
Data lying in a high dimensional ambient space are commonly thought to have a much lower
intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional manifold.
If one does not exploit the hidden geometry in the data but instead deal with the ambient high
dimensional Euclidean spaces directly, both the statistical and computation efficiency are extremely
low. In contrast, an accurate approximation of the unknown manifold will benefit a variety of
aspects including dimension reduction, feature selection, density estimation, classification,
clustering, data denoising, data visualization and so on. Most of the literature for data analysis relies
on linear or locally linear methods. However, when the manifold has essential curvature, these linear
methods suffer from low accuracy and efficiency. There is also an immense literature focused on
non-linear methods like Variational Auto Encoders and Gaussian Process Latent Variable Model, to
improve the approximation performance. However, these methods are complex black boxes lacking
reproducibility, identifiability and interpretability. As a result, new non-linear tools need to be
developed without introducing too much extra complexity.

My dissertation focuses on exploiting the geometry in the data through the curvature of the
unknown manifold to efficiently estimate the manifold, while keeping the simple and clean close
forms as in linear methods. In particular, a simple and general alternative of locally linear
manifold learning method is proposed, which instead uses pieces of spheres, or spherelets, to
locally approximate the unknown manifold. The spherical principal components analysis (SPCA) is
developed as a non-linear alternative of PCA, to find the best sphere fitting the data. SPCA provides
simple tools that can be implemented efficiency for big and complex data and allow one to learn
about geometric structure in the data, without introducing much more complexity than linear
methods. Inspired by spherelets, a curved kernel called the Fisher-Gaussian (FG) kernel is
introduced, which outperforms multivariate Gaussians for density estimation. In particular, the
Dirichlet process mixture of FG kernels model is studied for density estimation, which is proved to
be posterior consistent. In addition, some applications of spherelets, including classification,
geodesic distance estimation and clustering are also considered, with a variety of real data
applications.
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