Kirsten Graham Wickelgren

Kirsten Graham Wickelgren
  • Professor of Mathematics
Office Hours: 

Wednesday 12:30-1:30, Friday 3-4, and by appointment. Please email me for the zoom link.

Education & Training
  • Ph.D., Stanford University 2009

Selected Grants

Career: Etale amd Motivic Homotopy Theory and Applications to Arithmetic Geometry awarded by National Science Foundation (Principal Investigator). 2019 to 2021

Fellowships, Supported Research, & Other Grants

Homotopy theory of schemes, Grothendieck's anabelian program, rational points awarded by National Science Foundation (2014 to 2017)

Wickelgren, Kirsten, and Ben Williams. “Unstable Motivic Homotopy Theory.” Handbook of Homotopy Theory, CRC Press, 2019.

Kass, J. L., and K. Wickelgren. “An Étale realization which does NOT exist.” Contemporary Mathematics, vol. 707, 2018, pp. 11–29. Scopus, doi:10.1090/conm/707/14251. Full Text

Wickelgren, K. “On 3-nilpotent obstructions to π1 sections for ℙ1ℚ-{0,1,∞}.” The Arithmetic of Fundamental Groups: PIA 2010, 2012, pp. 281–328. Scopus, doi:10.1007/978-3-642-23905-2_12. Full Text

Kass, J. L., and K. Wickelgren. “A classical proof that the algebraic homotopy class of a rational function is the residue pairing.” Linear Algebra and Its Applications, vol. 595, June 2020, pp. 157–81. Scopus, doi:10.1016/j.laa.2019.12.041. Full Text

Kass, J. L., and K. Wickelgren. “The class of Eisenbud-Khimshiashvili-Levine is the local A 1 -Brouwer degree.” Duke Mathematical Journal, vol. 168, no. 3, Feb. 2019, pp. 429–69. Scopus, doi:10.1215/00127094-2018-0046. Full Text

Bergner, J. E., et al. “Classification of problematic subgroups of U(n).” Transactions of the American Mathematical Society, vol. 371, no. 10, Jan. 2019, pp. 6739–77. Scopus, doi:10.1090/tran/7442. Full Text

Wickelgren, K., and B. Williams. “The simplicial EHP sequence in A1–algebraic topology.” Geometry and Topology, vol. 23, no. 4, Jan. 2019, pp. 1691–777. Scopus, doi:10.2140/gt.2019.23.1691. Full Text

Davis, R., et al. “The Galois action and cohomology of a relative homology group of Fermat curves.” Journal of Algebra, vol. 505, July 2018, pp. 33–69. Scopus, doi:10.1016/j.jalgebra.2018.02.021. Full Text

Wickelgren, K. “Massey products 〈y,x,x,…,x,x,y〉 in Galois cohomology via rational points.” Journal of Pure and Applied Algebra, vol. 221, no. 7, July 2017, pp. 1845–66. Scopus, doi:10.1016/j.jpaa.2016.12.027. Full Text

Asok, A., et al. “The simplicial suspension sequence in A1-homotopy.” Geometry and Topology, vol. 21, no. 4, May 2017, pp. 2093–160. Scopus, doi:10.2140/gt.2017.21.2093. Full Text

Wickelgren, K. “What is… an anabelian scheme?Notices of the American Mathematical Society, vol. 63, no. 3, Mar. 2016, pp. 285–86. Scopus, doi:10.1090/noti1342. Full Text

Women in Topology. American Mathematical Society, May 2015. Crossref, doi:10.1090/conm/641. Full Text Open Access Copy

Kass, J. L., and K. Wickelgren. “An Abel map to the compactified Picard scheme realizes Poincaré duality.” Algebraic and Geometric Topology, vol. 15, no. 1, Mar. 2015, pp. 319–69. Scopus, doi:10.2140/agt.2015.15.319. Full Text

Pages

Wickelgren, K. “Desuspensions of S 1 Λ (P1/Q - {0, 1, ∞ }).” International Journal of Mathematics, vol. 27, no. 7, 2016. Scopus, doi:10.1142/S0129167X16400103. Full Text

Davis, R., et al. Galois Action on the Homology of Fermat Curves. Vol. 3, 2016, pp. 57–86. Scopus, doi:10.1007/978-3-319-30976-7_3. Full Text

Wickelgren, Kirsten. Cartier’s first theorem for Witt vectors on ℤ_{≥0}ⁿ-0. American Mathematical Society, 2014, pp. 321–28. Crossref, doi:10.1090/conm/620/12396. Full Text

Wickelgren, Kirsten. “n-nilpotent obstructions to pi(1)sections of P-1 - {0, 1, infinity} and Massey products.” Galois Teichmueller Theory and Arithmetic Geometry, edited by H. Nakamura et al., vol. 63, MATH SOC JAPAN, 2012, pp. 579–600.