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1. INTRODUCTION

The aim of this paper is to provide a convergence guarantee for policy gradient algorithms in
the setting of the Linear-Quadratic Regulator (LQR). Specifically, we show that any random
initialization of a linear (In the state space) policy will converge to the global optimum of the
undiscounted LQR in finite time. In related existing works, it is assumed that the initial policy
is stabilizing; however, our result shows that — at the cost of more training iterations — it is
possible to do away with this assumption. Additionally, we provide an example to show that a
policy that is linear in the parameters does not converge in this setting.

Notation. We use ‖·‖ as the operator norm of a matrix or the euclidean norm of a vector
and % (·) to denote the spectral radius. We also use λmax(·) and σmin(·) to refer to the largest
eigenvalue and smallest singular value of a matrix, respectively.

1.1. Preliminaries and Background.

1.1.1. Markov Decision Processes.

We denote a Markov Decision Process (MDP) by the tuple (X,U,P ,R, γ) where X denotes
the state-space, U the action-space, P the state transition function,R the immediate (real-valued)
cost function, and γ ∈ [0, 1] is a discount factor. Note that P andR may depend on the action
u ∈ U in addition to the state x ∈ X . MDPs provide a general setting that is useful for studying
optimization problems. The Linear-Quadratic Regulator is such an MDP with X,U = Rn,Rm

and P ,R, γ as described below.
In our analysis, we do not assume thatR is bounded on X × U , instead, we guarantee that

the cumulative, infinite-horizon cost
∑

t≥0 γ
tR(xt, ut) is finite through discounting.

1.1.2. The Linear-Quadratic Regulator.

The Linear-Quadratic Regulator (LQR) is a classic optimal control problem. In general, opti-
mal control problems are concerned with finding the control to given dynamics that minimizes a
given cost function. In this paper, we are concerned with the special case where the dynamics
are linear, time-invariant with no disturbance or added noise and the cost function is quadratic
in the state and the control action. We consider the discounted infinite time-horizon problem,

minimize Ex0∼D

[
∞∑
t=0

γt (xᵀtQxt + uᵀtRut)

]
with xt+1 = Axt +But

where A,B are the system (or transition) matrices, Q,R are positive definite cost matrices, x0 is
randomly distributed with distribution D, and γ ∈ (0, 1] is the discount factor. In the entirety of
this work, the pair (A,B) is assumed to be controllable.

Definition 1. Stability and Controllability
(1) We call a square matrix M stable (or stabilizing) if % (M) < 1.
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(2) A linear dynamical system with xt ∈ Rn, ut ∈ Rm is called controllable if all states can
be reached in n-steps (i.e., if the system is controllable, we can always find an input
sequence (u0, ..., ut−1) that moves the state from x0 to xgoal in time = n steps).

Optimal control theory shows that the optimal control for the LQR problem is a linear function
of the state.

ut = K∗xt

If A,B,Q,R, γ are known, we have an explicit form for the optimal control. Let Pγ denote the
unique positive definite solution to the discounted discrete-time+ algebraic Riccati equation
(DARE)

Pγ = γAᵀPγA− γ2AᵀPγB (R + γBᵀPγB)−1BᵀPγA+Q

Later in this work, we omit the subscript γ and assume the dependencies to be clear from context.
We can then write the optimal control as

K∗γ = −γ (R + γBᵀPγB)−1BᵀPγA

It is important to note that, in general, the optimal policy for the discounted LQR is not always
the same as what is optimal for the undiscounted LQR. For instance, the optimal policy w.r.t
to the discounted LQR may not even be stabilizing [8]. In Section 3, we address this issue by
prescribing an iterative method that converges to the undiscounted global optimum by iteratively
updating the discount factor γ.

Throughout the remainder of the paper, we will use γ to denote the discount rate which we
choose given an initial policy K0. Specifically, we choose γ such that the infinite-horizon cost
of K0 will not diverge in the worst case. That is, we choose γ < min( 1

%(A+BK0)2
, 1) such that

C(K) =
∞∑
t=0

γtxᵀt (Q+KᵀRK)xt <∞

where {xt} is the sequence generated by the dynamics xt+1 = (A+BK)xt.

1.1.3. Policy Gradient Methods.

The advantage of directly learning a policy rather than first learning a value function is that
policy-approximating methods can easily learn stochastic policies, whereas action-value based
methods have no natural and flexible way to find a stochastic policy. For example, in situations
with imperfect information, the best decision can often be to do different actions with specific
probabilities (think Poker).

Although it is possible to generate stochastic policies with an action-value function by
selecting actions from a softmax over the action-values of a state, this approach lacks the
flexibility of its policy-based counterpart. Without modifying a temperature parameter, the
softmax method can not approach a deterministic policy as the true action-values will always
differ by a finite amount, which translates to specific probabilities that aren’t 0 or 1. One could
use a scheduled decay of the temperature parameter; however, in practice, this is often difficult
to properly implement. On the other hand, with the policy-based approach, if the optimal policy
is deterministic – parameterization permitting – the action preferences of the optimal actions
will be pushed infinitely higher than those of the sub-optimal actions, resulting in convergence
towards a deterministic policy.

Lastly, there is also an important theoretical result that gives policy-parameterization methods
an advantage over action-value based methods. The policy gradient theorem [12] provides an
explicit formula for the gradient of the performance in terms of the gradient of the policy w.r.t its
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parameters – importantly, the gradient of the state distribution is not needed. Thus, in addition
to their flexibility, the policy gradient theorem shows that these approaches are also practical.

Intuitively, the main idea behind policy gradient methods is to increase the probabilities of
actions that lead to lower costs (higher returns) and decrease the probabilities of actions that
lead to higher costs (lower rewards), until eventually arriving at the optimal policy. There are
many different variations of policy gradients. Here, we review REINFORCE [15], a classic
sampled-based Monte-Carlo policy gradient algorithm that immediately follows from the policy
gradient theorem.

Let πϑ(u|x) be a policy parameterized by ϑ, where u ∼ πϑ(·|x). The policy gradient theorem
[12] states that

∇C(ϑ) ∝
∑
x

µ(x)
∑
u

Qπ(x, u)∇ϑπϑ(u|x)

= Eπ

[∑
u

Qπ(xt, u)∇ϑπϑ(u|xt)

]
where µ is the on-policy distribution of states following π and Qπ(·, ·) denotes the state-action
values; the equality comes from the fact that the proportionality constant can be absorbed into
the step-size. We can further simplify the above expression by handling the sum over actions
in the same way that we replaced the sum over states. The expectation is with respect to the
trajectory {xt, ut} experienced under π.

∇C(ϑ) = Eπ

[∑
u

π(u|xt)
π(u|xt)

Qπ(xt, u)∇ϑπ(u|xt)

]

= Eπ
[
Qπ(xt, ut)

∇ϑπ(ut|xt)
π(ut|xt)

]
= Eπ

[
Gt
∇ϑπ(ut|xt)
π(ut|xt)

]
where Gt =

∑
k=0 γ

t+kr(xt+k, ut+k) is the sample return (sum of discounted costs(rewards))
following time t. Thus, we have an expression that can be used in our stochastic gradient descent
(ascent) algorithm.

ϑt+1 = ϑt − αGt
∇ϑπ(ut|xt)
π(ut|xt)

= ϑt − αGt∇ϑ log π(ut|xt)

More recent advances in Reinforcement Learning theory have introduced the idea of learning
with an entropy-regularized objective. The main motivation behind entropy-regularization
is to encourage exploration by promoting stochastic policies [1]. Experiments have shown
that maximum entropy – or so called, "soft" – approaches work rather well, making them an
interesting object for theoretical study [4, 6]. Encouraging exploration in a natural way (as
opposed to an ε-greedy approach) allows for an agent to choose actions that may yield larger
long-run rewards without enforcing certain assumptions about the system that may or may not
be verifiable [11].

In this framework, we regularize the reward (or cost) of every action as follows

r(x, u)→ r(x, u)− τ log πϑ(u|x)

where τ is the temperature parameter. Then, the value function and action-value function read:

V π(x0) = Ex0,u∼πϑ(·|x)

[∑
t

γt (r(xt, ut)− τ log πϑ(ut|xt))

]
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Qπ(x0, u0) = r(x0, u0) + γEx0,u0 [V π(x1)]

= r(x0, u0) + Ex0,u∼πϑ(·|x)

[∑
t

γt (r(xt, ut)− τ log πϑ(ut|xt))

]
so that we have

V π(x0) = Eu∼π [Qπ(x0, u)− τ log πϑ(u|x0)]

In later sections, we refer to these as the "soft" value or Q-functions and denote them Ṽ and
Q̃, respectively.

1.2. Related Works.

In light of the advantages provided by policy-based approaches to reinforcement learning,
there has been a recent wave of research seeking to provide convergence guarantees for al-
gorithms that seem to work in practice. Work in [5] has shown that in finite action spaces,
our intuition is correct and algorithms like TRPO [9] and PPO [10] do indeed converge to the
globally optimal policy. Concurrent work in [7] has demonstrated similar convergence results
for softmax policy gradient methods with an entropy-regularized objective in the tabular setting.
Interestingly, their work also demonstrated that the entropy-regularized objective yields a much
faster convergence rate. Another perspective on the policy gradient methods with finite action
spaces in [14] proves convergence for the policy class of over-parameterized two-layer neural
networks by using a shared network architecture to ensure the compatibility condition for the
actor and critic is met. However, in the aforementioned publications, the assumption of a finite
action space is essential in obtaining the results; when considering continuous action spaces, we
use the LQR as a proxy for more general environments since the LQR setting is well understood
and allows for more straightforward analysis.

In the continuous action-space setting, [3] shows that policy gradient methods can converge
in the LQR; however, they leverage existing knowledge about LQR optimality and consider only
the class of linear policies. Similarly, [16] provides a convergence guarantee for Actor-Critic
methods in the LQR setting by considering the class of linear-Gaussian policies with fixed
variance. The work herein also primarily works with linear policies, but takes a slightly different
approach in showing convergence. Where most works consider the evolution of the policy with
respect to time/iterations, we also consider the evolution of the optimal policy with respect to
the discount factor.

1.3. Contributions.

Our work continues along a line of work using the LQR as a proxy for more general Re-
inforcement Learning environments [2, 13, 3]. We show that the common assumption of a
stable initial policy can be relaxed by using a homotopy-based approach to iteratively update the
policy until reaching a stabilizing policy. We address the issue of an unstable initial policy by
introducing a discount factor to force all costs to be finite. We then show that systematically
updating the discount factor allows us to reach a stabilizing policy, where then we can run the
policy gradient algorithm to converge to the global optimum.

Lastly, it’s important to highlight that our work uses a model-based approach. To generalize
our results to the model-free perspective, one could proceed in a similar fashion to [3] by
showing that when the roll-out is sufficiently long, one can accurately approximate the cost
function and covariance and that with enough samples, one can estimate the true gradient within
a desired accuracy.

Summarizing, the main contributions of this work are as follows:
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• (Arbitrary Initialization) With the class of linear (in the state) policies, we show that
the standard assumption of a stabilizing initial policy is not necessary to guarantee
convergence of policy gradient methods to the globally optimal solution.
• (Generalizations) We show that our arbitrary initialization result also applies to the

class of linear-Gaussian policies. We entertain a simple non-linear policy in the one-
dimensional LQR and show that policy gradient will converge in this simple setting.
Additionally, we show that, we can not always expect policy gradient methods to
converge even with somewhat well-behaved function approximators. We provide an
example policy that is linear in the parameters, but will get stuck at a locally optimal
policy.

In the remainder of this paper, we first provide the convergence proof for Policy Gradient
methods in the discounted LQR (Section 2). Then, we show that the γ-iteration algorithm
converges to the optimal policy of the undiscounted LQR (Section 3). Finally, we provide pre-
liminary calculations for potential directions to generalize our work (Section 4). The discussion
is contained in Section 5.

2. CONVERGENCE OF POLICY GRADIENT METHODS IN THE DISCOUNTED LQR

In this section, we show the convergence result for a linearly parameterized policy in the
states. This section extends the results in [3] to the discounted regime. The work in [3] proves
the result for the undiscounted LQR. We modify their proofs for the undiscounted LQR to show
that the result also holds when using a discounted cost function.

2.1. Adapted Lemmas.

Before continuing, we highlight the difference between eigenvalues and singular values. It is
possible for a matrix to have all eigenvalues within the unit circle of the complex plane, but to
have singular values outside of it. This is important because the criteria for stability of A+BK
is for its spectral radius to be less than 1. Geometrically, the spectral radius of a matrix is the
largest factor we can stretch a vector in its original direction, whereas the "stretching" captured
by singular values is not necessarily in the direction of the original vector.

We start with a few definitions for convenience of notation.

Definition 2. Define P γ
K as the unique solution to:

P γ
K = Q+KᵀRK + γ(A+BK)ᵀP γ

K(A+BK)

As a consequence we have: VK(x) = xᵀP γ
Kx.

Definition 3. For notational simplicity:

Eγ
K = (R + γBᵀP γ

KB)K + γBᵀP γ
KA

Σγ
K = Ex0

[
∞∑
t=0

γtxtx
ᵀ
t

]
µ = σminE [x0x

ᵀ
0]

Lemma 1. (Policy Gradient Expression) The policy gradient can be written:

∇C(K) = 2Eγ
KΣγ

K

Proof of Lemma 1. Given x0, we have:

C(K)|x0 = xᵀ0P
γ
Kx0

= xᵀ0
(
Q+KᵀRK

)
x0 + γxᵀ0(A+BK)ᵀP γ

K(A+BK)x0
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= xᵀ0 (Q+KᵀRK)x0 + γC(K)|(A+BK)x0

Now, taking the gradient with respect to K and using recursion – notice there are two dependen-
cies on K in∇C(K)|(A+BK)x0 ,

∇C(K)|x0 = 2RKx0x
ᵀ
0 + 2γBᵀP γ

K(A+BK)x0x
ᵀ
0 + γ∇C(K)|x1

=
∞∑
t=0

γt2 ((R + γBᵀP γ
KB)K + γBᵀP γ

KA)xtx
ᵀ
t

= 2 ((R + γBᵀP γ
KB)K + γBᵀP γ

KA) Σγ
K

= 2Eγ
KΣγ

K

�

Lemma 2. (Cost Difference) Let K and K ′ be two policies. Let {x′t} and {u′t} be the state and
action sequences generated by K ′, and let the initial value for both policies be x = x0 = x′0.
With discount factor γ ∈ (0, 1), we have:

VK′(x)− VK(x) =
∞∑
t=0

γtAK(x′t, u
′
t)

Furthermore, we can write the advantage at any x as (notice the distinction between the behavior
policy and the evaluator policy):

AK(x,K ′x) = 2xᵀ(K ′ −K)ᵀEγ
Kx+ xᵀ(K ′ −K)ᵀ(R + γBᵀP γ

KB)(K ′ −K)x

Proof of Lemma 2. Let {c′t} be the cost sequence generated by K ′. We have that:

VK′(x)− VK(x) =
∞∑
t=0

γtc′t − VK(x)

=
∞∑
t=0

γt (c′t − VK(x′t) + VK(x′t))− VK(x)

Since x′0 = x0 = x

=
∞∑
t=0

γt(c′t + γVK(x′t+1)− VK(x′t))

=
∞∑
t=0

γtAK(x′t, u
′
t)

For the second claim, observe that:

VK(x) = xᵀ
(
Q+KᵀRK

)
x+ γxᵀ(A+BK)ᵀP γ

K(A+BK)x
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Thus, for u′ = K ′x:

AK(x,K ′x) = QK(x,K ′x)− VK(x)

= xᵀ
(
Q+ (K ′)ᵀRK ′

)
x+ γVK

(
(A+BK ′)x

)
− VK(x)

= xᵀ (Q+ (K ′)ᵀRK ′)x+ γxᵀ(A+BK ′)ᵀP γ
K(A+BK ′)x− VK(x)

= xᵀ (Q+ (K′ −K + K)ᵀR(K′ −K + K))x

+ γxᵀ (A+B(K′ −K + K))
ᵀ
P γ
K (A+B(K′ −K + K))x− VK(x)

= xᵀ (Q+KᵀRK)x+ γxᵀ(A+BK)ᵀP γ
K(A+BK)x− VK(x)

+ xᵀ(K ′ −K)ᵀR(K ′ −K)x+ 2xᵀ(K ′ −K)RKx

+ γxᵀ(K ′ −K)ᵀBᵀP γ
KB(K ′ −K)x+ γ2xᵀ(K ′ −K)ᵀBᵀP γ

K(A+BK)x

By the observation above:

= xᵀ(K ′ −K)ᵀ(R + γBᵀP γ
KB)(K ′ −K)x

+ 2xᵀ(K ′ −K)ᵀ (RK + γBᵀP γ
K(A+BK))x

= xᵀ(K ′ −K)ᵀ(R + γBᵀP γ
KB)(K ′ −K)x

+ 2xᵀ(K ′ −K)ᵀ ((R + γBᵀP γ
KB)K + γBᵀP γ

KA)x

which completes the second claim. �

Lemma 3. (Gradient Domination) Let K∗ denote the optimal policy. It holds that:

C(K)− C(K∗) ≤ ‖Σγ
K∗‖

σmin(R)µ2
Tr
(
∇C(K)ᵀ∇C(K)

)
where σmin is the minimum singular value.
For a lower bound, it holds that:

C(K)− C(K∗) ≥ µ

‖R + γBᵀP γ
KB‖

Tr
(
(Eγ

K)ᵀEγ
K

)
Proof of Lemma 3. First, we provide a bound for the advantage. By Lemma 2:

AK(x,K ′x)

= 2xᵀ(K ′ −K)ᵀEγ
Kx+ xᵀ(K ′ −K)ᵀ(R + γBᵀP γ

KB)(K ′ −K)x

= 2 Tr (xxᵀ(K ′ −K)ᵀEγ
K) + Tr (xxᵀ(K ′ −K)ᵀ(R + γBᵀP γ

KB)(K ′ −K))

Now, completing the square

= Tr
(
xxᵀ

(
(K ′ −K) + (R + γBᵀP γ

KB)−1Eγ
K

)ᵀ
(R + γBᵀP γ

KB)
(
(K ′ −K) + (R + γBᵀP γ

KB)−1Eγ
K

))
− Tr

(
xxᵀ(Eγ

K)ᵀ(R + γBᵀP γ
KB)−1Eγ

K

)
≥ −Tr

(
xxᵀ(Eγ

K)ᵀ(R + γBᵀP γ
KB)−1Eγ

K

)
where equality holds when K ′ = K − (R + γBᵀP γ

KB)−1Eγ
K .

For the upper bound. By Lemma 2:

C(K)− C(K∗) = −E

[
∞∑
t=0

γtAK(x∗t , u
∗
t )

]

≤ E

[
∞∑
t=0

γt Tr
(
x∗tx

∗ᵀ
t (Eγ

K)ᵀ(R + γBᵀP γ
KB)−1Eγ

K

)]
≤ Tr

(
Σγ
K∗(E

γ
K)ᵀ(R + γBᵀP γ

KB)−1Eγ
K

)
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≤ ‖Σγ
K∗‖Tr

(
(R + γBᵀP γ

KB)−1Eγ
K(Eγ

K)ᵀ
)

≤ ‖Σγ
K∗‖‖(R + γBᵀP γ

KB)−1‖Tr (Eγ
K(Eγ

K)ᵀ)

≤ ‖Σγ
K∗‖

σmin(R + γBᵀP γ
KB)

Tr (Eγ
K(Eγ

K)ᵀ)

=
‖Σγ

K∗‖
σmin(R + γBᵀP γ

KB)
Tr

(
1

4
(Σγ

K)−1(Σγ
K)−1∇C(K)ᵀ∇C(K)

)
≤ ‖Σγ

K∗‖
σmin(R)σmin(Σγ

K)2
Tr (∇C(K)ᵀ∇C(K))

For the lower bound, consider K ′ = K − (R + γBᵀP γ
KB)−1Eγ

K :

C(K)− C(K∗) ≥ C(K)− C(K ′)

= −E

[
∞∑
t=0

γtAK(x′t, u
′
t)

]

= E

[
∞∑
t=0

γt Tr
(
x′t(x

′
t)
ᵀ(Eγ

K)ᵀ(R + γBᵀP γ
KB)−1Eγ

K

)]
= Tr

(
Σγ
K′(E

γ
K)ᵀ(R + γBᵀP γ

KB)−1Eγ
K

)
≥ µ

‖R + γBᵀP γ
KB‖

Tr ((Eγ
K)ᵀEγ

K)

�

Lemma 4. This lemma provides useful upper bounds on P γ
K and Σγ

K .

‖P γ
K‖ ≤

C(K)

σmin (E [x0x
ᵀ
0])

‖Σγ
K‖ ≤

C(K)

σmin(Q)

Proof of Lemma 4. For P γ
K , we have:

C(K) = E [xᵀ0P
γ
Kx0] = Tr (E [x0x

ᵀ
0]P γ

K)

≥ ‖P γ
K‖σmin (E [x0x

ᵀ
0])

For the second claim:

C(K) =
∞∑
t=0

γtxᵀt (Q+KᵀRK)xt

≥ Tr(Σγ
K)σmin(Q)

≥ ‖Σγ
K‖σmin(Q)

�

2.2. Exact Gradient Descent Convergence.

Theorem 1. Gradient Descent Progress

Let K ′ = K − α∇C(K) where the step-size

α ≤ min

{
1

16

(
σmin(Q)µ

C(K)

)2
1

‖B‖‖∇C(K)‖(1 + ‖A+BK‖)
,
3

8

σmin(Q)

C(K)‖R + γBTP γ
KB‖

}
.
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Then, it holds that:

C(K ′)− C(K∗) ≤
(

1− ασmin(R)µ2

2‖Σγ
K∗‖

)
(C(K)− C(K∗))

Proof of Theorem 1. By Lemma 2 (notice the switch of signs from (K ′ −K) to −(K −K ′)):

C(K ′)− C(K)

= E

[
∞∑
t=0

γt (−2(x′t)
ᵀ(K −K ′)ᵀEγ

Kx
′
t + (x′t)

ᵀ(K −K ′)ᵀ(R + γBᵀP γ
KB)(K −K ′)x′t)

]
= −2 Tr (Σγ

K′(K −K
′)ᵀEγ

K) + Tr (Σγ
K′(K −K

′)ᵀ(R + γBᵀP γ
KB)(K −K ′))

= −2αTr (Σγ
K′(∇C(K))ᵀEγ

K) + α2 Tr (Σγ
K′(∇C(K))ᵀ(R + γBᵀP γ

KB)∇C(K))

Replacing Σγ
K′ with (Σγ

K′ − Σγ
K + Σγ

K) in the first term.

= −αTr (∇C(K)ᵀ∇C(K)) + 2αTr ((Σγ
K′ − Σγ

K)∇C(K)ᵀEγ
K)

+ α2 Tr (Σγ
K′∇C(K)ᵀ(R + γBᵀP γ

KB)∇C(K))

≤ −αTr (∇C(K)ᵀ∇C(K)) + 2α‖Σγ
K′ − Σγ

K‖Tr (∇C(K)ᵀEγ
K)

+ α2‖Σγ
K′‖‖R + γBᵀP γ

KB‖Tr (∇C(K)ᵀ∇C(K))

≤ −αTr (∇C(K)ᵀ∇C(K)) + α
‖Σγ

K′ − Σγ
K‖

σmin(Σγ
K)

Tr (∇C(K)ᵀ∇C(K))

+ α2‖Σγ
K′‖‖R + γBᵀP γ

KB‖Tr (∇C(K)ᵀ∇C(K))

= −α
(

1− ‖Σ
γ
K′ − Σγ

K‖
σmin(Σγ

K)
− α

2
‖Σγ

K′‖‖R + γBᵀP γ
KB‖

)
Tr (∇C(K)ᵀ∇C(K))

By Lemma 3

≤ α
σmin(R)µ2

‖Σγ
K∗‖

(
1− ‖Σ

γ
K′ − Σγ

K‖
µ

− α

2
‖Σγ

K′‖‖R + γBᵀP γ
KB‖

)
(C(K∗)− C(K))

To conclude the proof, we provide a lemma bounding the necessary terms,

Lemma 5. (Σγ
K Perturbation and Bound) Using the given conditions of the theorem, it holds

that:
‖Σγ

K′ − Σγ
K‖ ≤

µ

4
and consequently:

‖Σγ
K′‖ ≤

4C(K)

3σmin(Q)

Proof of Lemma 5. First, we prove the second claim (assuming the first claim to be true):

‖Σγ
K′‖ ≤ ‖Σ

γ
K′ − Σγ

K‖+ ‖Σγ
K‖ ≤

µ

4
+

C(K)

σmin(Q)
≤ ‖Σ

γ
K‖
4

+
C(K)

σmin(Q)

where the middle inequality comes from Lemma 4 and the first claim.
For the first claim, we require some technical details. For these, we reference the reader to the

appendix of [3]. Notice that their Lemmas 16 through 23 will also hold in the discounted regime
due to our choice of discount factor γ, and that their restrictions on the spectral norm of the state
transition matrix A+BK are not needed the discounted setting. By Lemma 16 of [3], we have:

‖Σγ
K′ − Σγ

K‖
µ

≤ 4

(
C(K)

σmin(Q)µ

)2

‖B‖ (‖A+BK‖+ 1) ‖K −K ′‖
9



≤ 4α

(
C(K)

σmin(Q)µ

)2

‖B‖ (‖A+BK‖+ 1))‖∇C(K)‖ ≤ 1

4

by the condition on α. �

Temporarily, for convenience, let ζ =
(

1− ‖Σ
γ

K′−ΣγK‖
µ

− α
2
‖Σγ

K′‖‖R + γBᵀP γ
KB‖

)
. Now,

returning to the proof of the theorem, we have:

C(K ′)− C(K) ≤ αζ
σmin(R)µ2

‖Σγ
K∗‖

(C(K∗)− C(K))

C(K ′)− C(K∗) ≤
(

1− αζ σmin(R)µ2

‖Σγ
K∗‖

)
(C(K)− C(K∗))

Since ζ ≤ 1, it remains to show that ζ > 0. By the above Lemma 4 and Lemma 5:

ζ = 1− ‖Σ
γ
K′ − Σγ

K‖
µ

− α

2
‖Σγ

K′‖‖R + γBᵀP γ
KB‖

≥ 1− 1

4
− α 2C(K)

3σmin(Q)
‖R + γBᵀP γ

KB‖ ≥
1

2

by the condition on α.

Finally, we conclude that

C(K ′)− C(K∗) ≤
(

1− ασmin(R)µ2

2‖Σγ
K∗‖

)
(C(K)− C(K∗)) .

�

Lemma 6. This lemma provides two more useful bounds:

‖∇C(K)‖ ≤ C(K)

σminQ

√
‖R + γBᵀP γ

KB‖ (C(K)− C(K∗))

µ

and

‖K‖ ≤ 1

σminR

(√
‖R + γBᵀP γ

KB‖ (C(K)− C(K∗))

µ
− γ‖BᵀP γ

KA‖

)
Proof of Lemma 6. For the first claim, using Lemma 1 and Lemma 4:

‖∇C(K)‖2 ≤ 4 Tr (Σγ
K(Eγ

K)ᵀEγ
KΣγ

K) ≤
(
C(K)

σminQ

)2

Tr ((Eγ
K)ᵀEγ

K)

Using Lemma 3 finishes the proof. For the second claim, also using Lemma 3:

‖K‖ ≤ ‖(R + γBᵀP γ
KB)−1‖‖(R + γBᵀP γ

KB)K‖

≤ 1

σminR
‖(R + γBᵀP γ

KB)K‖

≤ 1

σminR
(‖(R + γBᵀP γ

KB)K + γBᵀP γ
KA‖ − γ‖B

ᵀP γ
KA‖)

=
Eγ
K

σminR
− γ ‖B

ᵀP γ
KA‖

σminR

≤
√

Tr ((Eγ
K)ᵀEγ

K)

σminR
− ‖B

ᵀP γ
KA‖

σminR
10



≤ 1

σminR

(√
‖R + γBᵀP γ

KB‖ (C(K)− C(K∗))

µ
γ‖BᵀP γ

KA‖

)
�

Theorem 2. For an appropriate (constant) setting of the step-size α.

α = poly

(
µσmin(Q)

C(K0)
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
, σmin(R)

)
and for

N ≥ 2‖Σγ
K∗‖

αµ2σmin(R)
log

C(K0)− C(K∗)

ε

the gradient descent algorithm satisfies the following performance bound:

C(KN)− C(K∗) ≤ ε

Proof of Theorem 2. By choosing the appropriate step-size and using Lemma 6, we satisfy the
condition in Theorem 1. Therefore, given K0, we have:

C(K1)− C(K∗) ≤
(

1− ασmin(R)µ2

2‖Σγ
K∗‖

)
(C(K0)− C(K∗))

By induction, suppose at time t > 1, C(Kt) ≤ C(K0), since the step-size is constant, the
conditions remain satisfied and we can apply Theorem 1 again:

C(Kt+1)− C(K∗) ≤
(

1− ασmin(R)µ2

2‖Σγ
K∗‖

)
(C(Kt)− C(K∗))

≤
(

1− ασmin(R)µ2

2‖Σγ
K∗‖

)t+1

(C(K0)− C(K∗))

Thus, using the fact that log(1− x) ≤ −x for small, positive x, we conclude that

N ≥ 2‖Σγ
K∗‖

αµ2σmin(R)
log

C(K0)− C(K∗)

ε
=⇒ C(KN)− C(K∗) ≤ ε

�

3. CONVERGENCE TO UNDISCOUNTED OPTIMAL

Here, we provide our main result concerning the convergence of Algorithm 1. Again, we are
working with a linearly parameterized policy K – for clarity, the policy is linear in the state
space. We show that any random initial policy K0 will converge to the global optimum of the
undiscounted LQR in finite time. Lemma 7 is useful when producing a bound that is independent
of γ and Lemma 8 shows that the optimal policy is more "stable" than the initial policy.

Now, we present the γ-iteration algorithm that will yield convergence to the optimal undis-
counted policy with a random initial policy. In a more general sense, one could view this
process as moving along a homotopy between the initial discounted optimal policy and the final
undiscounted optimal policy, with γ functioning as the "slider" variable. We discuss this idea a
bit more in the conclusion.

Lemma 7. Let 1 ≥ γ > % > 0 be two discount rates. Let the matrices Γ and P denote the
unique PSD solutions to the discounted DAREs produced by discount rates γ and %, respectively.
If we assume that the initial distribution D has identity covariance, Then,

Tr(P) ≤ %

γ
Tr(Γ)

11



Algorithm 1 Policy Gradient w/ Random Initialization
Input: K0 random policy, System matrices A,B,Q,R, tolerance ε.
γ ← min

(
1

%(A+BK)2
, 1
)

while γ < 1 do
Run standard policy gradient algorithm until Cγ(K)− Cγ(K∗) ≤ ε

γ ← min
(

1
%(A+BK∗)2

, 1
)

K0 ← K∗

end while
Run standard policy gradient until convergence to undiscounted optimal

Proof of Lemma 7. Let K∗γ and K∗% be the optimal policies w.r.t. the discount factors. Then, we
have:

C%(K
∗
%) ≤ C%(K

∗
γ) ≤ Cγ(K

∗
γ)

where the first inequality follows from the optimality of K∗% w.r.t to the %-discounted LQR, and
the second since % < γ.

It follows that

C%(K
∗
%)− Cγ(K∗γ)

≤ C%(K
∗
γ)− Cγ(K∗γ)

≤ Ex0

[
∞∑
t=0

(
(%t − γt)xᵀ0

[
(A+BK∗γ)ᵀ

]t (
Q+ (K∗γ)ᵀRK∗γ

) [
A+BK∗γ

]t
x0

)]

= Ex0

[
∞∑
t=1

(
(
%t

γt
− 1)γtxᵀ0

[
(A+BK∗γ)ᵀ

]t (
Q+ (K∗γ)ᵀRK∗γ

) [
A+BK∗γ

]t
x0

)]

≤
(
%

γ
− 1

)
Cγ(K

∗
γ)

which implies
C%(K

∗
%) ≤ %

γ
Cγ(K

∗
γ)

This yields:

Ex0 [xᵀ0Px0] ≤ %

γ
Ex0 [xᵀ0Γx0]

Tr(PΣ0) ≤ %

γ
Tr(ΓΣ0)

where the claim holds since Σ0 = I . �

In the following Lemma, we assume that K0 is not stabilizing; if it were, then there would be
no need for a discount factor to which we defer to the work in [3].

Lemma 8. Let K0 be the unstable initial policy which yields discount rate γ. Let K∗ denote the
optimal policy with respect to the γ-discounted LQR. Then, we have the following improvement
bound:

% (A+BK∗) ≤

√
1− λmin(Q)

Tr(P)
% (A+BK0)

where P is the unique stabilizing solution to the undiscounted discrete-time Algebraic Riccati
equation.

12



Proof of Lemma 8. We know that γ(A+BK∗) must be stable by optimality. Thus, we can write
P as follows. For convenience, let A = A+BK∗.

P =
∞∑
t=0

γt (Aᵀ)t (Q+ (K∗)ᵀRK∗)At

Now, let v be a unit vector in the eigenspace of the largest (modulus) eigenvalue of A. If it is the
case that v is a complex vector, then we multiply by the conjugate transpose on the left. Then,

λmax(P ) ≥ vᵀPv =
∞∑
t=0

γtvᵀ (Aᵀ)t (Q+ (K∗)ᵀRK∗)Atv

≥ λmin (Q+ (K∗)ᵀRK∗)
∞∑
t=0

γtvᵀ (Aᵀ)tAtv

= λmin (Q+ (K∗)ᵀRK∗)
∞∑
t=0

γt‖λmax(A)tv‖2

=
λmin (Q+ (K∗)ᵀRK∗)

1− γ% (A)2

Lastly, since Q,R � 0 and by the definition of P ,

0 <
λmin(Q)

Tr(P)
≤ λmin(Q)

Tr(P )
≤ λmin (Q+ (K∗)ᵀRK∗)

λmax(P )
< 1

where the second inequality follows from Lemma 7 �

Theorem 3. For γ determined by random initialization, after

N ≥ Tr(P)

λmin(Q)
log γ−1

iterations, Algorithm 1 converges to a stabilizing regime. Here, P represents the unique
stabilizing solution to the undiscounted discrete-time Algebraic Riccati equation.

Proof of Theorem 3. Given K0, if K0 is not stabilizing, then by Lemma 8 we have

% (A+BK1) ≤

√
1− λmin(Q)

Tr(P)
% (A+BK0)

Since the step size is constant and independent of the initialization, after t iterations, we have
that

% (A+BKt) ≤
(

1− λmin(Q)

Tr(P)

)t/2
% (A+BK0)

Thus, using the fact that log(1− x) ≤ −x for small, positive x, we conclude that

N ≥ 2 Tr(P)

λmin(Q)
log
(
% (A+BK0)

)
=⇒ % (A+BKN) < 1

�

Remark 3.1. If K0 were stabilizing, then we would have γ = 1 and there would be no need for
Algorithm 1.

Remark 3.2. This is a rather pessimist bound; however, this is an intentional choice. In the
proof of Lemma 8 we can produce a tighter bound at the cost of adding an additional dependency
on γ in λmax(P ) - we choose to omit that dependency for a cleaner bound that only depends on
the initialization through log

(
% (A+BK0)

)
.
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(A) Improvement Ratio vs. Bound (B) # Iterations vs. Bound

FIGURE 1. System matrices A,B both random 10 × 10 matrices reproduced
below. The estimate bound is the bound that retains the secondary dependency
on γ, and the uniform bound is the one used in our results. To generate these
figures, we use % (A+BK0) = 1/

√
γ.

A =



0.87 0.82 2.87 −0.89 −0.25 0.91 −2.17 −0.46 −0.26 0.53
1.23 2.15 0.67 −0.93 −1.11 −0.26 0.88 1.73 0.54 0.83
−0.59 0.13 −0.26 1.57 0.14 −0.90 0.40 −0.43 −0.94 0.35
−0.60 −2.06 0.68 1.41 0.71 −1.03 0.12 −1.23 0.76 −0.99
0.69 −0.91 −0.59 −0.93 −0.10 −2.67 −1.13 −0.15 1.99 0.08
1.89 0.34 1.49 0.39 0.44 0.24 −0.03 −0.10 1.54 −1.00
−0.65 −0.12 −0.82 1.30 −0.42 0.03 −0.84 −1.27 0.36 0.18
−0.17 −0.21 −0.72 −0.62 −1.15 0.64 0.79 1.23 −2.04 0.15
−0.68 −0.46 0.65 −0.28 −1.78 −0.07 −0.24 −1.35 −0.79 −0.33
−1.90 −0.48 0.22 −1.34 1.00 −1.60 1.33 −0.09 −0.26 0.57



B =



−0.82 −0.53 −1.22 0.32 −0.42 −0.11 1.20 0.21 −0.99 −1.53
−0.48 0.93 1.07 −0.08 0.26 −0.01 0.34 −0.76 −1.93 −0.06
0.44 0.23 0.69 −0.24 1.25 1.11 −1.21 −0.62 1.06 1.05
−0.37 −1.98 1.87 −0.90 1.19 −2.13 −1.31 0.85 1.00 1.13
0.72 −0.41 −0.18 1.48 −0.47 0.68 −0.41 1.69 1.00 1.39
−0.87 0.86 1.13 0.69 −0.36 1.40 −0.56 −0.29 1.17 1.08
−0.46 −0.81 1.53 1.70 1.68 0.52 −0.16 −1.26 0.06 −0.55
−0.07 −0.26 1.09 0.81 −0.93 0.57 0.25 0.10 −2.46 0.14
−1.05 −1.52 −0.65 −1.44 1.28 −1.09 0.46 0.45 −1.07 1.24
−1.91 0.88 1.65 −0.24 −0.61 1.18 −1.41 −0.86 1.88 1.01


4. PRELIMINARY GENERALIZATIONS

In this section, we take a brief look into possible approaches to generalizing our main result.
We first consider a natural generalization to stochastic policies with entropy regularization, and
then we consider a simple non-linear case in the one-dimensional setting. Lastly, we provide an
counterexample using a policy-approximator that is linear in parameters to show that we should
not always expect policy gradient methods to converge to the global optimum.
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4.1. Linear-Gaussian Policies.

Here, we show that Policy Gradient methods also converge for the class of linear-Gaussian
policies (fixed σ). {

π(·|x) = N(Kx, σ2Ik×k)
}

=⇒ u = Kx+ ση

where η is standard normal.
From optimal control theory, we know that the Q function can be written as follows

Q(x, u) =

[
x
u

]ᵀ(
Q+ AᵀPKA AᵀPKB
BᵀPKA R +BᵀPKB

)[
x
u

]
using column concatenation of x and u. Thus, by policy gradient theorem and Stein’s lemma

∇KC(K) = Ex∼νK [∇K log πK(u|x)QK(x, u)]

= E
[
∇K
−(u−Kx)2

2σ2
QK(x, u)

]
= E

[
u−Kx
σ2

xᵀQK(x,Kx+ ση)

]
= σ−2E [σηxᵀQK(x,Kx+ ση)]

now, using Stein’s lemma = E
[
∇uQK |(x,Kx+ση)x

ᵀ
]

= 2E
[
((R +BᵀPKB)u+BᵀPKAx) |(x,Kx+ση)x

ᵀ
]

= 2E [((R +BᵀPKB)(Kx+ ση) +BᵀPKAx)xᵀ]

= 2E [((R +BᵀPKB)K +BᵀPKA)xxᵀ]

= 2EKΣK

where νK = N(0,ΣK) is the invariant distribution under the policy πK .
Since the Policy Gradient takes the same form as in our previous analysis, the convergence

results will also hold.

4.2. Piecewise-Linear LQR in 1D.

We consider a policy of the form

u = K1 max(x, 0) +K2 min(x, 0)

where ϑ = (K1, K2) are the parameters to be learned. This class of policies clearly contains the
optimal policy (i.e., K1 = K2 = K∗).

In this setting, there are three possibilities for the dynamics of the system.
(1) The dynamics produced by K1 and K2 are both forward invariant. Thus, if x0 > 0, then

xt > 0 ∀t, and similarly for x0 < 0.
(2) After the first time step, the region corresponding to K1 is immediately mapped to the

region of K2, and K2 is forward invariant. For any x0, x1 < 0 and xt < 0 ∀t ≥ 1 (this
applies the other way around as well).

(3) The state bounces back and forth between the two regions.
To show that policy gradient methods converge in with this class of policies, we would like

to show that the gradient takes the same form as that of Lemma 1, and that we can produce a
similar cost-difference bound.

In the first setting, for any trajectory, the gradient of the policy is simply that of the "normal"
LQR.
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In the second setting, the gradient takes the form

∇C(ϑ) = (2RK1x0x
ᵀ
0, γ∇K2C(K2))ᵀ

which shows that K2 will move towards K∗ and K1 will move towards zero. As K1 updates
with this gradient, two things can happen: K1 will update in a way that pushes the dynamics to
either setting 1) or setting 3).

The third setting is the most interesting to consider.

Definition 4. Define P1 and P2 as the unique positive definite solutions to the following Lya-
punov equations for positive and negative x0, respectively.

P1 =
(
Q+K2

1R
)

+ γ(A+BK1)
(
Q+K2

2R
)

(A+BK1)

+ γ2(A+BK1)(A+BK2)P1(A+BK2)(A+BK1)

P2 =
(
Q+K2

2R
)

+ γ(A+BK2)
(
Q+K2

1R
)

(A+BK2)

+ γ2(A+BK2)(A+BK1)P2(A+BK1)(A+BK2)

Also, we define the corresponding notation shortcuts E1, E2,Σ
K
2n,Σ

K
2n+1

E1 = (R + γBP2B)K1 +BP2A

E2 = (R + γBP1B)K2 +BP1A

ΣK
2n =

∞∑
t=0

γ2tx2
2t

ΣK
2n+1 =

∞∑
t=0

γ2t+1x2
2t+1

Proposition 4. P1 and P2 are related as follows

P1 =
(
Q+K2

1R
)

+ γ(A+BK1)P2(A+BK1)

P2 =
(
Q+K2

2R
)

+ γ(A+BK2)P1(A+BK2)

Then, we can write the cost as Cϑ(x0) = x0P1x0 or Cϑ(x0) = x0P2x0 depending on the value
of x0. Now, computing the gradient

∇K1Cϑ(x0) =
(
2RK1 + γ2B(Q+K2

2R)(A+BK1)
)
x2

0 + γ2∇K1Cϑ(x2))

=
(
2RK1 + γ2B(Q+K2

2R)(A+BK1)
)
x2

0

+ γ22B(A+BK2)P1(A+BK2)(A+BK1)x2
0 + γ2∇K1Cϑ(x2)|x2=(A+BK2)(A+BK1)x0

=
∞∑
t=0

γ2t2

((
R + γB

(
(Q+K2

2R) + γ(A+BK2)P1(A+BK2)
)
B
)
K1

+ γB
(
(Q+K2

2R) + γ(A+BK2)P1(A+BK2)
)
A

)
x2

2t

=
∞∑
t=0

γ2t2

(
(R + γBP2B)K1 + γBP2A

)
x2

2t

= 2E1

∞∑
t=0

γ2tx2
2t

Using the same recursion trick for K2

∇K2C(ϑ)|x0 = γ2RK2 ((A+BK1)x0)2 + γ2∇K2Cϑ(x2))

= γ2RK2 ((A+BK1)x0)2 + γ22BP1(A+BK2) ((A+BK1)x0)2
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+ γ2∇K2Cϑ(x2)|x2=(A+BK2)(A+BK1)x0

=
∞∑
t=0

γ2t+12

(
(R + γBP1B)K2 + γBP1A

)
x2

2t+1

= 2E2

∞∑
t=0

γ2t+1x2
2t+1

Definition 5. Here, we define the two-step versions of the Q and Advantage functions.

Q2,K(x, u, u′) := r(x, u) + γr(x′, u′) + γ2VK(x′′)

A2,K(x, u, u′) := Q2,K(x, u, u′)− VK(x)

where V is the value function and r(x, u) is the reward (cost) for a given state and action.

Lemma 9. We can express the two-step advantage in terms of the one-step advantage

A2,K(x, u, u′) = AK(x, u) + γAK(x′, u′)

Additionally, we can write the cost-difference between two policies as follows

VK̂(x)− VK(x) =
∞∑
t=0

γ2tA2,K(x̂2t, û2t, û
′
2t+1)

Proof of Lemma 9. The first claim follows from the defintion of the two-step advantage,

A2,K(x, u, u′) = Q2,K(x, u, u′)− VK(x)

= r(x, u) + γr(x′, u′) + γ2VK(x′′)− VK(x)

= r(x, u) + γVK(x′)− VK(x) + γ (r(x′, u′) + γVK(x′′)− VK(x′))

= AK(x, u) + γAK(x′, u′)

where the next state x′ is determined by x and u.
The next claim comes from Lemma 2

VK̂(x)− VK(x) =
∞∑
t=0

γtAK(x̂t, ût)

=
∞∑
t=0

γ2t (AK(x̂2t, û2t) + γAK(x̂2t+1, û2t+1))

=
∞∑
t=0

γ2tA2,K(x̂2t, û2t, û
′
2t+1)

�

Now, if K∗ also produces "back-and-forth" dynamics (i.e., A+BK∗ < 0), then we can write
the cost difference as follows

C(ϑ)− C(K∗)

= −E

[
∞∑
t=0

γ2tA2,ϑ(x∗2t, u
∗
2t, u

∗
2t+1)

]

= −
∞∑
t=0

γ2t

(
2(K∗ −K1)

(
(R + γBP2B)K1 +BP2A

)
x2

2t + (K∗ −K1)(R + γBP2B)(K∗ −K1)x2
2t

+ γ
(
2(K∗ −K2)

(
(R + γBP1B)K2 +BP1A

)
x2

2t+1 + (K∗ −K2)(R + γBP1B)(K∗ −K2)x2
2t+1

))
17



= −
∞∑
t=0

γ2t

(
2(K∗ −K1)E1x

2
2t + (K∗ −K1)(R + γBP2B)(K∗ −K1)x2

2t

+ γ
(
2(K∗ −K2)E2x

2
2t+1 + (K∗ −K2)(R + γBP1B)(K∗ −K2)x2

2t+1

))
≤ E

[
∞∑
t=0

γ2tE1(R + γBP2B)−1E1x
2
2t +

∞∑
t=0

γ2t+1E2(R + γBP1B)−1E2x
2
2t+1

]
= E1(R + γBP2B)−1E1Σ∗2n + E2(R + γBP1B)−1E2Σ∗2n+1

≤ ΣK∗
2n

‖R‖‖ΣK1
2n ‖2

(∇K1C(ϑ))2 +
ΣK∗

2n+1

‖R‖‖ΣK2
2n+1‖2

(∇K2C(ϑ))2

Now, if K∗ produces the forward invariant dynamics described in (1), then, we can write the
cost difference with the one-step advantage as in Lemma 2, using K1 or K2 depending on the
sign of x0. Supposing x0 > 0, we would have

C(ϑ)− C(K∗) = −E

[
∞∑
t=0

γtAϑ(x∗t , u
∗
t )

]

≤ ΣK∗
n

‖R‖‖ΣK1
2n ‖2

(∇K1C(ϑ))2

and similarly for K2 if x0 < 0.

4.3. Counterexample.

In this section we show that there exists a policy that is linear in the parameters that does not
converge to the global optimum of the LQR.

We first provide an example of a dynamics diagram that we will use later on in this section
(Example 4.1). This type of diagram is commonly used to depict the behavior of dynamical
systems produced by iterating the map of interest; in the case of Policy Gradient methods in the
LQR, that map is determined by the system matrices (A,B) and the policy π.

Example 4.1. Consider the state dynamics supported on (0, 2)

xt+1 =

{
2xt 0 ≤ x ≤ 1

−2(xt − 2) 1 ≤ x ≤ 2
18



The tent map dynamics are represented by the green line and the black dotted line represents
xt+1 = xt. The pink dotted line represents the "trajectory" from x0. The first seven steps of the
dynamics under the tent map are shown, with explicit labels for the first three.

Now continuing, we consider a simple setting in 1D with the dynamics:

xt+1 = Axt +But

ut+1 = Fϑ(xt) = ϑ1xt + ϑ2Λ(xt)

where Λ is to be a function such that the state dynamics behave as depicted in Fig. 2. The optimal
policy for the LQR belongs to this policy class and corresponds to the parameters (ϑ∗1, 0).

To better understand this example, we consider the how changing ϑ1 and changing ϑ2 affect
the dynamics and the cost of a trajectory given x0. Specifically, let us consider (A,B) = (0, 1)
and (Q,R) = (1, 1).

Lemma 10. Given (A,B) = (0, 1), (Q,R) = (1, 1), to update the parameters without dramat-
ically increasing the cost, then we must update along the path determined by the differential
equation below

dtx1 = dtAx0 + dtBu0 = 0 =⇒ dtϑ1 = −Λ(x0)dtϑ2

Bx0

(4.1)

Proof. We first notice that independently changing ϑ2 does not affect any of the behavior in the
region Θ. Intuitively, increasing and decreasing ϑ2 has the effect of rotating the blue section of
Fig. 2 clockwise or anti-clockwise, respectively. Consequently, x0 will no longer map to the
single point that yields convergence of the state to zero, thus, severely increasing the cost of the
trajectory. A similar fate is met if we increase or decrease ϑ1. �
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(A)

(B)

FIGURE 2. The policy is a linear function of the state in Θ (∀x ∈ Θ,Λ(x) = 0).
Outside Θ, there is a single point x1 such that Λ(x1) = 0 as well.
(A) shows that any small change to x0 will result in a large increase to the cost of
the trajectory since xt will not tend to zero unless x0 is in Θ or precisely x0.
(B) shows a similar example where the policy is slightly perturbed. Like above,
any such change will result in a large increase to the cost function.

Theorem 5. Let (A,B) = (0, 1), (Q,R) = (1, 1), and (ϑ1, ϑ2) = (0.75, 1). Additionally, let
Θ = [−2.25, 1], x0 = 4 and x1 = −3. Referencing the idea of Fig. 2, let

Λ =


−2x+ 100, x ∈ R<0 \Θ ∪ {x1}
0, x ∈ Θ ∪ {x1}
−2x+ 2, x ∈ R>0 \Θ ∪ {x1}
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Then, in this setting, there exists a locally optimal policy that is not the globally optimal policy
for the LQR.

Proof. For these example parameters, the optimal policy ϑ∗ = (0, 0). With all this in mind,
we can continue forwards in determining the updates for the policy parameters. It’s important
to notice that in this setting, the cost function may not be C 1; however, we can instead use
subgradients to yield a similar update process.

Substituting values into equation 4.1, we see that dtϑ1 = 3
2
dtϑ2. Now, assuming we have

chosen the step-size appropriately, as we proceed along this update process, for ϑ1 to reach
ϑ∗1, the sum of all the updates will equal ϑ1 − ϑ∗1 =

∑
t dtϑ1 = 0.75. Therefore, we can also

determine the net change for ϑ2 since we must update along the path described by equation 4.1;
thus, we see that the final value ϑ2 = ϑ2(ϑ1) = −0.125 6= ϑ∗2. �

5. DISCUSSION AND CONCLUSION

This paper provides a convergence guarantee for model-based policy gradient methods in
the setting of the LQR. Building on existing results, we use discounting to ensure finite costs,
which allow us to show that the assumption of a stabilizing initial policy is not necessary for
convergence to the globally optimal policy. Similar results can be obtained in the finite-horizon.

Future Work. Using a discount factor to guarantee finite costs can also be applied to solving
issues involving a chaotic policy. In our work, we focused on divergent costs caused by divergent
states; however, it is possible for the cost to diverge while the states remain in some compact
set – this can be seen in some piece-wise linear policies (see Example 4.1). There are a few
directions to extend the work from this paper.

Model-Free Case. The results in this paper are all use knowledge of system dynamics. A
natural way forwards would be to demonstrate that our results are also true in the model-free
scenario where simulated trajectories are used in a stochastic policy gradient method.

Nonlinear Extensions. In light of the piecewise-linear example in one dimension, it may be
possible to extend this to higher dimensions. Some difficulties we encountered were how to
suitably extend the idea of a two-parameter policy to Rn. The end goal of this line of work
would be to provide a convergence result for a simple ReLU neural network in the LQR, or
to show that there is no such guarantee. As with all non-linear extensions, the friendly linear
dynamics of the LQR will no longer be present, making the analysis much more challenging.
One could also consider all of the above approaches from the entropy-regularized perspective.

Homotopy-based Iteration. The main result of this paper is to show that sequentially updating
the discount factor is a viable way of moving from an unstable policy to a stable policy. We
think it would be interesting to take a more general perspective on this method and apply it
to more general reinforcement learning settings. It is unclear if a discounting approach would
succeed in an environment where the optimal policies are not homotopic in the discount factor.
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APPENDIX A. SOME ESTIMATES FOR THE CONVERGENCE OF NONLINEAR LQR

In this section we consider the framework of entropy-regularized reinforcement learning. In
the same vein as the above section, we look further into the prospect of developing a convergence
result with a stochastic policy. This section is also motivated by the results from [7, 16, 6, 4].

Proposition 6. For a given soft Q-function Q̃, the “optimal” policy πB is the Boltzmann (or
energy-based) policy given by

πB(a|s) = arg max
π

(
Ea∼π

[
Q̃π(s0, a)− τ log πϑ(at|st)

])
=

exp
(
τ−1Q̃(s, a)

)
∫
A π(a′|s) exp

(
τ−1Q̃(s, a′)

)
da′

where τ is an adjustable hyperparameter.

Proof of Proposition 6. We first assume that Q̃ and
∫

exp
(
τ−1Q̃(s, a)

)
dπ are bounded for any

s, and for both π and π′.
Given a policy π and corresponding Q-function Q̃π, we define a new policy π′ as

π′(·|s) ∝ exp
(
τ−1Q̃π(s, ·)

)
where the proportionality is due to a normalization factor written in the proposition statement.

We can rewrite the quantity we seek to maximize as follows

Ea∼π
[
Q̃π(s0, a)− τ log π(a|s)

]
= Ea∼π

[
Q̃π(s0, a)

]
− τ

∫
π(a|s) (log π(a|s)− log π′(a|s)) da
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− τ
∫
π(a|s) log π′(a|s)da

= Ea∼π
[
Q̃π(s0, a)

]
− τDKL (π(·|s)‖π′(·|s))

− τ
∫
π(a|s) log

 exp
(
τ−1Q̃(s, a)

)
∫
A π(a′|s) exp

(
τ−1Q̃(s, a′)

)
da′


= −τDKL (π(·|s)‖π′(·|s)) + τ log

∫
exp

(
τ−1Q̃(s, a)

)
dπ

From this, we can see that

Ea∼π
[
Q̃π(s0, a)− τ log πϑ(a|s)

]
≤ Ea∼π′

[
Q̃π(s0, a)− τ log π′(a|s)

]
Since the any sub-optimal policy can be improved in this way, we know the optimal policy must
be of an energy-based form. �

We now consider a restricted family of softmax policies for continuous action spaces. These
policies have the form

πϑ(a|s) =
exp− (a−Fϑ(s))2

2σ2∫
exp− (a′−Fϑ(s))2

2σ2 da
=

1√
2πσ2

e−
(a−Fϑ(s))2

2σ2

for Fϑ(s) = ϑs + ϑ′Λ(s) and for a certain function Λ to be decided later. The above policies
are Gaussian policies around a perturbation of the linear policy πl(s) = ϑs (we remain in 1
dimension for the moment). We would like to prove that the policy gradient algorithm converges
to a global minimum in this setting, provided that the initial distribution has full support on
the real axis. To do so, we must show that the policy gradient dynamics act as a contraction in
the space of parameters. In other words, we would like to find a metric, either in the space of
parameters or in the space of measures, that “shows” that the policy gradient dynamics converge
to the unique minimizer (ϑ, ϑ′) = (ϑ∗, 0), where ϑ∗ is the optimal policy of the LQR in 1
dimension for the given system matrices (values) A,B,Q,R.

The policy gradient update in the regularized framework reads as follows:
d

dt
ϑ = −∇ϑEs0∼ν [V πϑ(s0)]

where

Es0∼ν [V πϑ(s0)] = Es0∼ν
[∫

(Qπϑ(s0, a)− τ log(πϑ(·|s))) πϑ(da|s0)

]
Taking the derivative in ϑ we then obtain

∇ϑEs0∼ν [V πϑ(s0)] = Es0∼ν
[∫ (

∇ϑQ
πϑ(s0, a)− τ∇ϑπϑ(a|s)

πϑ(a|s)

)
πϑ(da|s0)

]
+ Es0∼ν

[∫
(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑπϑ(da|s0)

]
= Es0∼ν

[∫
∇ϑQ

πϑ(s0, a)πϑ(da|s0)

]
+ Es0∼ν

[∫
(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑπϑ(da|s0)

]
= Es0∼ν

[
γ

∫ ∫
∇ϑV

πϑ(s1)P (s1|s0, a)πϑ(da|s0)

]
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+ Es0∼ν
[∫

(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑπϑ(da|s0)

]
= Es0∼%π(ν)

[∫
(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑπϑ(da|s0)

]
= Es0∼%π(ν),a∼π [(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑ log(πϑ(a|s0))](A.1)

where %π(ν) = Es0∼ν [
∑

t γ
tPπ(st ∈ ds|s0)] is the discounted visitation measure under policy

π for the initial state distribution ν.
We aim to show that under the above dynamics some energy in the parameter space decreases.

We have a few options for such energy:
(1) Defined directly on the parameter space of interest,

U(ϑ) = ‖ϑ− ϑ∗‖2

(2) on the space of measures,

U(πϑ) =

∫
DKL (πϑ(·, s)‖π∗(·, s)) ν(ds) =

∫
(Fϑ(s)− Fϑ∗(s))2ν(ds)

(3) or a Lojasiewicz-type inequality (i.e., gradient domination).

‖∇ϑEs0∼ν [V πϑ(s0)]‖ ≥ Es0∼ν [V πϑ(s0)− V πϑ∗ (s0)]

Here we go through some computations for two of the possible approaches described above.
(1) Defined directly on the parameter space of interest:

U(ϑ) = ‖ϑ− ϑ∗‖2

The variation U(ϑ) under the dynamics (A.1) reads:
d

dt
U(ϑt) = 〈ϑ− ϑ∗, d

dt
ϑ〉

= −〈ϑ− ϑ∗,Es0∼%π(ν),a∼π [(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑ log(πϑ(a|s0))]〉

= −〈ϑ− ϑ∗,Es0∼%π(ν),a∼π

[
(Qπϑ(s0, a)− τ log(πϑ(·|s)))∇ϑ

(
−(a− Fϑ(s))2

2σ2

)]
〉

= 〈ϑ− ϑ∗,Es0∼%π(ν),a∼π

[
(Qπϑ(s0, a)− τ log(πϑ(·|s)))

(
−(a− Fϑ(s))

σ2
∇ϑFϑ(s)

)]
〉

= Es0∼%π(ν),a∼π

[
(Qπϑ(s0, a)− τ log(πϑ(·|s)))

(
−(a− Fϑ(s))

σ2
(Fϑ(s)− Fϑ∗(s))

)]
= −σ−2Es0∼%π(ν) [(Fϑ(s)− Fϑ∗(s))Ea∼π [Qπϑ(s0, a)(a− Fϑ(s))]] (A.2)

= σ−2Es0∼%π(ν) [(Fϑ(s)− Fϑ∗(s))Ea∼π [(V πϑ(s0)−Qπϑ(s0, a)) (a− Fϑ(s))]]

where in (A.2) we have used that odd central moments of a Gaussian are all equal to 0.
(2) Defined on the space of measures:

U(πϑ) =

∫
DKL (πϑ(·, s)‖π∗(·, s)) ν(ds) =

∫
(Fϑ(s)− Fϑ∗(s))2ν(ds)

We have, similarly to above,
d

dt
U(πt) =

∫
(Fϑ(s)− Fϑ∗(s))∇ϑFϑ(s)ν(ds)

d

dt
ϑ

= −Es0∼%π(ν),s∼ν,a∼π [(Fϑ(s)− Fϑ∗(s))〈∇ϑFϑ(s),∇ϑ log(πϑ(a|s0))〉 (Qπϑ(s0, a)− τ log(πϑ(·|s)))]
= σ−2Es0∼%π(ν),s∼ν,a∼π [(Fϑ(s)− Fϑ∗(s))〈∇ϑFϑ(s),∇ϑFϑ(s0)〉(Fϑ(s0)− a) (Qπϑ(s0, a)− τ log(πϑ(·|s)))]
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Assuming that the operator 〈∇ϑFϑ(s),∇ϑFϑ(s0)〉 is positive definite with respect to the L2

product, we then have
d

dt
U(πt) < λminσ

−2Es0∼%π(ν),a∼π [(Fϑ(s0)− Fϑ∗(s0))(Fϑ(s0)− a) (Qπϑ(s0, a)− τ log(πϑ(·|s)))]

which corresponds to that we have obtained in (1).
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