-
sive type with zero cell–cell adhesion). For the 100 phenotypes, we used a random mutation sequence
where all the cells are initially assigned one of the 100 phenotypes randomly and through mutation an-
other phenotype is selected randomly. Interestingly, whilst these two methods for considering tumour
cell heterogeneity are very different they ultimately produced similar results.

The three simulations for the linear mutations (Figs 2–5) and the two simulations for the random
mutations (Figs 6 and 8) use the same parameters, with the exception of the MM initial distributions
and the way they consider mutation. These results illustrate the importance of tumour cell–matrix in-
teractions in aiding or hindering the migration of individual cells that define the tumour geometry. This
is dependent on the fact that the tumour cells must mutate to an aggressive phenotype in order to ex-
ploit the changes in local MM gradients. If the cell–cell adhesion parameters were to be fixed for all
phenotypes (e.g. Ai = 3), then approximately the same small circular tumour would result for all MM
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distributions. However, it is known that tumour cells lose the ability (via mutations) to recognise cell–
cell adhesion molecules at an early stage in their development, e.g. E-cadherin is lost at an early stage
of breast carcinogenesis and N-CAM loss in gliomas is associated with a high probability of metastasis
(Takeichi, 1993).

Since the ECM is unlikely to contain a homogeneous distribution of MM, the homogeneous results
(Figs 2 and 6) might be somewhat artificial. Similarly, the smooth heterogeneous MM (Fig. 3) is also
somewhat unreal. Perhaps the most realistic MM would be the random distribution. Therefore, the
results from the random tumour (Figs 4 and 8) represent the most realistic simulation, where the bias
from the cell–matrix interactions is driven purely by local degradation of MM and subsequent creation
of gradients which lead to directed migration of the tumour cells.

For the random mutation results, the fact that in most simulations the resulting tumour cell popu-
lation consists of living cells with only one or two phenotypes might be surprising due to the random
nature of the mutations. However, it seems logical to assume that it will be the most aggressive pheno-
types that dominate the tumour population. Here aggressiveness would be defined as those phenotypes
that have low proliferation age, zero cell–cell adhesion, a large haptotaxis coefficient and a low oxygen
consumption rate. In comparison with the linear mutation results, we see little obvious difference in
the resulting tumour cell distributions. Therefore, the assumption that the tumour cells always mutate
to a more aggressive phenotype might not be so unrealistic. However, the definition of the aggressive
phenotype (in the linear mutation model) includes higher oxygen consumption which is not seen in the
random mutation results. This is logical, as phenotypes which live longer (due to consuming less oxy-
gen) will be a part of the tumour population for a longer time. By linking certain phenotype properties,
e.g. oxygen consumption with haptotaxis coefficient, then the lower oxygen consumption seen in the
aggressive phenotypes of the random mutation model may not occur.

In conclusion, whilst cell–cell interactions are important at the early stages of a solid tumour’s
development, subsequent loss of cell–cell adhesion molecules (via mutation) results in tumour growth
that is dominated by cell–matrix interactions. Therefore, these results predict that local tumour cell–
matrix interactions are ultimately what control the overall geometry of the tumour and not the cell–cell
interactions. In addition, cell–matrix interactions may also enhance natural selection, since the more
random the MM distribution the more likely the most aggressive phenotype will be selected.

Much more work needs to be done in examining the range of behaviour that this model can dis-
play. In particular, the manner in which oxygen production is modelled needs to be refined perhaps by
modelling more accurately the angiogenic network. There is certainly a need for a sensitivity analysis
of the parameters, especially the mutation probabilities and the production/uptake parameters that are
not known. The manner in which random mutation is modelled could be further refined so that a mu-
tation resulted in only one aspect of the phenotype changing in a random manner, the daughter cells
would then have some similarity with their parent. Nonetheless, the results presented above show the
importance of considering both cell–cell and cell–matrix interactions in a model of tumour invasion and
perhaps the strong dependence of the tumour geometry on local cell–matrix interactions points the way
for future cancer research and treatment. In fact, recent research has focused on this very area; Hotary
et al. (2003) have shown in vitro that the ECM can act like a cage constricting tumour growth, but once
the tumour begins producing a specific MDE (MT1-MMP) it can escape the confines of the collagen
fibres (that make up the ECM) by degrading them with the MDE.

Supplementary data

Figures 1 to 9 are available as colour images at imammb.oupjournals.org as supplementary data.
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