Thomas P. Witelski

Thomas P. Witelski
  • Professor in the Department of Mathematics
  • Professor in the Department of Mechanical Engineering and Materials Science (Secondary)
External address: 295 Physics Bldg, Box 90320, Durham, NC 27708-0320
Internal office address: Box 90320, Durham, NC 27708-0320
Phone: (919) 660-2841

Research Areas and Keywords

Analysis

perturbation methods

Computational Mathematics

numerical partial differential equations

PDE & Dynamical Systems

fluid dynamics, nonlinear partial differential equations, dynamical systems, perturbation methods

Physical Modeling

fluid dynamics

My primary area of expertise is the solution of nonlinear ordinary and partial differential equations for models of physical systems. Using asymptotics along with a mixture of other applied mathematical techniques in analysis and scientific computing I study a broad range of applications in engineering and applied science. Focuses of my work include problems in viscous fluid flow, dynamical systems, and industrial applications. Approaches for mathematical modelling to formulate reduced systems of mathematical equations corresponding to the physical problems is another significant component of my work.

Education & Training
  • Ph.D., California Institute of Technology 1995

  • B.S.E., The Cooper Union 1991

Vaynblat, D., et al. “Rupture of thin viscous films by van der waals forces: Evolution and self-similarity.” Physics of Fluids, vol. 13, no. 5, Jan. 2001, pp. 1130–41. Scopus, doi:10.1063/1.1359749. Full Text

Witelski, T. P., et al. “Critical wave speeds for a family of scalar reaction-diffusion equations.” Applied Mathematics Letters, vol. 14, no. 1, Jan. 2001, pp. 65–73. Scopus, doi:10.1016/S0893-9659(00)00114-2. Full Text

Witelski, T. P., and A. J. Bernoff. “Dynamics of three-dimensional thin film rupture.” Physica D: Nonlinear Phenomena, vol. 147, no. 1–2, Dec. 2000, pp. 155–76. Scopus, doi:10.1016/S0167-2789(00)00165-2. Full Text

Witelski, T. P., et al. “On axisymmetric traveling waves and radial solutions of semi-linear elliptic equations.” Natural Resource Modeling, vol. 13, no. 3, Jan. 2000, pp. 339–88. Scopus, doi:10.1111/j.1939-7445.2000.tb00039.x. Full Text

Witelski, T. P., and F. Hendriks. “Large bearing number stability analysis for tango class gas bearing sliders.” Tribology Transactions, vol. 42, no. 3, Jan. 1999, pp. 668–74. Scopus, doi:10.1080/10402009908982268. Full Text

Witelski, T. P., and F. Hendriks. “Stability of gas bearing sliders for large bearing number: Convective instability of the tapered slider©.” Tribology Transactions, vol. 42, no. 1, Jan. 1999, pp. 216–22. Scopus, doi:10.1080/10402009908982211. Full Text

Witelski, T. P., and A. J. Bernoff. “Stability of self-similar solutions for van der Waals driven thin film rupture.” Physics of Fluids, vol. 11, no. 9, Jan. 1999, pp. 2443–45. Scopus, doi:10.1063/1.870138. Full Text

Witelski, T. P., et al. “On the properties of polymer globules in the high density limit.” Journal of Chemical Physics, vol. 108, no. 21, June 1998, pp. 9144–49. Scopus, doi:10.1063/1.476361. Full Text

Brenner, M. P., and T. P. Witelski. “On spherically symmetric gravitational collapse.” Journal of Statistical Physics, vol. 93, no. 3–4, Jan. 1998, pp. 863–99. Scopus, doi:10.1023/b:joss.0000033167.19114.b8. Full Text

Bernoff, A. J., et al. “Axisymmetric surface diffusion: Dynamics and stability of self-similar pinchoff.” Journal of Statistical Physics, vol. 93, no. 3–4, Jan. 1998, pp. 725–76. Scopus, doi:10.1023/b:joss.0000033251.81126.af. Full Text

Pages