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Introduction

Consider the following scenario: A student is asked to simplify the fraction 16
64 , and computes

16/

6/4
=

1

4
.

As we all know, the method is incorrect, but the answer is correct. In this round, we will explore these
”lucky fractions” in greater detail.

Lucky Triples

Define a lucky triple (x, y, z) to be a triple such that

xy

yz
=
x

z
,

where xy denotes the two-digit number xy in base 10. In this way, if a student incorrectly ”cancels out
the y’s”, they would be lucky and still get the correct answer. As shown above, (1, 6, 4) is an example of
a lucky triple. In order to rule out trivial lucky triples, we require that x, y, z ≥ 1, and we don’t count
triples where x = y = z. So, although 22

22 = 2
2 and 00

04 = 0
4 , both (2, 2, 2) and (0, 0, 4) are not lucky

triples.

Problem 1.[3] Find the other three lucky triples.

This quickly gets rather boring, so we make the problem more interesting by considering lucky triples
in different bases. Let us define a lucky b-triple to be a triple in base b such that

xy

yz
=
x

z
.

In other words, we want (x, y, z) to be integers that satisfy

b · x+ y

b · y + z
=
x

z
.

Again, we have the restrictions that 1 ≤ x, y, z < b, and we do not count the case of x = y = z. We also
define the function λ(b) to be the number of lucky b-triples. For example, λ(10) = 4, and the four lucky
triples are (1, 6, 4), and the three that you computed in problem 1. For the remainder of this section,
we will mostly practice computing λ(b) and finding lucky b-triples for small values of b to gain some
intuition about this strange function.

Problem 2. Find, with proof, the following values:

(a) λ(3)[2]

(b) λ(4)[3]

(c) λ(6)[3]

(d) λ(9)[4]

Problem 3.[4] Find, with proof, the smallest base b such that λ(b) > 2.

Problem 4.[3] Find a triple (x, y, z) such that (x, y, z) is a lucky b1-triple and a lucky b2-triple, where
b1 6= b2, or prove that none exist.
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Properties of λ

Now that we have some practice with computing the values of the function λ, let us explore some
properties about the λ function. After all, calculations are worthless if we learn nothing from them.

Problem 5.[2] Prove that if p is prime, then λ(p) = 0.

Problem 6. Recall that a proper factor of b is a factor other than 1 or b. For example, 2 and 3 are
proper factors of 6, but 1 and 6 are not.

(a)[2] Prove that if (x, y, z) is a lucky b-triple, where b− 1 is prime, then y = b− 1.

(b)[2] Prove that when b− 1 is prime, λ(b) is exactly equal to the number of proper factors of b.

(c)[1] Prove that λ(b) is greater than or equal to the number of proper factors of b.

(d)[2] Prove that if b is odd and not prime, λ(b) is greater than the number of proper factors of b.

Problem 7. With the lucky 10-triple (x, y, z) = (1, 6, 4), note that we have 2x ≤ z ≤ y.

(a)[4] Prove that if (x, y, z) is a lucky b-triple, then the above inequality must hold, that is, 2x ≤ z ≤ y.

(b)[2] Can any of the inequalities above be strict? In other words, can we prove that 2x < z or z < y for
all lucky b-triples (x, y, z)?

An Algorithmic Approach

The earlier results give us insights into how to generate lucky triples with y = b− 1. In this section, we
will develop an algorithm to find all the non-trivial lucky b-triples with y < b− 1. Assume that (x, y, z)
is a lucky b-triple. We will start by picking a prime factor p of b− 1, and we define l = b−1

p .

Problem 8.[1] Prove that either p | y or p | bx− z.

Problem 9.[3] Prove that if p | bx− z, then there exists a prime q such that q is a factor of b− 1 and y is
divisible by q.

Problem 10. The result of problem 9 suggest that we only need to consider the case of p | y. Given
this assumption, prove the following:

(a)[4] Let us define m = y
p and k = yz

px = mz
x . Find a lucky b-triple in terms of p, b, m, k, and l.

(b)[2] Prove that k ≡ m mod l, that is, m and k have the same remainder when divided by l.

(c)[3] Find the best upper and lower bounds for k in terms of b, m, and l. Note that while 0 is obviously
a lower bound for k, it is not the best lower bound.

Using the above results, we can delineate a quick algorithm to find all lucky b-triples with y < b− 1.
As an interesting result, we can prove that any lucky b-triple (x, y, z) must satisfy gcd(y, b− 1) > 1.

Final thoughts

The following problems are considered extra credit, and not answering them will not negatively impact
your score. However, due to the extreme difficulty of the problems, we strongly recommend finishing the
earlier problems before tackling these for the sake of using your time efficiently.

Problem 11. Prove or disprove the following:

(a)[5] λ(b) is odd if and only if b = 4n2 for some positive integer n.

(b)[5] There exists infinite values of n such that there does not exist a b with λ(b) = n.

(c)[5] λ(b) < b for all b.

(d)[5] There are infinitely many b such that λ(b) = 2.
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