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Bad Maths That Give The Right Answer
2020 DMM Power Round

Introduction
Consider the following scenario: A student is asked to simplify the fraction é—?p and computes
¢4 4

As we all know, the method is incorrect, but the answer is correct. In this round, we will explore these
”lucky fractions” in greater detail.

Lucky Triples

Define a lucky triple (x,y, z) to be a triple such that
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where 7y denotes the two-digit number zy in base 10. In this way, if a student incorrectly ”cancels out
the y’s”, they would be lucky and still get the correct answer. As shown above, (1,6,4) is an example of
a lucky triple. In order to rule out trivial lucky triples, we require that z,y,z > 1, and we don’t count
triples where x = y = 2. So, although % = % and % = %7 both (2,2,2) and (0,0,4) are not lucky
triples.

Problem 1. Find the other three lucky triples.

Solution: The other three lucky triples are (1, 9, 5), (2, 6, 5), and (4, 9, 8).

This quickly gets rather boring, so we make the problem more interesting by considering lucky triples

in different bases. Let us define a lucky b-triple to be a triple in base b such that
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In other words, we want (z,y, z) to be integers that satisfy

b-r+y

b-y+z 2z
Again, we have the restrictions that 1 < x,y, 2 < b, and we do not count the case of z = y = z. We also
define the function A(b) to be the number of lucky b-triples. For example, A(10) = 4, and the four lucky
triples are (1,6,4), and the three that you computed in problem 1. For the remainder of this section,
we will mostly practice computing A(b) and finding lucky b-triples for small values of b to gain some
intuition about this strange function.

Problem 2. Find, with proof, the following values:

(a) A3)

Solution: A(3) = 0. The only possible triples are (1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,1,2),
and (1,2,2), none of which are satisfy the condition.
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(b) A(4)

Solution: A(4) = 1. The condition is equivalent to
da(z —y) = z(z — y).

Note that since |z —y| < 2, and 1 < z < 3, we have |z(z — y)| < 6, so |z(x — y)| must be equal
to 4 or 0. But, |2(x — y)| = 0 implies z = y and y = z, which is impossible. Then, we get
z=|r—y|=2,and x = |z — y| = 1. Then, we have z = 2,2 = 1,y = 3, giving us (1,3,2) as
the only lucky 4-triple.

(c) A6)

Solution: A(6) = 2. Again, we have
62(z —y) = 2(z — y),

and |z(x —y)] < 5-4 = 20, so |z(z — y)| = 6 or 12. Note that |z(z — y)| # 18 because
z,lx —y| < 6. If |2(x — y)| = 6, then |z(z — y)| = 1, so x = 1. Furthermore, either z = 3
or z = 2, neither of which gives us a valid value for y. If |2(x — y)| = 12, we have z = 3 or
z = 4. Furthermore, |z(z — y)| = 2, so either z = 1 or £ = 2. Then, we find that the only
lucky 6-triples are (2,5,4) and (1,5, 3).

(d) A(9)

Solution: A(9) = 2. We have

92(z —y) = z(x — y),
and |z(z—y)| < 56. Since 9 must divide |z(z—y)|, and z < 8 and |z—y| < 7, we have |z(z—y)| =
9,18, or 36, giving us |z(z — y)| = 1,2, or 4, respectively. Notice that if |z(z — y)| = 9,18, or
36, then z can only be 3 or 6, further reducing the triples we need to check. Then, we simply
check all triples that satisfy these conditions and find that (1,4, 3) and (2,8, 6) are the only
lucky 9-triples.

Problem 3. Find, with proof, the smallest base b such that A(b) > 2.

Solution: b = 10 is the smallest b such that A(b) > 2. For b = 5 and b = 7, we have
bx(z —y) = z(x —y), where z < b and x — y < b — 1. However, since both 5 and 7 are prime,
we must have b | z or b | x — y, which is not possible unless z —y = 0. In this case, we would
have z —y =0, so x = y = z, a contradiction. Thus, both A(5) =0 and A(7) = 0.
We now only need to check A(8) because we know A(10) = 4. The condition for a lucky
8-triple is then equivalent to
8z — 2)y = Txz.

But, 8¢ — 2 =2 — 2 =0 mod 7 only when = = z, but there are no non-trivial lucky triples
with & = z. Therefore, since 0 < y < 7 and 7|y, we must have y = 7. The equation thus
simplifies to 8z — z = 2z, or (x + 1)(z — 8) = —8. We can then easily find that the only lucky
8-triples are (3,7,6) and (1,7,4), so A\(8) = 2.




[3] Problem 4. Find a triple (x,y,2) such that (x,y,2) is a lucky bi-triple and a lucky bo-triple, where
b1 # ba, or prove that none exist.

Solution: Suppose for the sake of contradiction that there exists such a triple (z,y, z). Then,

we have
biz+y © bxty

biy+z 2z by+2z

which is equivalent to
bizz 4 boy? = boxz + b1y? = (by — b1)xz = (by — by)y? = y* = x2.
Then, we know that
yhix —2z) =az(by — 1) = bz —z=y(by — 1).
Since b; — 1 divides byz — z iff by — 1 divides = — z iff x = z, we have
hhr—z=yb1—1) = z(b1—1)=yb1 —1) = z =y,

which is a contradiction. Therefore, there are no triples (z,y, z) such that (z,y, 2z) is both a
lucky bi-triple and a lucky bo-triple, where by # bs.

Properties of A

Now that we have some practice with computing the values of the function A, let us explore some
properties about the A function. After all, calculations are worthless if we learn nothing from them.

[2] Problem 5. Prove that if p is prime, then A(p) = 0.

Solution: The condition is equivalent to
pa(z —y) = z(x —y).

If p is prime, then p must divide either z or x — y, but 2 < p—1 and |z — y| < p — 2, so the
only way for (z,y,z) to be a lucky triple is if z —y = 0, or £ = y. But, that would require
px(z —y) =0, or z=y. This is a contradiction, so there are no lucky p-triples if p is prime.

Problem 6. Recall that a proper factor of b is a factor other than 1 or b. For example, 2 and 3 are
proper factors of 6, but 1 and 6 are not.

2] (a) Prove that if (z,y, ) is a lucky b-triple, where b — 1 is prime, then y = b — 1.

Solution: If (z,y, 2) is a lucky b-triple, then
(b — z)y = (b— 1)az,

and if b — 1 is prime, then b —1 |y or b — 1 | bz — z. However, bx — 2z =2 — 2z mod b — 1,
which is only congruent to 0 if = z, which is impossible. Thus, we must have b — 1 | y, and
since 1 <y < b— 1, the only value of y that works is y = b — 1.

[2] (b) Prove that when b — 1 is prime, A(b) is exactly equal to the number of proper factors of b.

Solution: By the result in part (a), we have to find « and z that satisfy bz — z = zz, so
(x+1)(b—=2) =0b. Then, b—z | b, and since 1 < z < b—1 (2 # b — 1 because otherwise
x = z = b—1, a contradiction), b — z is a proper factor of b, so there is exactly one lucky
b-triple for every proper factor of b, from which the desired statement follows.




[1] (¢) Prove that A\(b) is greater than or equal to the number of proper factors of b.

Solution: From the previous proof, we can see that for every proper factor k& of b, (% —-1,b—
1,b — k) is a lucky b-triple whenever b — 1 is prime. These triples also work for any b, so A(b)
must be at least the number of proper factors of b.

2] (d) Prove that if b is odd and not prime, A(b) is greater than the number of proper factors of b.

Solution: We know now that (% —1,b—1,b—k) is a lucky triple for any proper factor k of
b. Since b is odd, k and % are both odd, so each term in the triple (% —1,b—1,b—k) is even.
Then, if we divide each term by 2, we get another lucky b-triple in addition to the ones where
y = b— 1. Since the number of lucky b-triples with y = b — 1 is equal to the number of proper
factors of b, A\(b) must be greater than the number of proper factors of b.

Problem 7. With the lucky 10-triple (z,y, 2) = (1,6, 4), note that we have 22 < z < y.

[4] (a) Prove that if (z,y, 2) is a lucky b-triple, then the above inequality must hold, that is, 2z < z < y.

Solution: We have
br(z —y) = z(x —y) and (bx — 2)y = (b — 1)zz,

so if y < z, we must have y < x as well, otherwise the first equation would not hold. But, if
y < x and y < z, we have

(br — 2)y = bry — 2y < brz — zx = (b — 1)z,

a contradiction with the second equation. Thus, we must have y > z. In fact, since y = z
implies x = y, which is not allowed, we must have z < y.
Now, assume 2z > z. Then, we have

(b— 1z = (bx — 2)y > (b—2)zy,

b—2

z > .
Combined with y > z, this means that there must exist an integer between z and g:—éz,
exclusive. In other words,
b—1
b—2
so z > b — 2, thus we must have z = b — 1. But, this would result in z > y, a contradiction.
Therefore, we must have z > 2z. Putting everything together, we have 2z < z < y.

z—z>1,

[2]  (b) Can any of the inequalities above be strict? In other words, can we prove that 2z < z or z < y for
all lucky b-triples (z,y, 2)?

Solution: We proved in part (a) that we must have z < y. However, we cannot prove 2z < z.
Indeed, the lucky 4-triple (1,3,2) is an example where 2x = z = 2, so we cannot improve the
inequality.




An Algorithmic Approach

The earlier results give us insights into how to generate lucky triples with y = b — 1. In this section, we
will develop an algorithm to find all the non-trivial lucky b-triples with y < b — 1. Assume that (z,v, z)
is a lucky b-triple. We will start by picking a prime factor p of b — 1, and we define [ = %

[1] Problem 8. Prove that either p |y or p | bz — z.

Solution: We have
(bx — 2)y = (b—1)zz,

so if p | b— 1, we must have either p | y or p | bz — z.

[3] Problem 9. Prove that if p | bx — z, then there exists a prime ¢ such that ¢ is a factor of b — 1 and y is
divisible by gq.

Solution: Since bx —z = (b— 1)z +x — 2z, and p | b—1, it follows that p |  — z. Let us define

T —z
s = ,
p

and recall that [ = b;%. Then, bz — z = p(lx + s), and since (bx — z)y = (b — 1)xz, we have

br — z p(lx + s) s
= = = 1 _ .
: (b— 1)xy plx 4 ( + lx) 4

Now, z > 1, |z — 2| < b—1, so |s| < [. Thus, 7% can only be an integer if [z | y. Since [ is
a proper factor of b — 1, y must be divisible by some prime factor of b — 1. Take this prime
factor to be ¢, and we are done.

Problem 10. The result of problem 9 suggest that we only need to consider the case of p | y. Given
this assumption, prove the following:

[4] (a) Let us define m = £ and k = £ = 2, Find a lucky b-triple in terms of p, b, m, k, and [.
P Pz ©

Solution: Dividing both sides of (bx — 2z)y = (b — 1)xz by p, we get
(bx — 2)m = zzl.

Hence, z | mz, so k = ™= is an integer, and mz = xk. Making this substitution, we have

brm — zk = xzl — bm:k—i—zl:k—ﬁ—lxk:k(l—klx).
m m

Consequently, k | m2b. Then, solving for z, we get

v m2b — mk
n kl ’
S0
kx mb—k
7= — =
m l

This gives us the lucky b-triple




2] (b) Prove that k =m mod [, that is, m and k have the same remainder when divided by I.

Solution: From the solution to part (a), we have

mb—k
l )

z =

which we will rewrite as

mb—1)+m—k

Since z is an integer and [ | b— 1, we have [ | m — k, so k =m mod .

(3] (c¢) Find the best upper and lower bounds for k in terms of b, m, and I. Note that while 0 is obviously
a lower bound for k, it is not the best lower bound.

Solution: Since z > 1, and from the solution to (a), we found

m2b — mk
r=——,

kl

we have
m2b — mk m2b
—>1 = k< .
kl l+m

From part (b), we have k =m mod [, so k > m. However, if k = m, we have:

xzm%—mk:mb—m:mb—l —mp
kl l l ’
Yy =mp,
mb—k mb—m
z = = = mp,

l l

which is a trivial solution and doesn’t count. Consequently, k > m + L.

Using the above results, we can delineate a quick algorithm to find all lucky b-triples with y < b— 1.
As an interesting result, we can prove that any lucky b-triple (z,y, z) must satisfy ged(y,b—1) > 1.

Final thoughts

The following problems are considered extra credit, and not answering them will not negatively impact
your score. However, due to the extreme difficulty of the problems, we strongly recommend finishing the
earlier problems before tackling these for the sake of using your time efficiently.

Problem 11. Prove or disprove the following;:

(5] (a) A(b) is odd if and only if b = 4n? for some positive integer n.

[5]  (b) There exists infinite values of n such that there does not exist a b with A(b) = n.
[5] (c) A(b) < b for all b.

[5])  (d) There are infinitely many b such that A\(b) = 2.

Remark: Problem 11 currently does not have solutions, and (d) is an unsolved problem in math-
ematics. More specifically, if A(b) = 2, then b has 1 or 2 proper factors. If b has 1 proper factor, then
b = p?, for which (p — 1,p? — 1,p* — p) is a solution. But, since p — 1 divides each term in that triple,
there exists a triple for every factor of p — 1, so the only p for which A(p?) = 2 is p = 3. If b has 2 proper
factors, then b must be even, for if b is odd, then by 6 (d), A(b) > 2. Then, b = 2p for some prime p,
orb=2%=8. If b = 2p and \(b) = 2, then we must have 2p — 1 is also prime. Proving that there
are infinite primes p such that 2p — 1 is also prime is very closely related to the Sophie Germain primes
conjecture (infinite p with 2p + 1 prime), which is an unsolved hypothesis.



