# Anita T. Layton

- Professor in the Department of Mathematics
- Professor of Biomedical Engineering (Secondary)
- Professor in Medicine (Secondary)
- Bass Fellow

**External address:**213 Physics Bldg, Durham, NC 27708

**Internal office address:**Box 90320, Durham, NC 27708-0320

**Phone:**(919) 660-6971

### Research Areas and Keywords

##### Biological Modeling

##### Computational Mathematics

##### PDE & Dynamical Systems

**Mathematical physiology.** My main research interest is the application of mathematics to biological systems, specifically, mathematical modeling of renal physiology. Current projects involve (1) the development of mathematical models of the mammalian kidney and the application of these models to investigate the mechanism by which some mammals (and birds) can produce a urine that has a much higher osmolality than that of blood plasma; (2) the study of the origin of the irregular oscillations exhibited by the tubuloglomerular feedback (TGF) system, which regulates fluid delivery into renal tubules, in hypertensive rats; (3) the investigation of the interactions of the TGF system and the urine concentrating mechanism; (4) the development of a dynamic epithelial transport model of the proximal tubule and the incorporation of that model into a TGF framework.

**Multiscale numerical methods.** I develop multiscale numerical methods---multi-implicit Picard integral deferred correction methods---for the integration of partial differential equations arising in physical systems with dynamics that involve two or more processes with widely-differing characteristic time scales (e.g., combustion, transport of air pollutants, etc.). These methods avoid the solution of nonlinear coupled equations, and allow processes to decoupled (like in operating-splitting methods) while generating arbitrarily high-order solutions.

**Numerical methods for immersed boundary problems.** I develop numerical methods to simulate fluid motion driven by forces singularly supported along a boundary immersed in an incompressible fluid.

Ryu, H, and Layton, AT. "Tubular Fluid Oscillations Mediated by Tubuloglomerular Feedback in a Short Loop of Henle." *FASEB JOURNAL* 24 (April 2010).

Edwards, A, and Layton, AT. "Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation." *FASEB JOURNAL* 24 (April 2010).

Layton, HE, Chen, J, Moore, LC, and Layton, AT. "A mathematical model of the afferent arteriolar smooth muscle cell." *FASEB JOURNAL* 24 (April 2010).

Nieves-Gonzalez, A, Moore, LC, Clausen, C, Marcano, M, Layton, HE, and Layton, AT. "Efficiency of sodium transport in the thick ascending limb." *FASEB JOURNAL* 24 (April 2010).

Layton, AT, Pannabecker, TL, Dantzler, WH, and Layton, HE. "Functional implications of the three-dimensional architecture of the rat renal inner medulla." *American Journal of Physiology Renal Physiology* 298.4 (April 2010): F973-F987.
Full Text

Layton, AT, Pannabecker, TL, Dantzler, WH, and Layton, HE. "Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers." *American Journal of Physiology Renal Physiology* 298.4 (April 2010): F962-F972.
Full Text

Hallen, MA, and Layton, AT. "Expanding the scope of quantitative FRAP analysis." *J Theor Biol* 262.2 (January 21, 2010): 295-305.
Full Text

Layton, AT. "Feedback-mediated dynamics in a model of a compliant thick ascending limb." *Math Biosci* 228.185-194 (2010). (Academic Article)

Marcano, M, Layton, AT, and Layton, HE. "Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney." *Bulletin of Mathematical Biology* 72.2 (2010): 314-339.
Full Text

Loreto, M, and Layton, AT. "An optimization study of a mathematical model of the urine concentrating mechanism of the rat kidney." *Math Biosci* 223.1 (January 2010): 66-78.
Full Text