Ingrid Daubechies

Ingrid Daubechies
  • James B. Duke Distinguished Professor of Mathematics and Electrical and Computer Engineering
  • Professor in the Department of Mathematics
  • Professor in the Department of Electrical and Computer Engineering (Joint)

Research Areas and Keywords


wavelets, inverse problems

Biological Modeling

shape space

Computational Mathematics

inverse problems

Geometry: Differential & Algebraic

shape space

Mathematical Physics

time-frequency analysis

Signals, Images & Data

wavelets, time-frequency analysis, art conservation

Education & Training
  • Ph.D., Vrije Universiteit Brussel (Belgium) 1980

Lipman, Y., et al. “Conformal Wasserstein distance: II. Computational aspects and extensions.” Mathematics of Computation, vol. 82, no. 281, Jan. 2013, pp. 331–81. Scopus, doi:10.1090/S0025-5718-2012-02569-5. Full Text

Roussos, E., et al. “Variational Bayesian learning of sparse representations and its application in functional neuroimaging.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7263 LNAI, Nov. 2012, pp. 218–25. Scopus, doi:10.1007/978-3-642-34713-9_28. Full Text

Cohen, A., et al. “Capturing Ridge Functions in High Dimensions from Point Queries.” Constructive Approximation, vol. 35, no. 2, Apr. 2012, pp. 225–43. Scopus, doi:10.1007/s00365-011-9147-6. Full Text

Anitha, A., et al. “Virtual underpainting reconstruction from X-ray fluorescence imaging data.” European Signal Processing Conference, Dec. 2011, pp. 1239–43.

Platiša, L., et al. “Spatiogram features to characterize pearls in paintings.” Proceedings  International Conference on Image Processing, Icip, Dec. 2011, pp. 801–04. Scopus, doi:10.1109/ICIP.2011.6116677. Full Text

Simons, F. J., et al. “Wavelets and wavelet-like transforms on the sphere and their application to geophysical data inversion.” Proceedings of Spie  the International Society for Optical Engineering, vol. 8138, Nov. 2011. Scopus, doi:10.1117/12.892285. Full Text

Simons, F. J., et al. “Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity.” Geophysical Journal International, vol. 187, no. 2, Nov. 2011, pp. 969–88. Scopus, doi:10.1111/j.1365-246X.2011.05190.x. Full Text

Boyer, Doug M., et al. “Algorithms to automatically quantify the geometric similarity of anatomical surfaces.Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, Nov. 2011, pp. 18221–26. Epmc, doi:10.1073/pnas.1112822108. Full Text

Ružić, T., et al. “Virtual restoration of the Ghent altarpiece using crack detection and inpainting.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6915 LNCS, Sept. 2011, pp. 417–28. Scopus, doi:10.1007/978-3-642-23687-7_38. Full Text

Wolff, J., et al. “Uncovering elements of style.” Icassp, Ieee International Conference on Acoustics, Speech and Signal Processing  Proceedings, Aug. 2011, pp. 1017–20. Scopus, doi:10.1109/ICASSP.2011.5946579. Full Text


Ingrid Daubechies is the first women president of the International Mathematical Union.

A common prejudice holds that women can't match the strength of men in mathematics. But for more than three decades, Belgian physicist/mathematician Ingrid Daubechies has been proving the prejudice wrong – and using maths to make a better world. As... read more »