Ingrid Daubechies

Ingrid Daubechies
  • James B. Duke Distinguished Professor of Mathematics and Electrical and Computer Engineering
  • Professor in the Department of Mathematics
  • Professor in the Department of Electrical and Computer Engineering (Joint)

Research Areas and Keywords

wavelets, inverse problems
Biological Modeling
shape space
Computational Mathematics
inverse problems
Geometry: Differential & Algebraic
shape space
Mathematical Physics
time-frequency analysis
Signals, Images & Data
wavelets, time-frequency analysis, art conservation
Education & Training
  • Ph.D., Vrije Universiteit Brussel (Belgium) 1980

Calderbank, A. R., et al. “Wavelet Transforms That Map Integers to Integers.” Applied and Computational Harmonic Analysis, vol. 5, no. 3, Jan. 1998, pp. 332–69. Scopus, doi:10.1006/acha.1997.0238. Full Text

Daubechies, I. “Recent results in wavelet applications.” Journal of Electronic Imaging, vol. 7, no. 4, Jan. 1998, pp. 719–24. Scopus, doi:10.1117/1.482659. Full Text

Calderbank, A. R., et al. “Lossless image compression using integer to integer wavelet transforms.” Ieee International Conference on Image Processing, vol. 1, Dec. 1997, pp. 596–99.

Daubechies, I. “From the Original Framer to Present-Day Time-Freuency and Time-Scale Frames.” Journal of Fourier Analysis and Applications, vol. 3, no. 5, Dec. 1997.

Cohen, A., et al. “Regularity of Refinable Function Vectors.” Journal of Fourier Analysis and Applications, vol. 3, no. 3, Dec. 1997.

Chassande-Mottin, E., et al. “Differential reassignment.” Ieee Signal Processing Letters, vol. 4, no. 10, Dec. 1997, pp. 293–94. Scopus, doi:10.1109/97.633772. Full Text

Unser, M., and I. Daubechies. “On the approximation power of convolution-based least squares versus interpolation.” Ieee Transactions on Signal Processing, vol. 45, no. 7, Dec. 1997, pp. 1697–711. Scopus, doi:10.1109/78.599940. Full Text

Daubechies, I. “Where do wavelets come from? - a personal point of view.” Proceedings of the Ieee, vol. 84, no. 4, Apr. 1996, pp. 510–13. Scopus, doi:10.1109/5.488696. Full Text

Cohen, A., et al. “How smooth is the smoothest function in a given refinable space?.” Applied and Computational Harmonic Analysis, vol. 3, no. 1, Jan. 1996, pp. 87–89. Scopus, doi:10.1006/acha.1996.0008. Full Text

Cohen, A., and I. Daubechies. “A new technique to estimate the regularity of refinable functions.” Revista Matematica Iberoamericana, vol. 12, no. 2, Jan. 1996, pp. 527–91. Scopus, doi:10.4171/RMI/207. Full Text