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1 Abstract

We study a simplified model of a one-dimensional fluid-structure interaction problem
consisting of nonlinear shallow water waves coupled to a linearized elasticity model with
the boundary between the fluid and solid domains allowed to freely move. In order to
couple the fluid and solid problems together and describe the motion of the interface,
we turn to physical principles such as mass and energy conservation in order to provide
the necessary coupling conditions. Our analysis of the system consists of a two-pronged
approach of linear stability analysis and numerics. In our linear stability analysis, we
follow the approach of Lax and Majda’s work on the stability of shocks to analyze the
stability of the associated linearized problem. MacCormack’s method for finite difference
serves as the basis of our numerical model. This classical numerical method achieves
quadratic convergence for either the shallow water equation or linear wave equation in
isolation. We then combine these equations along the moving boundary using a scheme
rooted in energy conservation to study the behavior of the full coupled system with a
moving boundary. Our analysis provides a first step towards studying important physical
applications such as the iceberg calving problem. In our simplified setting, we are able
to simulate the dynamics of an incoming fluid swell by using suitably chosen boundary
conditions on the left side of the computational window.

2 Introduction

The study of fluid-structure interactions (FSI), while typically performed numerically
with the Navier-Stokes Equations, remains a field rich in theoretical and practical impli-
cations in extension to the interactions of shallow water waves and elastic solids. This
paper aims to explore the dynamics of such interactions by focusing on a simplified model
that couples nonlinear shallow water waves with a linearized elasticity model, with a free-
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moving boundary between the fluid and solid domains.

∂ζ

∂t
+

∂

∂x
(hvf ) = 0, x < X(t),

∂vf
∂t

+ vf
∂vf
∂x

+ g
∂ζ

∂x
= 0, x < X(t),

∂w

∂t
− ∂vs
∂x

= 0, x > X(t),

∂vs
∂t
− ∂

∂x
(
E

ρs
w) = 0, x > X(t),

(2.1)

where ζ is the deviation from equilibrium fluid depth, h is the total fluid depth, vf is
the fluid velocity, w = ∂u

∂x
is the solid deformation, vs = ∂u

∂t
is the solid velocity, E is the

elastic modulus of the solid, and ρs is the solid density. In section 3, we derive kinematic
and energy boundary conditions and the ODE for the interface between the fluid and
solid to complete this model (see 3.7 for the complete theorem).

This model is in part motivated as an attempt to simulate real-world phenomena
such as iceberg calving, where fluid forces impact the dynamics of a glacier, causing an
iceberg to break off. Our model has several simplifications from its geophysical moti-
vation, namely the domain extends infinitely away from the moving boundary between
the fluid and solid and the solid extends to the seafloor, which is different compared to
geophysical problem where we would expect ice to be floating above some water. While
these simplifications make it difficult to directly apply our model to the iceberg calving
phenomenon which is more analogous to shock formation in this more complex domain,
the study of how this simplified system at equilibrium responds to perturbations is a
towards elucidating the dynamics which could lead to an iceberg calving event.

Métivier among others [2, 4, 5, 7, 8, 9, 10] have made numerous contributions to
the field of shock dynamics, relevant to the well-posedness of our work as the fluid-solid
interface can be viewed as a de facto mathematical shock in the system even though the
boundary itself is not a physical shock wave. These works are mainly concerned with
shocks in traditional systems of conservation laws where the flux is the same on both
sides. Lax’s early works in 1957 provide insights on identification of physical 1D shocks
and how they relate to entropy conditions for scalar equations and determining which
piecewise constant states could exist physically [4]. This was further refined by Majda’s
work, which extended Lax’s argument to multiple dimensions and obtained a short time
existence result for perturbations of shocks [7, 8, 9]. Métivier’s 2001 study offered a
subtle refinement of Majda’s results, in addition to the discussion on the stability of
multidimensional shocks [10]. In our problem, the moving interface, viewed as a shock,
introduces discontinuities to the system at the fluid-solid boundary. For this reason, the
combined works referenced above give us a foundation to study the coupled problem.

Earlier studies on wave propagation in elastic solids, as summarized by Achenbach,
highlight key considerations for modeling the deformation of elastic materials [1]. In his
compilation, Achenbach emphasizes that referencing an undeformed resting state—one
to which the solid naturally returns in the absence of external forces—is a more intuitive
approach, thereby supporting the adoption of the material (Lagrangian) description for
modeling elasticity. Given that fluids typically are modeled in the Eulerian coordinate
system as it makes sense to track the movement of a particle in space without reference to
a undeformed state, within our FSI model, we initially represent the shallow water equa-
tions in the Eulerian coordinate system and the elastic wave equation in the Lagrangian
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coordinate system. Ergo, a key component in the derivation of our kinematic and energy
boundary conditions is the unification of the model under the Eulerian coordinate system.

The nonlinear shallow water wave equations, also known as the Saint-Venant equa-
tions, are a common choice for modeling fluid dynamics in shallow water contexts as
they follow from Euler’s equations when the horizontal scale is much greater than the
vertical scale. See [3] and sources therein for justification of the Saint-Venant equations.
Furthermore, in partnership with Tatsuo Iguchi, Lannes’ 2021 paper provided a theorem
for the existence of hyperbolic free boundary problems like the model established in (2.1),
subject to boundary conditions derived in section 3 [2]. In order to apply said existence
theorem, we must linearize the boundary conditions derived in 3 in the coupled shallow
water and elastic solid system. After this linearization, our model then satisfies Iguchi
and Lannes’ linear boundary conditions presented in Section 3.1, enabling us to directly
cite their theorem for proof of existence.

The first part of this work focuses on establishing the coupled model such that con-
servation of mass and energy are satisfied. The resulting conditions and an ordinary
differential equation (ODE) governing the location of the moving boundary together
with the fluid and solid equations comprise the complete model for the FSI problem
we seek to study. From here, we turn to Iguchi and Lannes’ work in our discussion of
well-posedness to prove the existence of solutions to our model. Then, we take the two
pronged approach of linear stability analysis and numerical simulation to analyze how
the model responds to a disruption from equilibrium. The linear stability analysis follows
the work of Lax, Majda, and Métivier to understand the affect of the interface de facto
mathematical shock on the model [10, 7, 8, 9].

MacCormack’s method for finite difference, along with a second-order scheme to ap-
proximate the location of the moving boundary and reconcile domain shifts between the
fluid and solid domains, is the basis of the deployed numerical approach [6]. Encompass-
ing a periodic forcing through a fictitious boundary condition on the fluid domain aligns
the numerical approach with geophysical motivation by modeling a discrete response of
the elastic solid to a fluid force.

This work lends way to several open problems which, if resolved, would allow our
model to better align with the geophysical motivation of iceberg calving. One such prob-
lem is our assumption that the iceberg extends to the seafloor: an assumption we make so
that we can assume uniform atmospheric pressure above the fluid, which plays a crucial
rule in deriving the second equation in (2.1). An additional vertical spatial dimension
could enable a model to include the vertical component of the fluid velocity vector field
so that we could model the more complex dynamics of deep water. The dynamics of
the open ocean around a glacier can also be modeled by a fluid model which includes a
viscous term, such as a more complex version of the Saint-Venant Equations. Further-
more, more sophisticated models of elasticity would make possible the examination of the
stress-strain relationship and domain fracturing, leading to greater understanding of the
conditions which cause an iceberg to break from a glacier. From here, the solid model
can be further adjusted to better match the shape of a real-world iceberg and encompass
a non-uniform material composition.
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3 Modeling

As outlined in the introduction, our one-dimensional coupled system consists of fluid
on one side, an elastic solid on the other side, and a moving boundary in between the
fluid and solid components. The fluid side is arbitrarily positioned on the left of our
model. Accordingly, the elastic solid is positioned on the right. We define X(t) to be the
location of the moving fluid-solid boundary. Note that the fluid on the left is without
loss of generality, reflecting through X(t) swaps left and right. Since we are primarily
interested in investigating the behavior of the system local to the moving boundary, both
the fluid and solid domains extend infinitely in the direction opposite of the moving
boundary. This enables us to make key simplifications and avoid additional boundary
considerations.

Remark 3.1. Even though periodic boundary conditions generically eliminate additional
boundary considerations and have some major technical aspects which make them easier
to work with, they are not possible here as they would create secondary moving boundaries,
which would significantly complicate the problem.

We model the fluid using the the nonlinear shallow water wave (Saint-Venant) equa-
tions

∂ζ

∂t
+

∂

∂x
(hvf ) = 0, x < X(t),

∂vf
∂t

+ vf
∂vf
∂x

+ g
∂ζ

∂x
= 0, x < X(t),

(3.1)

x
X(t)

Elastic Solid
E, ρs

Shallow-Water Fluid
ρf = constant

vf (x, t)

ζ(x, t)
h(x, t) = h0 + ζ(x, t)

h0

where ζ is the deviation from equilibrium fluid depth, h = h0 + ζ is the total fluid depth,
and vf is the fluid velocity. We model the elastic solid on the right-hand side of the moving
boundary using the standard linear wave equation, written as a first-order system

∂w

∂t
− ∂vs
∂x

= 0, x > X(t),

∂vs
∂t
− ∂

∂x
(
E

ρs
w) = 0, x > X(t),

(3.2)

where w = ∂u
∂x

is the solid deformation, vs = ∂u
∂t

is the solid velocity, E is the elastic
modulus of the solid, and ρs is the solid density. Note that u(x, t) is the displacement
in the horizontal direction in the traditional second order formulation of the linear wave
equation.
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With the basis for our model established, we now seek to derive an ODE governing
the behavior of the fluid-solid boundary. More specifically, we aim to confirm that the
velocity of the boundary, X ′(t), is equal to the velocity of the solid and fluid at the
location of the boundary. To do so, we start with the conservation of fluid mass:

∂mf

∂t
=

d

dt

∫ X(t)

−∞
ρf (h0 + ζ) dx = 0. (3.3)

Applying the Reynolds transport theorem and substituting from (3.1), the above becomes

d

dt

∫ X(t)

−∞
ρf (h0 + ζ) dx = ρf

∫ X(t)

−∞

∂ζ

∂t
dx+ ρfX

′(t)(h0 + ζ(X(t), t)),

= ρf

∫ X(t)

−∞
− ∂

∂x
(hvf ) dx+ ρfX

′(t)h(X(t), t),

= −ρfh(X(t), t)(vf (X(t), t)−X ′(t)) = 0.

From this result, we gain our first ODE for the moving boundary which serves as a
kinematic boundary condition on vf .

Proposition 3.2. The velocity of the fluid at the location of the contact line is equal to
the derivative of the contact line:

X ′(t) = vf (X(t), t). (3.4)

While the fluid equations are more commonly given in the Eulerian coordinate system
as variables track changes in time along fixed spatial grid, the derivation for equations
of solid motion rely on the notion of a displacement field, a distinctively Lagrangian
formulation [1]. Thus, the solid side of our coupled system is modeled in the Lagrangian
coordinate system. As a result, to derive the kinematic boundary condition on the solid
side, first we convert the linear wave equation in the Lagrangian setting to the Eulerian
coordinate system, which subsequently becomes nonlinear:

E

1− w
∂

∂x

(
w

1− w

)
= ρs

(
∂

∂t

(
vs

1− w

)
+

1

2

∂

∂x

(
v2
s

(1− w)2

))
. (3.5)

The solid velocity, deformation, and density in the Eulerian setting can be written as

vE =
vs

1− w
, wE =

w

1− w
, ρEs = ρs(1− w), (3.6)

and thus (3.5) can also be written as

E

1− w
∂wE
∂x

= ρs

(
∂vE
∂t

+
1

2

∂

∂x
(vE)2

)
. (3.7)

To avoid the complexities introduced by this nonlinear formula in the Eulerian coordinate
system, we perform a secondary linearization on vE and wE:

vE =
vs

1− w
= vs + vsw + vsw

2 + · · · ≈ vs, wE =
w

1− w
≈ w. (3.8)

Remark 3.3. Our adaptation from [2] and our numerics can handle (3.7) with relatively
minor adaptations if we break it into mass & momentum conservation; (3.8) was done
solely for simplicity sake.
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Substituting (3.8) into (3.7) and simplifying yields the second equation from the linear
wave equation system (3.2), now expressed in the Eulerian coordinate system thanks to
a secondary linearization about vE = wE = 0. As for the other equation in (3.2), it can
be obtained from the conservation of solid mass in the Eulerian setting

∂ρEs
∂t

+
∂

∂x
(ρEs vE) = 0, (3.9)

with necessary substitutions from (3.6). As a result of following this process, we are back
to the setting of the linear wave equation to model our solid in the Eulerian system.
Furthermore, the linearization proposed in (3.8) enables us to disregard the deformation
term in the denominator of (3.22) to yield the following kinematic boundary condition
on the solid domain.

Proposition 3.4. After imposing a secondary linearization on the velocity and deforma-
tion of the solid in Eulerian coordinates, the velocity of the solid at the boundary location
equals the velocity of the contact line:

X ′(t) = vs(X(t), t). (3.10)

From here, we can combine this result with (3.4) to obtain our complete kinematic
boundary condition which enforces continuity of velocity between the fluid and linearized
solid domains.

Proposition 3.5. The velocity of the fluid at the contact line equals the velocity of
the solid at the contact line when the linear wave equation in Eulerian coordinates in
linearized. That is, under this condition:

vf (X(t), t) = vs(X(t), t). (3.11)

Next, we seek to derive our second boundary condition using the global conservation
of energy in our coupling system. Let E represent the total energy of the system, and
then the conservation of energy is given by the following equation

dE
dt

=
d

dt

(∫ X(t)

−∞
ef dx+

∫ ∞
X(t)

êEs dx

)
= 0. (3.12)

Note that

ef =
1

2
ρfhv

2
f +

1

2
ρfgζ

2, (3.13)

is the fluid energy density satisfying local conservation of energy in Eulerian coordinates

∂ef
∂t

+
∂Ff
∂x

= 0, (3.14)

where Ff is the fluid energy flux density given by

Ff = Πhvf , (3.15)

where Π = 1
2
ρfvf

2 + ρfgζ is the hydrodynamic pressure. However, the solid initially is in
Lagrangian coordinate system, with local energy conservation in Lagrangian coordinates

∂es
∂t

+
∂Fs
∂x

= 0, (3.16)
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where es and Fs are the solid energy density and energy flux density in Lagrangian
coordinates, and we’d like to have everything in the Eulerian setting. Hence, we seek the
following conversion from Lagrangian to Eulerian coordinates

∂es
∂t
−→ ∂eEs

∂t
+ vE

∂eEs
∂x

,
∂Fs
∂x
−→ 1

1− ws
∂FEs
∂x

, (3.17)

where

eEs =
1

2
ρsvE

2 +
1

2
EwE

2, FEs = −EwvE, (3.18)

are the energy density and energy flux density in the Eulerian setting. Substituting these
conservation rules (3.17) into (3.16) yields

∂eEs
∂t

+ vE
∂eEs
∂x

+
1

1− ws
∂eEs
∂t

= 0. (3.19)

We can rewrite the above as
∂êEs
∂t

+
∂F̂Es
∂x

= 0, (3.20)

where ês and F̂s are the updated solid energy density and energy flux density in the
Eulerian setting given by

êEs = (1− ws)eEs , F̂Es = FEs + vse
E
s . (3.21)

Now that we have expressions for the energy and energy flux densities for the fluid and
solid in the Eulerian system, we can proceed with deriving an energy coupling condition
from global conservation of energy. Applying the Reynolds transport theorem to (3.12)
and make appropriate substitutions from (3.14) and (3.20) yield

dE
dt

=

∫ X(t)

−∞

∂ef
∂t

dx+X ′(t)ef (X(t), t) +

∫ ∞
X(t)

∂êEs
∂t

dx−X ′(t)êEs (X(t), t)),

=

∫ X(t)

−∞
−∂Ff
∂x

dx+

∫ ∞
X(t)

−∂F̂
E
s

∂x
dx+X ′(t)(ef (X(t), t)− êEs (X(t), t)),

= −Ff
∣∣
x=X(t)

+X ′(t)ef (X(t), t)︸ ︷︷ ︸
fluid part

+ F̂Es
∣∣
x=X(t)

−X ′(t)êEs (X(t), t)︸ ︷︷ ︸
solid part

.

For the solid part, from (3.6) the velocity of the contact line becomes

X ′(t) =
vs

1− w

∣∣∣∣
x=X(t)

, (3.22)

and hence with substitutions from (3.22) and (3.21), we have

F̂Es
∣∣
x=X(t)

−X ′(t)êEs (X(t), t) = (Fs + vse
E
s −X ′(t)(1− ws)eEs )

∣∣
x=X(t)

,

= (Fs + vse
E
s −

vs
1− ws

(1− ws)eEs )
∣∣
x=X(t)

= Fs
∣∣
x=X(t)

.
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We can now express the energy and energy flux densities using (3.13), (3.15), and (3.18)
while substituting using the kinematic boundary condition (3.4) to yield

dE
dt

= −Ff
∣∣
x=X(t)

+X ′(t)ef (X(t), t) + Fs
∣∣
x=X(t)

,

=

(
−(

1

2
ρfv

2
f + ρfgζ)hvf + vf (

1

2
ρfhv

2
f +

1

2
ρfgζ

2)− Ewvs
) ∣∣∣∣

x=X(t)

,

=

(
−1

2
ρfgvf (2hζ − ζ2)− Ewvs

) ∣∣∣∣
x=X(t)

,

= −X ′(t)
(

1

2
ρfg(h2 − h2

0) + Ew

) ∣∣∣∣
x=X(t)

= 0.

From here, as the mass & momentum conservation system in Eulerian coordinates is
Galilean invariant, we obtain the final formulation of our energy boundary condition.

Proposition 3.6. In order to obey global conservation of energy, the system must follow
the ensuing condition on the moving boundary between the fluid and solid domains

1

2
ρfg(h(X(t), t)2 − h2

0) + Ew(X(t), t) = 0. (3.23)

Now that we have developed conditions to satisfy the conservation of mass and energy,
we have all the components to properly define a one-dimensional model which couples
the shallow water wave and elastic solid equations along a moving boundary.

Theorem 3.7. The coupled shallow water wave and elastic solid system can be modeled
as the following system of PDEs

∂ζ

∂t
+

∂

∂x
(hvf ) = 0, x < X(t),

∂vf
∂t

+ vf
∂vf
∂x

+ g
∂ζ

∂x
= 0, x < X(t),

∂w

∂t
− ∂vs
∂x

= 0, x > X(t),

∂vs
∂t
− ∂

∂x
(
E

ρs
w) = 0, x > X(t),

(3.24)

subject to kinematic and energy boundary conditions

vf (X(t), t)− vs(X(t), t) = 0,

1

2
ρfg(h(X(t), t)2 − h2

0) + Ew(X(t), t) = 0,
(3.25)

and complemented by the ODE for the interface

X ′(t) = vf (X(t), t). (3.26)

4 Well-posedness

Now we would like to recall the framework introduced by Iguchi-Lannes. Let us consider
the following general system of PDEs with linear boundary conditions

∂~uL
∂t

+ AL(~uL)
∂~uL
∂x

= 0, x ∈ (−∞, X(t)),

∂~uR
∂t

+ AR(~uR)
∂~uR
∂x

= 0, x ∈ (X(t),∞),

(4.1)
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where ~uL, ~uR ∈ R2 and AL(~uL), AR(~uR) are 2× 2 coefficient matrices, with initial values
and subject to linear boundary conditions

~u|t=0 = ~uin(x), x ∈ R− ∪ R+,

N r
p~u−N l

p~u = g(t), x = X(t),
(4.2)

where ~u =

(
~uL
~uR

)
∈ R4and N l,r

p are two p × 4 matrices where the value of p depends on

the speed of the interface relative to the eigenvalues. In our scenario, we set p = 2 and
g(t) = 0, though this is a specialized case from a general result. Furthermore, X(t) is
the position of the interface satisfying X(0) = 0 without loss of generality. Section 3.3
of [2] constructs a change of variables ϕ(·, t) : R → R such that ϕ(x, 0) = x and for any
t ∈ [0, T ], we have

ϕ(0, t) = X(t),

ϕ(·, t) : R− → (−∞, X(t)),

ϕ(·, t) : R+ → (X(t),∞),

(4.3)

to “freeze” the boundary at x = 0. As a result, we can merge the two PDEs in (4.1) map
x→ −x on the fluid side, yielding

∂~u

∂t
+ A(~u, ∂ϕ)

∂~u

∂x
= 0, x ∈ (0, T )× R+, (4.4)

where ∂ϕ =

(
∂xϕ
∂tϕ

)
, and

A(~u, ∂ϕ) =

(
A1(~uL, ∂ϕL) 02×2

02×2 A2(~uR, ∂ϕR)

)
,

is the 4 × 4 block diagonal matrix merged from the matrices in (4.1) and with separate
change of variables given in (4.3), and ϕL, ϕR are the individual change of variables for
the fluid and solid side, respectively. In addition, (4.1) is complemented by their ODE
for the interface

X ′(t) = χ(~u|x=0), (4.5)

for some smooth function χ defined on a domain of R2 ×R2. Section 1.3 of [2] considers
the solution space Wm(T ) of hyperbolic systems in the space (0, T )× R+ as

Wm(T ) =
m⋂
j=0

Cj([0, T ];Hm−j(R+)), (4.6)

where Hm−j(R+) is the classical Sobolev space. With that in mind, Theorem 3.19 of [2]
states the following:

Theorem 4.1. Let m ≥ 2 be an integer; if ~uin ∈ Hm(R+) takes its values in K̃0 × K0

with K̃0 ⊂ Ũ and K0 ⊂ U compact and convex sets, if ~uin(0) ∈ UI , and if the data ~uin

satisfies the compatibility conditions up to order m−1, then there exists a unique solution
(~u,X(t)) to systems in the form of (4.4) complemented by the ODE for the interface (4.5)
subject to the linear boundary conditions in (4.2) if

a) AL,R ∈ C∞(U) and χ ∈ C∞(UI);
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b) for all ~u = (~uL, ~uR)T ∈ U , the matrices AL(~uL) and AR(~uR) have eigenvalues
±λ±L(~uL) and ±λ±R(~uR), respectively, with λ±L,R > 0;

c) for any ~u ∈ UI , the Lopatinsky matrix associated with the subsonic interface is
invertible;

d) for any ~u = (~uL, ~uR)T ∈ UI , there holds λ±L(~uL)∓χ(~u) > 0 and λ±R(~uR)∓χ(~u) > 0,
i.e the interface remains subsonic.

Our coupled systems with (3.1) and (3.2) are indeed in the form described in (4.4),
which now we will show. Let us combine (3.1) and (3.2) into one system and write them
in conservative form

∂

∂t

(
ζ

vf

)
+

∂

∂x

(
hv

1
2
vf

2 + gζ

)
= 0, x < X(t),

∂

∂t

(
w

vs

)
+

∂

∂x

(
−vs
− E
ρs
w

)
= 0, x > X(t),

(4.7)

where

Ff (ζ, vf ) =

(
hv

1
2
vf

2 + gζ

)
, Fs(w, vs) =

(
−vs
− E
ρs
w

)
,

are the corresponding fluid and solid flux. Applying the chain rule gives us the matrix
form 

∂

∂t

(
ζ

vf

)
+

(
vf h

g vf

)
∂

∂x

(
ζ

vf

)
= 0, x < X(t),

∂

∂t

(
w

vs

)
+

(
0 −1

− E
ρs

0

)
∂

∂x

(
w

vs

)
= 0, x > X(t),

(4.8)

where

DFf =

(
vf h
g vf

)
, DFs =

(
0 −1
− E
ρs

0

)
.

Letting ~u =


ζ
vf
w
vs

 and A(~u, ∂ϕ) be the corresponding 4× 4 block diagonal matrix made

from the matrices in (4.8) yields our coupled system in the form of (4.4).

Theorem 4.2. Let m ≥ 2 be an integer; if ~uin ∈ Hm(R+) takes its values in K̃0 × K0

with K̃0 ⊂ Ũ and K0 ⊂ U compact and convex sets, if ~uin(0) ∈ UI , and if the data ~uin

satisfies the compatibility conditions up to order m−1, then there exists a unique solution
(~u,X(t)) to (3.24) complemented by the ODE for the interface (3.26) subject to nonlinear
boundary conditions given by (3.25).

Nevertheless, one of our boundary conditions, specifically our energy boundary con-
dition from (3.23), is nonlinear.

Proof. We sought to address this issue by making the following change of variables de-
scribed in Assumption 6.7(iii) of [2] and adapted to our case

~v = Θ(~u) =

Ψ1(~u)
Ψ2(~u)
~θ(~u)

 ∈ R4, (4.9)
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where

Ψ1(~u) = vf − vs, Ψ2(~u) =
1

2
ρfg((h0 + ζ)2 − h0

2) + Ew, (4.10)

are our two boundary conditions and ~θ(~u) is a map from R4 −→ R2 whose existence is

guaranteed by the Lopatinsky condition and the inverse function theorem, as D~Ψ has
rank two and consequently ~θ(~u) can be obtained by completing a construct of a R4 basis

using the two linearly independent row vectors in D~Ψ. Hence our updated system is
given by

∂~v

∂t
+ A(~v)

∂~v

∂x
= 0, (4.11)

with updated linear boundary conditions{
~e1 · ~v = 0,

~e2 · ~v = 0,
(4.12)

where A(~v) is obtained by conjugating A(~u) and {~e1, ~e2, ~e3, ~e4} is the standard basis of R4.
Now we can properly apply Theorem 3.19 to this updated system with linear boundary
conditions and show that a unique solution exists for said system and therefore for (4.7),
as change of variables can easily bring us back to the original system.

Now let us take a look at the four assumptions described in Theorem 4.1. To start
with, a) is clear in our scenario as the matrices AL,R and the scalar function χ are
polynomial in ζ, vf , w, vs. Then, since A(~v) is similar to A(~u), they share the same
eigenvalues and hence the condition on strict hyperbolicity transfers over; as a result, we
could just show that the original system is strictly hyperbolic. Solving the characteristic
polynomials det(DFf − λLI) = 0 and det(DFs − λRI) = 0 yields the eigenvalues on the
fluid and solid side

λL = vf ±
√
gh, λR = ±

√
E

ρs
. (4.13)

Since both E and ρs are greater than zero, the eigenvalues on the solid side are real and
simple, and as long as ζ > −h0, the eigenvalues on the fluid side are real. Therefore, the
Saint-Venant equations are strictly hyperbolic on U = {(ζ, vf ) : ζ > −h0} and the wave
equations are unconditionally strictly hyperbolic.

Now as for the invertibility of the Kreiss-Lopatinsky matrix, let us first discuss the
case with the original coupled system. By Equation 3.8 of [2], the Lopatinsky matrix in
our scenario is given by

L2×2(~u) = D~Ψ(~u)

(
~v−L 02×1

02×1 ~v+
R

)
, (4.14)

where ~Ψ : R4 −→ R2 is the vector-valued function corresponding to the boundary condi-
tions, D~Ψ is the corresponding Jacobian matrix, c0 is some strictly-positive constant to
be determined, and ~v−L , ~v+

R correspond to the in-going and out-going eigenvectors of the
matrix DFf and DFs, respectively, or

~v−L =

(
−
√
h√
g

)
, ~v+

R =

(
−√ρs√
E

)
.

Hence our Lopatinsky condition is as follows:∣∣∣∣det

(
D~Ψ(ζ, vf , w, vs)

(
~v−L 02×1

02×1 ~v+
R

))∣∣∣∣ ≥ c0. (4.15)
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Writing out the Jacobian matrix yields

D~Ψ(ζ, vf , w, vs) =


∂Ψ1

∂ζ

∂Ψ1

∂vf

∂Ψ1

∂w

∂Ψ1

∂vs

∂Ψ2

∂ζ

∂Ψ2

∂vf

∂Ψ2

∂w

∂Ψ2

∂vs


=

(
0 1 0 −1

ρfg(h0 + ζ) 0 E 0

)
,

and consequently the Lopatinsky determinant becomes∣∣∣∣∣∣∣∣det

( 0 1 0 −1
ρfg(h0 + ζ) 0 E 0

)
−
√
h 0√
g 0

0 −√ρs
0

√
E



∣∣∣∣∣∣∣∣ .

Multiplying the matrices out gives us∣∣∣∣det

( √
g −

√
E

−ρfg(h0 + ζ)
3
2 −E√ρs

)∣∣∣∣ ,
and therefore we have ∣∣∣ρfg(h0 + ζ)

3
2 +

√
ρsgE

∣∣∣ ≥ c0. (4.16)

Choosing

|ζ| ≤ 1

2
h0, (4.17)

ensures that (4.16) holds for some c0 > 0 and that the corresponding Lopatinsky deter-
minant is uniformly bounded from below for all vf , vs, w. Fortunately, the Lopatinsky
condition carries over as well, which we will now briefly show. The Lopatinsky matrix of
(4.11) is given by

L2×2(~v) = D~Φ(~v)

(
Θ′(~u)

(
~v−L

02×1

)
Θ′(~u)

(
02×1

~v+
R

))
, (4.18)

where ~Φ(~v) =

(
Φ1(~v)
Φ2(~v)

)
=

(
Ψ1

Ψ2

)
and Θ′(~u) = D~v. Thus

D~Φ(Ψ1,Ψ2, θ1, θ2) =


∂Φ1

∂Ψ1

∂Φ1

∂Ψ2

∂Φ1

∂θ1

∂Φ1

∂θ2

∂Φ2

∂Ψ1

∂Φ2

∂Ψ2

∂Φ2

∂θ1

∂Φ2

∂θ2

 =

(
1 0 0 0
0 1 0 0

)
,

and our Lopatinsky condition becomes∣∣∣∣∣∣∣∣∣det


(

1 0 0 0
0 1 0 0

)
√
g −

√
E

−ρfg(h0 + ζ)
3
2 −E√ρs

−
√
h∂θ1
∂ζ

+
√
g ∂θ1
∂vf

−√ρs ∂θ1∂w
+
√
E ∂θ1
∂vs

−
√
h∂θ2
∂ζ

+
√
g ∂θ2
∂vf

−√ρs ∂θ2∂w
+
√
E ∂θ2
∂vs



∣∣∣∣∣∣∣∣∣ ≥ c0.
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Simplifying again yields (4.16), which brings us back to the conclusion of (4.17). Since
criteria c) from Theorem 3.19 is readily satisfied by restricting ζ, vf , w, vs to a sufficiently
small set, all three criteria are accounted for and we know that solution exists for the
system with linear boundary conditions after change of variables, and subsequently for
the original nonlinear hyperbolic system as well.

5 Linear Stability Analysis

5.1 Linearization

To begin with, we perform linear approximation on the four parameters:
ζ
vf
w
vs

 =


ζ
vf
w
vs

+


Z
Vf
W
Vs

 , (5.1)

where ζ, vf , w, vs are equilibrium-state constants and Z, Vf , W , Vs are sufficiently small,

and thus (4.7) becomes
∂

∂t

(
Z

Vf

)
= −

(
vf h0 + ζ

g vf

)
∂

∂x

(
Z

Vf

)
, x < X(t),

∂

∂t

(
W

Vs

)
=

(
0 1
E
ρs

0

)
∂

∂x

(
W

Vs

)
, x > X(t).

(5.2)

Now for all functions T (x, t) where T ∈ {Z, Vf ,W, Vs}, we make the following transfor-
mation

T (x, t) −→ T (x−X(t), t), (5.3)

and thus
∂T (x, t)

∂t
= −X ′(t)∂T

∂x
+
∂T

∂t
,

∂T (x, t)

∂x
=
∂T

∂x
.

(5.4)

Plugging (5.4) into (5.2) gives
∂

∂t

(
Z

Vf

)
= −

(
Vf +X ′(t) h0 + ζ

g Vf +X ′(t)

)
∂

∂x

(
Z

Vf

)
, x < 0,

∂

∂t

(
W

Vs

)
=

(
X ′(t) 1
E
ρs

X ′(t)

)
∂

∂x

(
W

Vs

)
, x > 0,

(5.5)

Observe that now the discontinuity occurs at the fixed coordinates x = 0 instead of X(t).
Now we would like to linearize the boundary conditions as well. First, just like those four
variables in (5.1), we approximate the contact line as

X(t) = vf t+ Y (t), (5.6)
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and thus differentiating would give us the kinematic boundary condition. Together with
the approximations from (5.1) and boundary conditions from (3.11) and (3.23), our lin-
earized boundary conditions are given by{

Vf = Vs, x = 0,

ρfg(h0 + ζ)Z + EW = 0, x = 0,
(5.7)

Now for simplicity sake, we set 
ζ
vf
w
vs

 = ~0.

First, note that this would turn (5.6) into just X(t) = Y (t), and thus from now on to
avoid adding a new variable, we will keep using X(t) in the linearized setting. More
importantly, our fully-linearized coupled system becomes

∂

∂t

(
Z

Vf

)
= −

(
0 h0

g 0

)
∂

∂x

(
Z

Vf

)
, x < 0,

∂

∂t

(
W

Vs

)
=

(
0 1
E
ρs

0

)
∂

∂x

(
W

Vs

)
, x > 0,

Vf = Vs, x = 0,

ρfgh0Z + EW = 0, x = 0,

X ′(t) = Vf , x = 0.

(5.8)

It is worth noting that X ′(t) is also small and so can be dropped from the matrices; in
the actual problem X ′(t) is nonzero. For (5.8), we propose the following solution form

T (x, t) = eλt T̂ (x), (5.9)

where λ ∈ C and T ∈ {Z, Vf ,W, Vs}, and the boundary X(t), X ′(t) takes the form

X(t) = eλtX̂(λ), (5.10)

where X̂(λ) is some constant depending on λ, and thus

X ′(t) = λeλtX̂(λ) = eλtv̂f1(0).

Plugging (5.9) and (5.10) into (5.8) gives us

λ

(
Ẑ(x)

V̂f (x)

)
= −

(
0 h0

g 0

)
d

dx

(
Ẑ(x)

V̂f (x)

)
, x < 0,

λ

(
Ŵ (x)

V̂s(x)

)
=

(
0 1
E
ρs

0

)
d

dx

(
Ŵ (x)

V̂s(x)

)
, x > 0,

V̂f (x) = V̂s(x), x = 0,

ρfgh0Ẑ(x) + EŴ (x) = 0, x = 0,

λX̂(λ) = V̂f (x), x = 0.

(5.11)
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Let

P =

(
0 h0

g 0

)
, Q =

(
0 1
E
ρs

0

)
,

where matrix P and Q are nonsingular. Now we can write the first two equations in
(5.11) as a system of standard first-order ODE with respect to vector-valued functions

d~p

dx
= −λP−1~p, x < 0,

d~q

dx
= λQ−1~q, x > 0.

(5.12)

where

~p =

(
Ẑ(x)

V̂f (x)

)
, ~q =

(
Ŵ (x)

V̂s(x)

)
.

5.2 Lax-Majda Analysis

Now we can find the eigenvalues λp of −λP−1 by setting det(−λP−1 − λpI) = 0. Solving
the corresponding characteristic polynomial gives us

λ+
p =

λ√
gh0

, λ−p = − λ√
gh0

. (5.13)

with corresponding eigenvectors

~v+
p =

(
−h0√
gh0

)
, ~v−p =

(
h0√
gh0

)
. (5.14)

Similarly, we can find the eigenvalues λq of λQ−1

λ+
q = λ

√
ρs
E
, λ−q = −λ

√
ρs
E
, (5.15)

with corresponding eigenvectors

~v+
q =

(
1√
E
ρs

)
, ~v−q =

(
−1√
E
ρs

)
. (5.16)

Thus the solution to (5.12) has the form~p(x) = cp1e
λ+
p x~v+

p + cp2e
λ−p x~v−p , x < 0,

~q(x) = cq1e
λ+
q x~v+

q + cq2e
λ−q x~v−q , x > 0,

(5.17)

where cp1, cp2, cq1, cq2 are some known constants (specifically, they are the entries of

the vectors P−1

(
Ẑ(0)

V̂f (0)

)
, Q−1

(
Ŵ (0)

V̂s(0)

)
). Now in order to determine linear stability,

we consider cases based on the sign of the real part of λ. First, let us consider when
Re(λ) 6= 0. In this case, we want ~p and ~q to decay as x→ ±∞. If Re(λ) > 0, we discard
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the eigenvalues λ−p and λ+
q as we are looking for eigenvectors which decay in x, and that

leaves us 
~p =

(
Ẑ(x)

V̂f (x)

)
= cp1 exp

(
λ√
gh0

x

)(
−h0√
gh0

)
, x < 0,

~q =

(
Ŵ (x)

V̂s(x)

)
= cq2 exp

(
−λ
√
ρs
E
x

)( −1√
E
ρs

)
, x > 0,

(5.18)

and from (5.11) we have the boundary conditions
V̂f (x) = V̂s(x), x = 0,

ρfgh0Ẑ(x) + EŴ (x) = 0, x = 0,

λX̂(λ) = V̂f (x), x = 0.

If we plug (5.18) into the above, we get
√
gh0cp1 −

√
E
ρs
cq2 = 0,

ρfgh0
2cp1 + Ecq2 = 0,

X ′(t) =
√
gh0cp1.

(5.19)

Conversely if Re(λ) < 0, we discard the eigenvalues λ+
p and λ−q , which leaves us

~p =

(
Ẑ(x)

V̂f (x)

)
= cp2 exp

(
− λ√

gh0

x

)(
h0√
gh0

)
, x < 0,

~q =

(
Ŵ (x)

V̂s(x)

)
= cq1 exp

(
λ

√
ρs
E
x

)(
1√
E
ρs

)
, x > 0,

(5.20)

and plugging in (5.20) into (5.11) gives us
√
gh0cp2 −

√
E
ρs
cq1 = 0,

ρfgh0
2cp2 + Ecq1 = 0,

X ′(t) =
√
gh0cp2.

(5.21)

Notice that the matrix corresponding to (5.19) and (5.21)

R =


√
gh0 −

√
E
ρs

0

ρfgh0
2 E 0√

gh0 0 −1


is nonsingular. Therefore the only solution to (5.19) and (5.21) is cp1

cq2
X ′(t)

 =

 cp2
cq1
X ′(t)

 = ~0 ∈ N(R). (5.22)

In other words, there are no decaying eigenfunctions when Re(λ) 6= 0.
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Remark 5.1. As a result, there is no decay in time due to conservation of energy, or as
we can see from the boundary conditions, they leave no freedom for the coefficients other
than being zero. Also, it is important to note that this zero background state is at the
bottom of a potential energy well, and thus it is stable.

Now let’s consider the scenario when Re(λ) = 0, in which case the solutions are purely
oscillatory and we can rewrite λ as

λ = iω,

where ω is the angular frequency. Since there is no decay, we’d like to keep all of our
eigenvalues and thus our solution becomes

~p = cp1 exp

(
iω√
gh0

x

)(
−h0√
gh0

)
+ cp2 exp

(
− iω√

gh0

x

)(
h0√
gh0

)
, x < 0,

~q = cq1 exp

(
iω

√
ρs
E
x

)(
1√
E
ρs

)
+ cq2 exp

(
−iω

√
ρs
E
x

)( −1√
E
ρs

)
, x > 0,

(5.23)
and thus along with the solution form in (5.9), we write(

Z
Vf

)
= eiωt~p

= cp1 exp

(
iω√
gh0

(x+
√
gh0t)

)(
−h0√
gh0

)
+ cp2 exp

(
− iω√

gh0

(x−
√
gh0t)

)(
h0√
gh0

)
,(

W
Vs

)
= eiωt~q

= cq1 exp

(
iω

√
ρs
E

(
x+

√
E

ρs
t

))(
1√
E
ρs

)

+ cq2 exp

(
−iω

√
ρs
E

(
x−

√
E

ρs
t

))(
−1√
E
ρs

)
.

(5.24)

(5.24) basically tell us when there is no decay, both the fluid and the solid consist of waves
travelling in opposite directions, collectively obeying the local conservation of energy for
plane waves. Speaking of which, let’s plug the solution from (5.23) into the energy
boundary conditions in (5.11) with the added constraint on X ′(t), and that yields

√
gh0(cp1 + cp2)−

√
E
ρs

(cq1 + cq2) = 0,

ρfgh0
2(cp1 − cp2) + E(cq1 − cq2) = 0,

X ′(t) =
√
gh0(cp1 + cp2),

(5.25)

and we can write the solution form to the above as

~c(t) =


cp1
cp2
cq1
cq2
X ′(t)

 = span




E

ρfgh0
2

− E
ρfgh0

2

−1
1
0

 ,


1

2
√
gh0
− E

√
ρsE

2ρfgh0
2

1
2
√
gh0

+ E
√
ρsE

2ρfgh0
2√

ρs
E

0
1



 = N(R′), (5.26)
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where

R′ =


√
gh0

√
gh0 −

√
E
ρs
−
√

E
ρs

0

ρfgh0
2 −ρfgh0

2 E −E 0√
gh0

√
gh0 0 0 −1

 .

Therefore, solutions certainly exist for (5.11) in pure oscillatory forms when Re(λ) = 0.

5.3 Transmission & Reflection Coefficients

Now we wish to find the transmittance coefficient cT and reflection coefficient cR of the
fluid travelling wave through the boundary. First we set the corresponding rightward
fluid traveling wave coefficient and leftward solid traveling wave coefficient to one and
zero, respectively, or

cp2 = 1, cq1 = 0,

so that our focus is purely on the waves transmitted and reflected. Thus, from (5.24) we
write 

Z = h0

(
e
− iω√

gh0
(x−
√
gh0t) − cRe

iω√
gh0

(x+
√
gh0t)

)
,

Vf =
√
gh0

(
e
− iω√

gh0
(x−
√
gh0t)

+ cRe
iω√
gh0

(x+
√
gh0t)

)
,

W = −cT e
−iω
√

ρs
E

(x−
√

E
ρs
t)
,

Vs = cT
√

E
ρs
e
−iω
√

ρs
E

(x−
√

E
ρs
t)
,

(5.27)

and plugging (5.27) into the linearized boundary conditions from (5.8) gives us the fol-
lowing linear system {√

gh0(1 + cR)−
√

E
ρs
cT = 0,

ρfgh0
2(1− cR)− EcT = 0.

(5.28)

Solving the above system yields
cR =

ρfgh0
2 −
√
ρsEgh0

ρfgh0
2 +
√
ρsEgh0

,

cT =
2ρfgh0

2√ρsh0

ρfh0
2√gE + E

√
ρsh0

.

(5.29)

Observe that cR is strictly less than one while cT doesn’t have to be. In case of a decrease
in acoustic impedance, the cT can be greater than one, but in our scenario we can safely
assume that both cR and cT are less than one.

5.4 Energy Balance

We’d now like to take a closer look at the energy balance to the original nonlinear system
in bounded domains. Recall that from (3.12) the change in fluid energy density can be
written as

E ′f (t) =

∫ X(t)

−∞

∂ef
∂t

dx+X ′(t)ef (X(t), t), (5.30)
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and thus for the fixed fluid boundary x = −L, where −L is the leftward boundary for
the fluid, E ′f (t) becomes

E ′f (t) = −Ff
∣∣∣∣X(t)

−L
+X ′(t)ef (X(t), t). (5.31)

Here, we’d like to solely focus on the energy change at the incoming mode on the fluid
side at x = −L as the coupling problem at the boundary is taken care of by the energy
boundary conditions discussed in the modeling section. Thus we write

E ′f (t)
∣∣
−L = −Πhvf

∣∣
−L,

= (h0 + ζ(−L, t))vf (−L, t)
(

1

2
ρfvf

2(−L, t) + ρfgζ(−L, t)
)
.

(5.32)

Now as for ζ and vf , note that we need the general solution to the linearized Saint-Venant

equations linearized about

(
ζ
vf

)
= ~0, which is given by

(
ζ
vf

)
= f(x−

√
gh0t)

(
h0√
gh0

)
+ g(x+

√
gh0t)

(
−h0√
gh0

)
, (5.33)

for arbitrary functions f and g (the pure-oscillatory traveling wave solutions from (5.24)
is one example). Let us now take a moment to show that why (5.33) is indeed true.
Recall the linearized Saint-Venant equations are in the form of

∂~u

∂t
+ A

∂~u

∂x
= 0, (5.34)

where ~u(x, t) =

(
Z
Vf

)
andA =

(
0 h0

g 0

)
. With respect to the basis

{(
h0√
gh0

)
,

(
−h0√
gh0

)}
,

which is formed by the eigenvector of A, we obtain ~u which can be expressed as

~u =

(
Z
Vf

)
=

(
0 h0

g 0

)−1(
Z
Vf

)
.

Hence in the new basis (5.34) becomes

∂~u

∂t
+

(√
gh0 0
0 −

√
gh0

)
∂~u

∂x
= 0, (5.35)

or 
∂Z

∂t
+
√
gh0

∂Z

∂x
= 0,

∂Vf

∂t
−
√
gh0

∂Vf

∂x
= 0.

(5.36)

Now as it is relatively easy to show that for u(x, t) ∈ R, the general solution to the PDE

∂u

∂t
+ v

∂u

∂x
= 0,
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takes the form u = f(x− vt) for arbitrary function f , we write out the solution to (5.36)
as

Z = f(x−
√
gh0t), Vf = f(x+

√
gh0t),

for arbitrary functions f and g. Therefore, writing out(
Z
Vf

)
=
(
~v1 ~v2

)(f(x−
√
gh0t)

g(x+
√
gh0t)

)
,

completes the proof for (5.33). Moving on, we have(
ζ
vf

)
(−L, t) = cp1(t)

(
−h0√
gh0

)
+ cp2(t)

(
h0√
gh0

)
,

where
cp1(t) = f(−L+

√
gh0t), cp2(t) = g(−L−

√
gh0t).

Now we wish to set cp1(t) = 0 because cp1(t) corresponds to the fluid wave travelling into
the fluid and we want to limit the energy input on the leftward fluid boundary, and then
we treat cp2(t) as some known function of time. Therefore we write

ζ(−L, t) = cp2(t)h0, vf (−L, t) = cp2(t)
√
gh0,

and plugging the above into (5.32) yields the rate of change in energy at the boundary
x = −L:

E ′f (t)
∣∣
−L = ρfgh0

2
√
gh0cp2(t)2(1 + cp2(t))(1 +

1

2
cp2(t)). (5.37)

Here, it is important to note that the above is an approximate calculation as we’ve used
the linearized model, while the original problem remains nonlinear.

6 Numerics

For our numerical model, we utilize a classical finite difference method for hyperbolic
partial differential equations, MacCormack’s method, with specialized techniques to rec-
oncile the domain shifts caused by the moving boundary. Overall, this technique yields
the expected quadratic convergence.

While our model is initially on the real line, we assume the domain x ∈ [−L,L],
enabling us to discretize the spatial domain and approximate solutions at these discrete
points using standard finite difference techniques.

Remark 6.1. Restricting x to a finite domain causes the behavior of simulated solutions
to deviate from our actual model once perturbations from equilibrium reach the finite
domain boundaries. At this point, the boundary condition begins to have an effect on
neighboring cells. This effect then propagates throughout the entire discretized domain,
leading to large differences from an infinite spatial setting. In practice, we restrict our
observation window to the period of time prior to the perturbations from equilibrium
reaching the right hand side boundary, x = L, to avoid inaccuracies introduced by this
phenomenon.

While not as quickly convergent or compatible with discontinuities as finite volume or
ENO/WENO schemes, we selected MacCormack’s method as the base of our numerical
approach as the simplicity of the scheme enables easy adaptation to handle the moving
fluid-solid boundary within our model. Below, MacCormack’s is stated generally before
being extended to the specifics of fluid-structure interaction problem.
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6.1 MacCormack’s Method

MacCormack’s Method uses the average of forward and backwards differences to ap-
proximate the time evolution of variables modeled using hyperbolic partial differential
equations in conservative form with second order convergence [6].

We start with a general system of conservation laws

∂U

∂t
+
∂F (U)

∂x
= 0

where U is the vector of unknowns and F (U) is the flux vector. The predictor step of
MacCormack’s method first approximates the time evolution along the spatial grid using
the forward difference in place of the spatial derivative. For the i-th spatial grid point,
the predictor step approximates the value of U at the next time step from data available
at the n-th time step as follows:

Up
i = Un

i −
∆t

∆x

(
F (Un

i+1)− F (Un
i )
)

∆t and ∆x are the time and spatial steps. Since we use a uniform grid within our
numerical implementation for simplicity, these steps remain constant throughout the
modeling process. After the predictor step values are calculated throughout the interior
of the spatial grid, the corrector step improves upon these approximations by averaging
with an approximation calculated with the backward difference of the values from the
predictor step:

Un+1
i =

1

2
(Up

i + Un
i )− ∆t

2∆x

(
F (Up

i )− F (Up
i−1)
)

The process of computing predictor and corrector steps along the interior of the spatial
grid is then continued for subsequent time steps to gain a more complete picture of the
time evolution of variables constrained by hyperbolic conservation laws.

6.2 Separate Fluid and Solid Domains

Both the fluid and solid equations for our model, (3.1) and (3.2), are systems of hyper-
bolic partial differential equations in conservative form like (6.1). Thus, we can apply
MacCormack’s Method as described in Section 6.1 for approximation along the interior
of both the fluid and solid domains inside of our model.

Next, we discuss the appropriate numerical boundary conditions for each side of the
fluid and solid domains in isolation before approaching the problem of coupling the two
domains. These boundaries are fictitious in that they do not exist in Theorem 3.7, but
must be implemented to reconcile the finite nature of a numerical domain. First handling
the non-linear shallow water wave equations on a fixed domain, x ∈ [−L, 0], we would like
for mass to remain within the boundaries which yields a kinematic boundary condition,
vf (−L, t) = vf (0, t) = 0. From the kinematic boundary condition and (3.1), we see
that ζ must have homogeneous Neumann boundary conditions ∂ζ

∂x
(−L, t) = ∂ζ

∂x
(0, t) = 0.

The boundary points at the first spatial index 1, corresponding to x1 = −L, and the last
spatial index N , corresponding to xN = 0, are easily handled by setting (vf )

n
1 = (vf )

n
N = 0

satisfying the kinematic boundary condition, while ζn1 = ζn2 and ζnN = ζnN−1 satisfy the
Neumann boundary condition for all time indicies n.
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The previous method allows us to solve for solutions with no external forcing other
than gravity. However, to add external forcing to the fluid system in the form of rightward
moving waves, we need to establish new boundary conditions on the left hand side. Recall
from the linearized model in (5.14), we are able to approximate the decomposition of ζ
and vf at a given point into leftward and rightward moving components follows,(

ζ
vf

)
= cp1

(
−h0√
h0g

)
+ cp2

(
h0√
h0g

)
, (6.1)

where cp1 is the scaling factor for the leftward moving mode. This decomposition provides
a linear approximation to the exact split between incoming and outgoing waves. Intu-
itively, we would like to model incoming rightward moving waves, while leftward moving
waves are allowed to exit on the left boundary. This is achieved by a combination of
different boundary conditions on the leftward and rightward moving modes at x = −L.
Specifically, we place inhomogeneous Dirichlet boundary conditions on the rightward
moving mode and homogeneous Neumann boundary conditions on the leftward moving
mode.

For the numerical implementation, we used a “ghost cell” on the left hand side and a
forcing function F which satisfies F (0) = F ′(0) = · · · = F (k)(0) = 0 for some k ≥ 1. The
condition on F arises from compatibility constraints with initial conditions of the system.
Let the ghost cell be at the first spatial index x1, corresponding to x = −L. After each
predictor or corrector step within the MacCormack algorithm, the ghost cell values are(

ζn1
(vf )

n
1

)
= cp1

(
−h0√
h0g

)
+ F (tn)

(
h0√
h0g

)
, (6.2)

where cp1 has the explicit solution based on the adjacent at cell x2,

cp1 =
−ζn2
√
h0g + h0(vf )

n
2

2h0

√
h0g

(6.3)

which follows directly from (6.1). Note that in the MacCormack algorithm, interior values
would be calculated first. Then the left ghost cell values are assigned based on the newly
found adjacent cell values and the forcing function F .

For linear wave equation solutions on a fixed domain, x ∈ [0, L], we would again
like for mass to remain within the boundaries, so we set kinematic boundary conditions
vs(0, t) = vs(L, t) = 0. The linear wave equations in (3.2) then require Neumann bound-
ary conditions ∂w

∂x
(0, t) = ∂w

∂x
(L, t) = 0. For interior points, we once more approximate

with the predictor and corrector steps of MacCormack’s Method. The boundary condi-
tions are implemented in the same fashion as in the fluid model. Where the first and
last spatial indicies are 1 and N , we set (vs)

n
1 = (vs)

n
N = 0, where the spatial index n

corresponds to x = L at the right boundary, for the kinematic boundary condition, while
wn1 = wn2 and wnN = wnN−1 for the Neumann boundary condition at all times n.

For the linear wave equation ∂2u
∂t2

= c2 ∂2u
∂x2

with conditions

u(0, t) = u(L, t) = 0 for all t,

u(x, 0) = f(x) 0 < x < L,

vs(x, 0) = g(x) 0 < x < L,

there exists a known analytical solution known as d’Alembert’s formula. This analytical
solution allows us to check the convergence of the MacCormack implementation. For the
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results shown in Figure 1, the values u(x, 0) = sin(x), vs(x, 0) = 0, L = π, T = 1 and c = 1
were used. For the mesh resolutions, we set ∆x = L

2i
and ∆t = T

2i
for i ∈ {4, 5, . . . , 11}.

Now defining the `2 error metric for some numerical solution fn representing solutions to
f(·, tn), we have

‖fn − f(·, tn)‖`2 =

√∑
i

(fni − f(xi, tn))2∆x.

At each resolution we calculated the `2 error of w(x, T ) and vs(x, t) separately and

plotted log2

(√
‖wn − w(·, tn)‖2

`2 + ‖vns − vs(·, tn)‖2
`2

)
on the y-axis, with the logarithm

of the number of x intervals on the x axis.

Figure 1: Quadratic convergence of linear wave equation numerical solutions as the spatial
and temporal mesh resolutions increase.

The resulting line clearly follows a slope of −2, indicating second-order convergence
of w and vs as expected.

Note that for the non-linear shallow water wave equations, there does not exist an
explicit closed form solution. Thus, when calculating the convergence rate for the fixed
boundary models above, we used a reference solution which was obtained via the same
algorithm with a very high resolution. This reference solution was used as the analytical
solution in (6.2), and we saw the expected second order convergence for the fluid models
with and without external forcing.

6.3 Fluid and Solid Coupling Method

The full coupled system in our numerical model consists of a spatial and temporal mesh
with x ∈ [−L,L] and X(0) = 0. Calculation of all non-boundary points is standard and
accomplished via the MacCormack’s method steps from 6.2. However, we now have to
deal with a moving boundary around the shock located at X(t).

x1

−L
x2 · · · xi∗

X(t)

xi∗+1 · · · xN−1 xN

L

∆x

The two shock adjacent cells are xi∗ and xi∗+1 where i∗ = bX(t)−x1
∆x
c. xi∗ can be considered

the location of the last fluid cell and xi∗+1 the location of the first solid cell.
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With this setup, there are four boundaries we must consider: the left-hand side bound-
ary of the fluid at x = −L+, the right-hand side boundary of the fluid at x = X(t)−, the
left-hand side boundary of the solid at x = X(t)+ and the right-hand side boundary of the
solid at x = L−. First addressing the boundary at x = −L+, we use the same condition
from (6.2) which has a homogeneous Neumann boundary condition on the leftward mov-
ing mode and an inhomogeneous Dirichlet boundary condition on the rightward moving
mode with a forcing function F (t). F must satisfy F (0) = F ′(0) = ... = F (k)(0) = 0
for some k ≥ 1 which arises from compatibility constraints with initial conditions. The
boundary values are set for the cell located at x1 after each predictor or corrector step
within the MacCormack algorithm. This allows us to model incoming waves from the
left-hand side.

For the boundary at x = L, we use the same boundary conditions as in the solid
model in 6.2. Specifically, vs(L, t) = 0 and ∂w

∂t
= 0, which is implemented numerically by

setting (vs)
n
N = 0 and wnN = wnN−1 after each predictor or corrector step.

For the shock adjacent boundaries at x = X(t), some more involved methods are
required. Each step of the time-marching process requires finding the new location of
X(t). To do this, we first find the velocity of the fluid at the shock boundary at time tn,
denoted as (vfb)

n, via linear extrapolation

(vfb)
n = (vf )

n
i∗ +

(vf )
n
i∗ − (vf )

n
i∗−1

∆x
(X(tn)− xi∗) (6.4)

and the velocity of the solid at the boundary at time tn, denoted as (vsb)
n, by the same

method

(vsb)
n = (vs)

n
i∗+1 +

(vs)
n
i∗+2 − (vs)

n
i∗+1

∆x
(X(tn)− xi∗+1) . (6.5)

We then take these two extrapolated values and average them to improve the approxima-
tion: X ′(tn) = 1

2
((vfb)

n+(vsb)
n). By Taylor’s Theorem, each of the velocity extrapolations

has quadratic error and thus so does the averaged approximation.
We use this to find the next step value by employing the classical two-step Adams-

Bashforth method which is second order in time:

X(tn+1) = X(tn) + ∆t

(
3

2
X ′(tn)− 1

2
X ′(tn−1)

)
. (6.6)

The value for X(t) is tracked separately from the spatial mesh. Thus, for our Mac-
Cormack method to work, we implement ghost cells surrounding the shock. We place a
fluid ghost cell at xi∗+1 and a solid ghost cell at xi∗ . These locations are outside of the
domains of the fluid and solid, so any value corresponding to them, e.g. ζni∗+1 is clearly
belonging to a fictitious ghost cell. These ghost cells are key to the coupling method,
and their values are derived from the kinematic boundary condition 3.11 and the energy
boundary condition 3.23. From these boundary conditions, we derive a formula which
converts a solid cell to a fluid cell while preserving boundary conditions,

Gs→f

((
w
vs

))
=

((
−2Ew
ρfg

+ h2
0

)1/2

− h0

vs

)
, (6.7)

and a formula which converts a fluid cell to a solid cell while preserving boundary condi-
tions,

Gf→s

((
ζ
vf

))
=

(ρfg

2E
(ζ2 − 2(h0 + ζ)ζ)

vf

)
, (6.8)
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where the top entries of both are obtained by solving for either ζ or w in (3.23).
Now we can begin the three step process which is used to generate the ghost cell

values. Note that this process is repeated three times: before the predictor step, after the
predictor step and after the corrector step. Minor changes are made in each stage, and
they will be explained in detail after a demonstration of the process before the predictor
step.

First, we start with values for vf and ζ at locations xj for j ∈ {1, . . . , i∗} and values
for vs and w at locations xk for k ∈ {i∗ + 1, . . . , N}. We use linear extrapolation to find
values at x = X(tn),

ζnb = ζni∗ +
ζni∗ − ζni∗−1

∆x
(X(tn)− xi∗) , (6.9)

wnb = wni∗+1 +
wni∗+2 − wni∗+1

∆x
(X(tn)− xi∗+1) , (6.10)

while (vfb)
n is obtained from (6.4) and (vsb)

n is obtained from (6.5).
Second, we use the ghost cell conversion formulas from (6.7) and (6.8) to create ghost

cell boundary values. We denote these ghost cell boundary values with a prefix G to
distinguish them from the values obtained in (6.4), (6.5), (6.9) and (6.10). For the fluid,(

Gζnb
G(vfb)

n

)
= Gs→f

((
wnb

(vsb)
n

))
(6.11)

and for the solid, (
Gwnb
G(vsb)

n

)
= Gf→s

((
ζnb

(vfb)
n

))
. (6.12)

Third, we generate the shock adjacent ghost cells by linear extrapolation from the bound-
ary with the boundary ghost cells. For the fluid,

(vf )
n
i∗+1 = G(vfb)

n +
G(vfb)

n − (vf )
n
i∗−1

X(tn)− xi∗−1

(xi∗+1 −X(tn)) (6.13)

and

ζni∗+1 = G(ζb)
n +
G(ζb)

n − ζni∗−1

X(tn)− xi∗−1

(xi∗+1 −X(tn)) . (6.14)

For the solid,

(vs)
n
i∗ = G(vsb)

n +
(vs)

n
i∗+2 − G(vsb)

n

xi∗+2 −X(tn)
(xi∗ −X(tn)) (6.15)

and

wni∗ = G(wb)
n +

wni∗+2 − G(wb)
n

xi∗+2 −X(tn)
(xi∗ −X(tn)) , (6.16)

which completes the calculation of shock adjacent ghost cell values before the predictor
step. Note that in this step of linear extrapolations, we don’t use the known values that
are adjacent to the shock. Instead, we use known values from xi∗−1 and xi∗+2 to avoid
numerical issues that may arise from X(tn) being very close to either xi∗ or xi∗+1 which
could result in division by a very small number.

When calculating shock adjacent ghost cell values after the predictor and corrector
steps, the same process is followed with appropriate substitutions. Importantly, X(tn+1)
from (6.6) is used instead of X(tn). After the predictor step, predicted values are used
instead of values from time tn. Similarly for the corrector step, corrected values are used
instead of values from time tn.
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Once corrected values and ghost cells have been determined, i∗ is updated according
to X(tn+1). Depending on whether or not the updated i∗ moves to a different cell, a
shock adjacent ghost cell from either the fluid or the solid may become a real cell. If
the updated i∗ moves by more than one cell, this is indicative of the shock moving at
supersonic speed, and the numerical solutions are no longer valid. Additionally, if i∗

reaches 1 or N , this is indicative of the shock reaching the edge of the computational
window and the solution breaks down.

6.4 Coupled System Results

First we show numerical results for the coupled model using the techniques described in
the previous section.

Figure 2: Solution for values h0 = 2, ρf = 1, E = 1, ρs = 1 and g = 1 with forcing

function F (t) = t2

20(1+t2)
sin(t). The bounds are L = 4π and solutions are shown for time

T = 18.

In the figure above, the system starts at equilibrium and a forcing function introduces
waves from the left-hand side which ramp in amplitude. Separate plots are used to show
values of ζ and vf for the fluid on the left and values of w and vs for the solid on the right.
These solutions show the transmission of waves through the shock interface and subtle
evidence of wave reflection off of the shock location as seen by the high convexity of vf at
around x = −4. The results match our qualitative expectations, although quantitative
matching of transmission through the shock remains to be studied quantitatively.

The shift in shock location X(t) is shown more clearly here. As waves first reach the
shock location at around time t = 9, the solid is compressed, but over time an oscillatory
motion begins to appear. These results match our expectations for what might happen
as periodic waves interact with an elastic solid.

To test the convergence rate of the algorithm, a reference solution was generated with
high resolution via the same methods. The number of spatial steps in the reference was
set to 212, and the number of temporal steps used was 214. Then we applied a cubic spline
interpolation to the reference solution points and used this spline to estimate errors of
lower resolution solutions. The left plot in Figure 4 shows log2 (`2 absolute error) on the
y-axis, which is defined here as the square root of the sum of squares of `2 norms of w,
vs, ζ and vs. The right plot in Figure 4 shows log2(X(t) error) where X(t) error is the
`2 norm of the error vector with components εi = |X(ti)−X(ti)ref | for time indicies i at
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Figure 3: Values of X(t) over time for the same initial conditions and forcing shown in
Figure 2.

Figure 4: Convergence rate plots for the coupled numerical method. `2 absolute error is
on the left, and X(t) error is on the right.

a given resolution. As seen by the slope of −2 in both plots, the solutions have second
order convergence for variables ζ, vf , w, vs and the location of the shock X(t).

The two plots above show the convergence of the boundary condition errors as the
resolution increases. The boundary velocity error comes from (3.11) and is defined as
the max error at any time ti in the solution, max

i
|(vfb)i − (vsb)

i|. The energy error is

defined similarly as the max energy boundary condition error from (3.23), max
i
|Ewib +

1
2
ρfg((h0 + ζ ib)

2 + h2
0)| for any time ti in the solution. These plots also show slopes of −2

indicating second order convergence for the boundary conditions as well.

27



Figure 5: Convergence rate plots for the coupled numerical method. Boundary velocity
condition error is on the left, and boundary energy condition error is on the right.

# of x intervals `2 abs error X(t) error Velocity error Energy error
16 0.065324 0.013404 0.072170 0.126073
32 0.027885 0.003277 0.022518 0.042921
64 0.009657 0.001001 0.004626 0.009052
128 0.002744 0.000295 0.001142 0.002109
256 0.000676 7.937551e-5 0.000283 0.000525

Table 1: Values from Figures 4 and 5.
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