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Introduction

We say a three-form ϕ on a smooth 7-dimensional manifold M is a G2 structure if it satisfies

a certain non-degeneracy condition. The existence of such a ϕ is indeed equivalent to the

reduction of the structure group of the frame bundle of M to G2. In particular, ϕ gives rise to

an orientation volϕ and a Riemannian metric gϕ, albeit nonlinearly. Of particular interest are

G2 manifolds, which are manifolds with G2 structure whose Riemannian holonomy group is

contained in G2. One can show that this is equivalent to the conditions dϕ = 0 and d∗ϕϕ = 0,

and we say such structures are torsion-free. One idea to construct torsion-free G2 structures,

which draws from geometric flows such as the Ricci flow, is to consider the Laplacian flow

∂

∂t
ϕ = ∆ϕϕ. (1)

Note that torsion-free G2 structures are critical points of the flow. Special self-similar solu-

tions, called solitons, to the Laplacian flow for closed ϕ are given by triples (λ,X, ϕ), where

λ ∈ R and X is a vector field, which satisfy

∆ϕϕ = λϕ+ LXϕ. (2)

Solitons give insight to singularities of the flow, which is why we consider them in this project.

Cohomogeneity-One Solitons

We say a manifold M with G2 structure ϕ is cohomogeneity-one if there exists a compact

Lie group G acting on M that preserves ϕ and the generic orbits, which we call principal

orbits, are codimension one. For this project we focus on the cases where G = SU(3) and

Sp(2). It turns out that the only cohomogeneity-one spaces where the metric induced by
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such a G-invariant G2 structure is complete are the bundles of anti-self dual two forms over

the Fubini-Study CP2 and the round S4, respectively. Thus we are especially interested in

solitons on these spaces, which must smoothly extend over the singular orbits CP2 and S4.

We may G-equivariantly identify the set of principal orbits with I × G/K, where I is an

open interval in R and K is the principal isotropy group, by considering the unique geodesic

through a point that is orthogonal to all principal orbits. From prior work of Cleyton and

Swann, any SU(3)-invariant G2 structure can be written as

ϕ = (f 2
1ω1 + f 2

2ω2 + f 2
3ω3) ∧ dt+ f1f2f3(cos θα + sin θβ), (3)

where f1, f2, f3, θ are functions on I, with fi nonvanishing, and ωi, α, β are invariant differ-

ential forms on G/K. Let X = u(t)∂t be a G-invariant vector field on I × G/K. Then the

soliton equation reduces to the equations
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where εθ = ±1. Letting τ1, τ2, τ3 denote the components of the torsion two-form with respect

to the frame {f 2
1ω1, f

2
2ω2, f

2
3ω3}, we may write the soliton equations as
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In particular, we obtain a first-order system for (f1, f2, f3, τ2, τ3), and we can always rescale

t so that λ = −1, 0, or 1. When G = Sp(2), we simply impose the condition f2 = f3.

Specifying to the SU(3) case, we can show that there do not exist complete torsion-free

solitons with λ 6= 0. In general, when λ < 0 we can show that positivity of u is preferred in

the sense that if u becomes positive at any t0, then it must remain positive for the rest of

its existence. When ϕ is torsion-free, we explicitly have u = −λ
3
t, which on the torsion-free

G2 cone (where fi = t
2
) form the one-parameter family of Gaussian solitons. When X is

a gradient soliton, so X = (df)], we can use the strong maximum/minimum principle to

deduce that f does not attain a maximum when λ ≤ 0 and does not attain a minimum when

λ ≥ 0.

Further Directions

Because of the nonlinearity of the soliton system, it is difficult to find explicit solutions.

Thus it would be useful to obtain qualitative information about and study approximations

of solutions. To this end we have two methods in mind of approaching this problem; both

involve understanding better what conditions, for example initial conditions and asymptotic

behavior about t = 0, solutions must satisfy in order to smoothly extend to the singular orbit.

One idea is to mimic the stable manifold theorem from the theory of dynamical systems to

obtain existence results, since the ODE system is undefined for the initial conditions imposed

at the singular orbit. The other idea is to use a power-series approach as used in papers of

Dr. Haskins to obtain polynomial approximate solutions. These approximations can then be

used in conjunction with numerical studies, as the singularity of the soliton system near the

singular orbit is problematic for many numerical ODE solvers, and also to obtain theoretical

information such as degrees of freedom for initial conditions at the singular orbit.
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