
2020 Duke Math Meet

Problems and Solutions

Saturday 31st October, 2020

1 Individual Problems

Problem 1.1. Four witches are riding their brooms around a circle with circumference 10m.
They are standing at the same spot, and then they all start to ride clockwise with the speed
of 1, 2, 3, and 4 m/s, respectively. Assume that they stop at the time when every pair of
witches has met for at least two times (the first position before they start counts as one
time). What is the total distance all the four witches have travelled?

Solution. 100.

We can see that they will stop when the witches with speed 3 and 4 meet for the second
time. If they meet the second time after s seconds, then 4s = 3s+ 10, so s = 10. Then, the
total distance traveled is 10 · (1 + 2 + 3 + 4) = 100.

Problem 1.2. Suppose A is an equilateral triangle, O is its inscribed circle, and B is another
equilateral triangle inscribed in O. Denote the area of triangle T as [T ]. Evaluate [A]

[B]
.

Solution. 4.

Suppose A has side length a. Since O is the inscribed circle of A, the radius r of O
is a

2
/
√

3 = a
2
√
3
. Since B is an equilateral triangle inscribed in O, its side length b satisfies

b =
√

3r. Hence, b = a
2
, so [A]

[B]
= 22 = 4.
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Problem 1.3. Tim has bought a lot of candies for Halloween, but unfortunately, he forgot
the exact number of candies he has. He only remembers that it’s an even number less than
2020. As Tim tries to put the candies into his unlimited supply of boxes, he finds that there
will be 1 candy left if he puts seven in each box, 6 left if he puts eleven in each box, and 3
left if he puts thirteen in each box. Given the above information, find the total number of
candies Tim has bought.

Solution. 666

Let x be the total number of candies that Tim has bought. Then, we have:

x ≡ 0 mod 2,

x ≡ 1 mod 7,

x ≡ 6 mod 11,

x ≡ 3 mod 13.

From the last two, we must have x ≡ 3 + 7 · 13 ≡ 6 + 8 · 11 = 94 mod 143. Combining with
the first equation gives us x ≡ 94 mod 286, and combining with the second equation gives
us x ≡ 94 + 2 · 286 = 1 + 95 · 7 ≡ 666 mod (2 · 7 · 11 · 13 = 1502). Then, since 666 is the
only integer less than 2020 that is congruent to 666 mod 2002, we have x = 666.

Problem 1.4. Let f(n) be a function defined on positive integers n such that f(1) = 0, and
f(p) = 1 for all prime numbers p, and

f(mn) = nf(m) +mf(n)

for all positive integers m and n. Let

n = 277945762500 = 22335577.

Compute the value of f(n)
n

.

Solution. 4.

Let us consider the general case, where n = pe11 p
e2
2 · · · p

ek
k . Let S =

∑k
i=1 ei. We

claim that f(n) is the sum of all factors α of n such the sum of the exponents in the prime
factorization of α is equal to S−1. For example, f(22 ·3 ·5) = 2 ·2 ·3+2 ·2 ·5+2 ·3 ·5+2 ·3 ·5.
We leave the induction proof as an exercise to the reader. Then, we can rewrite f(n) as

f(n) =
n

p1
+ · · ·+ n

p1︸ ︷︷ ︸
e1 times

+ · · ·+ n

pk
+ · · ·+ n

pk︸ ︷︷ ︸
ek times

= n

k∑
i=1

ei
pi
.

Therefore, in this case, we have f(n) = n(2
2

+ 3
3

+ 5
5

+ 7
7
) = 4n, so f(n)

n
= 4.
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Problem 1.5. Compute the only positive integer value of 404
r2−4 , where r is a rational number.

Solution. 2500.

Let r = a
b
, where a and b are relatively prime integers. Then, we have

404

r2 − 4
=

404
a2

b2
− 4

=
404b2

a2 − 4b2
=

404b2

(a− 2b)(a+ 2b)
.

Since the greatest common factor of a, b is 1, we know that the greatest common factor of b
and a−2b as well as a+2b is also 1. Therefore, both a−2b and a+2b must be factors of 404
in order for the fraction to be an integer, and no factors from either term in the denominator
may be drawn from b2.

Since 404 = 22 · 101, we can check all possibilities for the values of a− 2b and a+ 2b. In
particular, we check cases where (a− 2b)(a+ 2b) = 4, 101, and 404, and solve for integers a
and b. Then, we see that the only solution that works is a− 2b = 1 and a+ 2b = 101, giving
us a = 51 and b = 25, so r = 51

25
. Then, plugging this back into the original expression gives

us
404

r2 − 4
= 404 · 625

101
= 2500.

Problem 1.6. Let α = 3 +
√

10.. If
∞∏
k=1

(
1 +

5α + 1

αk + α

)
= m+

√
n,

where m and n are integers, find 10m+ n.

Solution. 50.

The key observation here is α2 = 6α+1. Using this fact, we can simplify the expression:
∞∏
k=1

(
1 +

5α + 1

αk + α

)
=
∞∏
k=1

(
αk + 6α + 1

αk + α

)
=
∞∏
k=1

(
αk + α2

αk + α

)
=
∞∏
k=0

(
αk + α

αk + 1

)
.

The product of the first n+ 1 terms of this product is

(1 + α)

(
αn

αn + 1

)
,

and as n grows, the fraction grows infinitely close to 1, so the product is equal to

α + 1 = 4 +
√

10.

Therefore, 10m+ n = 40 + 10 = 50.
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Problem 1.7. Charlie is watching a spider in the center of a hexagonal web of side length 4.
The web also consists of threads that form equilateral triangles of side length 1 that perfectly
tile the hexagon. Each minute, the spider moves unit distance along one thread. If m

n
is the

probability, in lowest terms, that after four minutes the spider is either at the edge of her
web or in the center, find the value of m+ n.

Solution. 241.

We note that at each move the spider either moves closer to the edge, maintains its
distance, or moves away from the edge. For the spider to reach the edge, it needs to move
forwards four times. Not all forward moves are the same, as some forwards moves allows the
spider to go to three possible forward moves while some forward moves only allow the spider
to go to two possible forward moves. We will call these moves f3 and f2 for convenience. We
see that by doing some casework that

P(f → f3 → f3 → f3) = 1 · 1

6
· 1

6
· 1

2
=

1

72
,

P(f → f3 → f2 → f2) = 1 · 1

6
· 1

3
· 1

3
=

1

54
,

P(f → f2 → f2 → f2) = 1 · 1

3
· 1

3
· 1

3
=

1

27
.

Now, we calculate the probability that the spider ends up back at the center. It can do so
by moving back twice (after being forced to move forwards). Or moving to the side twice
then moving back. We have that

P(f → b→ f → b) = 1 · 1

6
· 1 · 1

6
=

1

36
,

P(f → s→ s→ b) = 1 · 1

3
· 1

3
· 1

6
=

1

54
.

Adding all these cases together gives us the total probability of 25
216

, so the answer is 25+216 =
241.

Problem 1.8. Let ABC be a triangle with AB = 10, AC = 12, and ω its circumcircle. Let

F and G be points on AC such that AF = 2, FG = 6, and GC = 4, and let
−−→
BF and

−−→
BG

intersect ω at D and E, respectively. Given that AC and DE are parallel, what is the square
of the length of BC?

Solution. 250.

Denote x = BC. Since ACED is an isosceles trapezoid, we may put y = AE = CD.
Finally, let p = BF , q = DF , u = BG, and v = GE. Note that ∠BAC and ∠BDC are
inscribed in the same circle, so they have the same measure. Therefore, 4ABF and 4DCF
are similar, so

DF

AF
=
CD

AB
=
CF

BF
=⇒ q

2
=

y

10
=

10

p
.
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A

B
C

D

EG

F

Similarly (pun intended), we have that 4BCG and 4AEG are similar, so we have

AE

BC
=
EG

CG
=
AG

BG
=⇒ y

x
=
v

4
=

8

u
.

Lastly, since AC‖DE, we have
p

q
=
u

v
,

so combining all of the above gives us

p

q
=

100
y
y
5

=

8x
y

4y
x

,

so 500 = 2x2, and x2 = 250.

Problem 1.9. Two blue devils and 4 angels go trick-or-treating. They randomly split up
into 3 non-empty groups. Let p be the probability that in at least one of these groups, the
number of angels is nonzero and no more than the number of devils in that group. If p = m

n

in lowest terms, compute m+ n.

Solution. 76.

There are three ways to partition 6 into 3 groups: (4, 1, 1), (3, 2, 1), and (2, 2, 2). In the
first case, there are a total of

(
6
2

)
= 15 ways to make the groups. To satisfy the criteria,

the two devils must be in the group of 4, hence
(
4
2

)
= 6 groupings. In the second case,

there are a total of 6 ·
(
5
2

)
= 60 ways to make the groups. To satisfy the criteria, either

the two devils are in the group of 3, or there is exactly one devil in the group of 2. There

are 4 ·
(
3
2

)
+ 2 · 4 ·

(
4
1

)
= 44 groupings. In the last case, there are

(6
2)(

4
2)

3!
= 15 total ways

to make the groups. To satisfy the criteria, the two devils cannot be in the same group,

giving us
(4
2)
2!

= 3 bad groupings, so 12 groups that work. This gives us a total probability
of 6+44+12

15+60+15
= 62

90
= 31

45
, so the answer is 31 + 45 = 76.
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Problem 1.10. We know that

222000 = 4569878 . . . 229376︸ ︷︷ ︸
6623 digits

.

For how many positive integers n < 22000 is it also true that the first digit of 2n is 4?

Solution. 2132

If the first digit of a k-digit number N is c, then c10k ≤ N < (c+ 1)10k−1. This implies
that 2c10k−1 ≤ 2N < (2c + 2)10k−1, i.e. the first digit of 2N is at least the first digit of
2c and at most the first digit of 2c + 1. We apply this to the first digits of powers of two:
Having a power of two with the first digit equal to 1, there are these five possibilities for the
first digits of the following powers of two: (1) 1,2,4,8,1; (2) 1,2,4,9,1; (3) 1,2,5,1; (4) 1,3,6,1;
(5) 1,3,7,1.

Let k be a non-negative integer such that 2k begins with 1 and has d digits. Then, there
is a unique power of two beginning with 1 and having d + 1 digits, and it is either 2k+3 (if
we are in one of the situations (3), (4), (5) above) or 2k+4 (given that the case (1) or (2)
occurs). As 20 (having 1 digit) and 221998 (having 6623 digits) begin with 1, we can compute
how many times (1) or (2) occurs when computing successive powers of two: It is exactly
21998− 3 · 6622 = 2132 times.

Finally, observe that the case (1) and (2) are precisely those giving rise to a power of
two starting with 4, therefore there are exactly 2132 such numbers in the given range.

2 Team Problems

Problem 2.1. At Duke, 1
2

of the students like lacrosse, 3
4

like football, and 7
8

like basketball.
Let p be the proportion of students who like at least all three of these sports and let q be
the difference between the maximum and minimum possible values of p. If q is written as m

n

in lowest terms, find the value of m+ n.

Solution. 11.

The maximum occurs when the 1
2

that like lacrosse alsoo like football and basketball,
so the maximum is 1

2
. To find the minimum, note that the minimum amount that like both

lacrosse and football is 1
4
, so we want the minimal overlap between this 1

4
and the 7

8
basketball

lovers, which is 1
8

of the student population. Thus, q = 1− 1
8

= 3
8
, giving the final answer of

11.

Problem 2.2. A dukie word is a 10-letter word, each letter is one of the four D, U , K,
E such that there are four consecutive letters in that word forming the letter DUKE in
this order. For example, DUDKDUKEEK is a dukie word, but DUEDKUKEDE is not.
How many different dukie words can we construct in total?
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Solution. 28576

First, we count the number of dukie words with at least one DUKE present. We can see
that there are 10−4+1 = 7 possible positions for the word DUKE, and for the remaining 6
positions, there are 46 ways to choose the letter, so there are 7 · 46 dukie words with at least
one DUKE present. Now we count the number of dukie words with two DUKE presences.
We can treat the word DUKE as one ”super letter”, so for a word with 2 DUKEs present,
there are 2 remaining positions, each of which have 4 letter choices. Then, we have two
letters and two super letters, giving us 42 ·

(
4
2

)
dukie words with 2 DUKEs present. Thus,

the total number of dukie words is 7 · 46 − 42 ·
(
4
2

)
= 28576.

Problem 2.3. Rectangle ABCD has sides AB = 8, BC = 6. 4AEC is an isosceles right
triangle with hypotenuse AC and E above AC. 4BFD is an isosceles right triangle with
hypotenuse BD and F below BD. Find the area of BCFE.

Solution. 7

A B

CD

E

F

Apply Ptolemy’s Theorem on AEBC to get (10)(EB)+(5
√

2)(6) = (5
√

2)(8), so EB =√
2. Applying Ptolemy’s again on EBCF gives us (EF )(6)+(

√
(2))2 = (5

√
2)2, so EF = 8.

Since EBCF is isosceles, the distance from E to AB is 1, so by the Pythagorean Theorem,
the height is 1. The area is therefore 6+8

2
· 1 = 7.

Problem 2.4. Chris is playing with 6 pumpkins. He decides to cut each pumpkin in half
horizontally into a top half and a bottom half. He then pairs each top-half pumpkin with
a bottom-half pumpkin, so that he ends up having six “recombinant pumpkins”. In how
many ways can he pair them so that only one of the six top-half pumpkins is paired with its
original bottom-half pumpkin?

Solution. 264.

There are 6 ways to choose which of the 6 pumpkins is restored correctly. The other
five are deranged (all halves paired incorrectly). If Dn denotes the number of derangements
for n pairs of objects, we know that Dn = (n− 1)(Dn−1 +Dn−2), where D1 = 0 and D2 = 1
(the proof of this is left as an exercise to the reader). Then, we have D5 = 44, so there
are 6 · 44 = 264 ways to pair the pumpkins so that only one of the pumpkins is correctly
restored.
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Problem 2.5. Matt comes to a pumpkin farm to pick 3 pumpkins. He picks the pumpkins
randomly from a total of 30 pumpkins. Every pumpkin weighs an integer value between 7
to 16 (including 7 and 16) pounds, and there’re 3 pumpkins for each integer weight between
7 to 16. Matt hopes the weight of the 3 pumpkins he picks to form the length of the sides
of a triangle. Let m

n
be the probability, in lowewst terms, that Matt will get what he hopes

for. Find the value of m+ n

Solution. 8003.

We compute the complement: the three weights do not form a triangle. The triplets for
which this happens are: (7, 7, 14), (7, 7, 15), (7, 7, 16), (7, 8, 15), (7, 8, 16), (7, 9, 16), (8, 8, 16).
For the triplets of the form (a, a, b), there are

(
3
2

)
· 3 = 9 combinations of the pumpkins,

and for the triplets of the form (a, b, c), there are 33 = 27 combinations of the pumpkins.
Therefore, the complement is 9 · 4 + 27 · 3 = 117, so the desired probability is

1− 117(
30
3

) =
3943

4060
.

Hence, the answer is 3943 + 4060 = 8003.

Problem 2.6. Let a, b, c, d be distinct complex numbers such that |a| = |b| = |c| = |d| = 3
and |a+ b+ c+ d| = 8. Find |abc+ abd+ acd+ bcd|.

Solution. 72.

Note that

|abc+ abd+ acd+ bcd| = |abcd|
∣∣∣∣1a +

1

b
+

1

c
+

1

d

∣∣∣∣ ,
since magnitudes are distributive over multiplication. The trick is to express 1

z
as z
|z|2 , and

to note that |z| = |z|. Then, we have:

|abcd|
∣∣∣∣1a +

1

b
+

1

c
+

1

d

∣∣∣∣ = |a||b||c||d|
∣∣∣∣ a|a|2 +

b

|b|2
+

c

|c|2
+

d

|d|2

∣∣∣∣
= 34

∣∣∣∣a9 +
b

9
+
c

9
+
d

9

∣∣∣∣
= 9|a+ b+ c+ d|
= 9

∣∣a+ b+ c+ d
∣∣

= 9|(a+ b+ c+ d)| = 9 · 8 = 72.

Problem 2.7. A board contains the integers 1, 2, . . . , 10. Anna repeatedly erases two num-
bers a and b and replaces it with a+ b, gaining ab(a+ b) lollipops in the process. She stops
when there is only one number left in the board. Assuming Anna uses the best strategy to
get the maximum number of lollipops, how many lollipops will she have?
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Solution. 54450.

After replacing a and b with a + b, Anna will gain ab(a + b) = (a+b)3−a3−b3
3

lollipops.
Therefore, when the numbers a + b and c and replaced with a + b + c, Anna will gain
(a+b+c)3−(a+b)3−c3

3
, and combined with the first quantity, results in an overall net gain of

(a+b+c)3−a3−b3−c3
3

. Thus, we can see that at the end, Anna will have

(1 + 2 + · · ·+ 10)3 − 13 − 23 − · · · − 103

3
= 54450

lollipops.

Problem 2.8. Ajay and Joey are playing a card game. Ajay has cards labelled 2, 4, 6, 8, and
10, and Joey has cards labelled 1, 3, 5, 7, 9. Each of them takes a hand of 4 random cards
and picks one to play. If one of the cards is at least twice as big as the other, whoever played
the smaller card wins. Otherwise, the larger card wins. Ajay and Joey have big brains, so
they play perfectly. If m

n
is the probability, in lowest terms, that Joey wins, find m+ n.

Solution. 19.

First note that 1 beats everything, so if Joey has it in his hand, then he will always play
it and win. Thus, we just need to consider the case when Joey doesn’t draw the 1. Also
note that because of this, Ajay will play assuming Joey doesn’t draw the 1, because it is the
only way that Ajay can win.

Note that 3 beats every card except the 4, while 9 beats only beats a 6 and 8, so playing
the 9 is strictly worse than playing the 3. Thus, Joey will never play the 9, and Ajay knows
this, so Ajay will play assuming Joey will play one of 3, 5, or 7.

Now, we look at Ajay’s options. Both 2 and 8 beat 5 and 7, while 6 and 10 only beat 5
and 7, respectively. Thus, Ajay will never play 6 and 10, since they are strictly worse than
both 2 and 8. We can further simplify by noticing that 5 and 7 are equivalent for Joey, since
both beat 4 but lose to 2 and 8, and 2 and 8 are equivalent for Ajay.

Thus, if we let p be the probability that Ajay chooses 4 when he has a 4 in his hand, we
have that overall the probability of him playing 4 is .8 ·p, so the probability of playing 2 or 8
is 1− 0.8p. To ensure that Joey doesn’t gain an advantage, these two must be equal, so we
set 0.8p = 1− 0.8p, or p = 5

8
, and to ensure that Ajay doesn’t gain an advantage, Joey picks

3 with probability 1
2

and 5 or 7 with probability 1
2
. Therefore, Joey will win with probability

4

5
+

1

5
· 1

2
=

9

10
,

so our final answer is 9 + 10 = 19.

Problem 2.9. Let ABCDEFGHI be a regular nonagon with circumcircle ω and center O.
Let M be the midpoint of the shorter arc AB of ω, P be the midpoint of MO, and N be
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the midpoint of BC. Let lines OC and PN intersect at Q. Find the measure of ∠NQC in
degrees.

Solution. 10.

A

B

C
O Q

P
N

Mω

Since C and M lie on ω, we have OC = OM , and ∠MOC = ∠MOB + ∠BOC = 20 +
40 = 60, so 4OCM is equilateral. Then, since P is the midpoint of OM , we have ∠OPC =
90◦. Since ∠ONC = 90◦ because N is the midpoint of BC, we have that quadrilateral
OCNP is cyclic. Furthermore, ∠OCN = 180◦ − 20◦ − 90◦ = 70◦, so ∠OPN = 180◦ −
∠OCN = 110◦ because OCNP is cyclic. Therefore, using 4OQP , we have

∠NQC = ∠PQO = 180◦ − ∠POQ− ∠QPO = 10◦.

Problem 2.10. In a 30× 30 square table, every square contains either a kit-kat or an oreo.
Let T be the number of triples (s1, s2, s3) of squares such that s1 and s2 are in the same row,
and s2 and s3 are in the same column, with s1 and s3 containing kit-kats and s2 containing
an oreo. Find the maximum value of T .

Solution. 120000.

We claim that in an n× n square table there are at most 4n2

27
such triples.

Let row i and column j contain ai and bj kit-kats respectively, and let R be the set of red
cells. For every red cell (i, j) there are aibj admissible triples (C1, C2, C3) with C2 = (i, j),
therefore

T =
∑

(i,j)∈R

aibj.

We use the inequality 2ab ≤ a2 + b2 to obtain

T ≤ 1

2

∑
(i,j)∈R

(a2i + b2j) =
1

2

n∑
i=1

(n− ai)a2i +
1

2

n∑
j=1

(n− bj)b2j .
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This is because there are n− ai red cells in row i and n− bj red cells in column j. Now we
maximize the right-hand side.

By the AM-GM inequality we have

(n− x)x2 =
1

2
(2n− 2x) · x · x ≤ 1

2

(
2n

3

)3

=
4n3

27
,

with equality if and only if x = 2n
3

. By putting everything together, we get

T ≤ n

2

4n3

27
+
n

2

4n3

27
=

4n4

27
.

If n = 30, then any coloring of the square table with x = 2n
3

= 20 kit-kats in each
row and column attains the maximum as all inequalities in the previous argument become
equalities. For example, let a cell (i, j) contain a kit-kat if i − j ≡ 1, 2, . . . , 20 (mod 30),
and red otherwise.

Therefore the maximum value T can attain is T = 4·304
27

= 120000.
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3 Devil Round

Estimate to the nearest integer (unless specificed otherwise) the following values:

Problem 3.1. Total time (in minutes) it would take to watch all of Leonardo DiCaprio’s
movies.

Answer. 5621.

Problem 3.2. Square root of the 10312020th prime number.

Answer. 13615.

Problem 3.3. Geometric mean of the total gross of the top 20 grossing horror movies in
2020.

Answer. 1914754.

Problem 3.4. Age (in years) of the oldest structure still in operation at Duke University.

Answer. 128. The oldest structure still in operation at Duke University is Epworth House,
which opened in 1892.

Problem 3.5. Let V = 100. You flip a fair coin 20 times. For each flip, if you flip a heads,
then you add 20 to V , and if you flip a tails, then V becomes 1

V
. For example, after flipping

a heads then a tails, V is 1
120

. Calculate the expected value of V at the end of 20 flips to
three decimal places.

Answer. 40.524.

Problem 3.6. Number of 3-pointers Zion Williamson made during his time with Duke.

Answer. 24.

Problem 3.7. Distance, in miles, from Duke University (Durham, NC) to Duke Kunshan
University (Suzhou, China), if one was to travel by foot through the Bering Strait (located
between Alaska and Russia). Assume you must walk on land and that there are no travel
restrictions.

Answer. 8917.

Problem 3.8. The number of digits past the decimal point after which the digits ”2020”
first appear consecutively in the decimal expansion of π.

Answer. 7377.

Problem 3.9. Total number of employees at Duke University.
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Answer. 42479.

Problem 3.10. Total number of downloads of the game Among Us.

Answer. 74000000.
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