
The Quantum Schur Transform and its Applications

Joey Li

September 21, 2019

Abstract

The quantum Schur transform is a fundamental protocol in quantum information theory
which performs a change of basis from a local, qudit-level description of a system to a global,
symmetry-based representation. More formally, Schur-Weyl duality allows the simultaneous
decomposition of n-fold tensor products of d-dimensional complex space into irreducible rep-
resentations of the unitary and symmetric groups, and the Schur transform is the particular
change of basis from our standard basis to the basis induced by these actions. In 2005, [1]
introduced an efficient implementation of the quantum Schur transform, which allowed many
quantum information protocols to become experimentally viable. In this paper, we review
their work and implement the quantum Schur transform on IBM’s quantum computers. In
addition, we study the use of the quantum Schur transform for the specific purpose of optimal
qubit purification, as first outlined in [2].

1 Addition of Angular Momenta
To understand the Schur transform, it helps to have the context of the general formalism of
addition of angular momenta in quantum mechanics. In particular, in the case of qubits, or
d = 2 in the general Schur-Weyl duality, the Schur transform corresponds exactly to addition of
angular momenta. Thus, we give a brief treatment of the topic in this section, generally seeking
to highlight important results and ideas more than specific proofs. The treatment we give follows
some combination of [3] and [4].

1.1 The J Operator
Recall that rotations R(x, θ) in R3 by angle θ around axis x are isometries of the space, and thus
correspond to elements of the Lie group SO(3). In particular, the condition that the determinant
is positive one corresponds to the fact that orientation is preserved under rotation. From a physics
standpoint, we have the intuition from classical mechanics that angular momentum is an operator
which generates rotation. Thus, mathematically, we want the operator J corresponding to angular
momentum to satisfy the relation

R(x, ε) = e−iεJx

for small ε > 0.
As it turns out, this is possible. A key fact is that su(2) ∼= so(3), and in fact, SU(2) is the

universal space for all Lie groups which have Lie algebra su(2). In particular, SU(2) is a double
cover of SO(3). We may view the rotation operators as unitaries then, and this aids our intuition
for obtaining these so-called J operators: we know from linear algebra that unitary matrices of
determinant one are exponentials of i times a traceless Hermitian matrix. Thus, these angular
momentum operators J correspond to traceless Hermitians. As an example, in the two qubit case,
we have the familiar Pauli operators {σx, σy, σz} as a basis for this space, and they can be modified
to obtain angular momentum J operators:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
In the above discussion, we have glossed over an important point: one can check that the

matrices above have the property [Ji, Jj] = ihεijkJk where εijk is a structure constant. This is
in fact the defining point of angular momentum operators: their commutation relations. It gives
us the natural Lie bracket through which we may define a Lie algebra corresponding to these

1

operators. Generally, we will consider the operators Jx, Jy, Jz corresponding to the x, y, z axes,
which will determine our system.

1.2 Quantized Angular Momenta
Assume our system is in a finite-dimensional Hilbert space. This is a reasonable assumption for a
system of n qudits. Now we wish to characterize the possible values for angular momentum. From
above, we have that the operators Jx, Jy, Jz have nontrivial commutation relations, and thus cannot
be simultaneously diagonalized. We can, however, define an angular momentum operator J2 = J2

x+
J2
y + J2

z which commutes with all of these operators, and thus can be simultaneously diagonalized
with one of them. In particular, recall that our J operators are Hermitian, and thus can indeed be
diagonalized into orthogonal eigenspaces. By convention, we choose to simultaneously diagonalize
J2 and Jz, taking eigenvectors |a, b〉 such that J2 |a, b〉 = a |a, b〉 and Jz |a, b〉 = b |a, b〉.

Now to help us analyze these eigenvectors more closely, we may define “ladder operators” J+ and
J− by J+ = 1

2 (Jx+iJy) and J− = 1
2 (Jx−iJy). These satisfy commutation relations [J2, J±] = 0 and

[Jz, J±] = ±~J±. Since J2 and J± commute, we see immediately that J± preserve the eigenvalue-
a eigenspaces of our basis |a, b〉. On the other hand, we have

JzJ± |a, b〉 = ([Jz, J±] + J±Jz) |a, b〉
= ±~J± |a, b〉+ J±Jz |a, b〉
= (b± ~)J± |a, b〉 .

and so if J± |a, b〉 6= 0, it is also an eigenvector of |a, b〉, with eigenvalue b± h.
Now since we have a finite dimensional space, we claim we must have J± |a, b〉 = 0 for some

b = bmax. We can in fact derive an expression for bmax by noting the following.
We have J+ = (J−)

† by definition, and thus the operator J+J− + J−J+ must be positive
semidefinite. However, expanding we obtain J+J− + J−J+ = 1

2 (J
2 − J2

z). Then we must have〈
a, b
∣∣J2 − J2

z

∣∣ a, b〉 ≥ 0

for all |a, b〉, or a ≥ b2max. Then for every given a, we must have a bmax such that J+ |a, bmax〉 = 0.
Further, we must have J−J+ |a, bmax〉 = 0, and substituting in for J−J+, we obtain (J2 − J2

z −
~Jz) |a, bmax〉 = 0, or a = bmax(bmax + ~). We may repeat an analogous argument using bmin to
obtain a = bmin(bmin − ~). It follows that bmin = −bmax and since the ladder operators raise the
eigenvalue by ~ that bmax − k~ = −bmax or bmax = k~

2 . Then with appropriate substitutions, we
may let j = k

2 so that a = j(j+1)~2 and m be such that b = m~ to reparameterize our eigenvectors
into the familiar |j,m〉 notation. Then we have that j must be a half-integer, and for given j the
possible m values range from −j,−j + 1, . . . , j − 1, j. Then

J2 |j,m〉 = j(j + 1)~2 |j,m〉
Jz |j,m〉 = m~ |j,m〉

We may derive equations for the matrix elements of these transformations, if we so desire, using
the equations above. For example, we have〈

j,m
∣∣(J+)†J+∣∣ j,m〉 = |cj,m|2〈j,m+ 1|j,m+ 1〉

= |cj,m|2.

but also 〈
j,m

∣∣(J+)†J+∣∣ j,m〉 = 〈j,m ∣∣J2 − J2
z − hJz

∣∣ j,m〉
= j(j + 1)~2 −m2~2 −m~2.

By convention, we take cj,m to be real and positive, and thus we obtain

J+ |j,m〉 = ~
√
(j −m)(j +m+ 1) |j,m+ 1〉 .

An analogous calculation gives a formula for J−, and we can combine the two to obtain

J± |j,m〉 = ~
√
(j ∓m)(j ±m+ 1) |j,m± 1〉

2

In summary, angular momentum can only take discrete values in the quantum formalism,
and we generally consider simultaneous eigenstates of the J2 and Jz operators, moving between
eigenspaces by means of the J± ladder operators. For given j, we obtain a (2j + 1)-dimensional
irreducible representation of SU(2) with basis vectors {|j,m〉 | m = −j,−j + 1, . . . , j}. The
exact connection between the calculations of this previous section and irreducible representations
of SU(2) has something to do with the fact that our angular momentum operators generate a Lie
algebra and representations of Lie algebras and Lie groups are closely related.

1.3 Addition of Angular Momenta
Generally, we will be interested in multipartite systems, and thus we would like to have some
method of “adding” angular momenta. For example, one might want to add the orbital angular
momentum of an electron to its spin, or in our case, we may like to add the spins of many electrons,
representing a multi-qubit system in our computer.

Let V1, V2 have basis vectors |j1,m1〉 and |j2,m2〉, respectively. Then the joint space V3 =
V1⊗ V2 has basis vectors |j1, j2;m1,m2〉. We would like to describe these basis vectors in terms of
some total angular momentum, and consequently we define J = J1⊗1+1⊗J2. We can analogously
define Jx = J1x⊗ 1+1⊗J2x and so on, and we find that these total angular momentum operators
satisfy the same conditions as before. Now note our operators J , Jz, J1z, J2z commute, and thus
we can also write our states in the eigenbasis |j1, j2; j,m〉 which is in some sense a more global
description. Now we would like to have the change of basis

|j1, j2; j,m〉 =
∑
m1,m2

|j1, j2;m1,m2〉〈j1, j2;m1,m2| |j1, j2; j,m〉

where we call the 〈j1, j2;m1,m2|j1, j2; j,m〉 Clebsch Gordan coefficients. In total, there seem to
be many Clebsch Gordan coefficients, but it turns out our space of results is restricted by the fact
that we only get nonzero coefficients for m = m1 +m2 and |j1 − j2| ≤ j ≤ j1 + j2. The Clebsch
Gordan transform, which we will explore shortly and will use heavily in our construction of the
Schur transform, relies heavily on the calculation of these coefficients. To find these coefficients,
we will often use a recursive strategy, but we will defer this discussion to [4].

2 The Schur Transform
In this section, we will give a general outline of the Schur transform following the presentation of
[1], but we will restrict our focus to the qubit case because it is most directly relevant to our work.

2.1 Schur Weyl Duality
Schur Weyl duality refers to the decomposition of the action of the unitary group Ud and the
permutation group Sn on (Cd)⊗n into irreducible representations (henceforth, irreps). In particular,
if we let P (s) and Q(U) act on (Cd)⊗n by

P (s) |i1i2 . . . in〉 = |is−1(1) . . . is−1(n)〉
Q(U) |i1 . . . in〉 = U⊗n |i1 . . . in〉 ,

then for some indexing set λ of irreps, we obtain

(Cd)⊗n =
⊕
λ

qλ(U)⊗ pλ(s).

The rest of this section will give some inutition as to why this happens.
Suppose we have (R1, V1), (R2, V2) representations1 of G. Then the vector space Hom(V1, V2)

is also a representation of G under the action

R2(g)(·)R1(g)
−1.

We denote by Hom(V1, V2)
G the G-covariant maps, which commute with every element g ∈ G.

More formally, f ∈ Hom(V1, V2)
G is a map V1 → V2 satisfying R2(g)fR1(g)

−1 = f for all g ∈ G.
By definition, if any f ∈ Hom(V1, V2)

G is invertible, we have V1 ∼= V2.
1See B.2 for basic notions in representation theory.

3

Given any representation (R, V) we also have associated dual representation (R∗, V ∗) given by
the action 〈v| 7→ 〈v|R(g)−1. This can also be considered a representation on V under the natural
correspondence between V and V ∗ given by the transpose, i.e., R∗(g) |v〉 = (R(g)−1)T |v〉.

Given a reducible representation, we have the so-called isotypic decomposition [5] into irreps,

R(g) ∼=
⊕
λ∈Ĝ

nλ⊕
i=1

rλ(g)

∼=
⊕
λ∈Ĝ

rλ(g)⊗ Inλ

where λ is some label drawn from Ĝ the set of labels of irreps of G and nλ indicates the multiplicity
of irrep rλ. This induces the decomposition of the space as

V ∼=
⊕
λ

Vλ ⊗ Cnλ

or, noting that Cnλ has the same structure as Hom(Vλ, V), we have

V ∼=
⊕
λ

Vλ ⊗Hom(Vλ, V).

This turns out to be a useful decomposition. In particular, the isomorphism from the RHS to the
LHS is particularly clean, given by v ⊗ f 7→ f(v) and extended by linearity everywhere.

Applying this to the specific cases of P (s) and Q(U) as given above, we obtain

P (s) ∼=
⊕
α

pα(s)⊗ Inα

Q(U) ∼=
⊕
β

qβ(U)⊗ Imβ ,

but since the actions of P (s) and Q(U) commute, we have by Schur’s Lemma that the irreps qβ(U)
act on the multiplicities Inα and likewise, so that

Q(U)P (s) ∼=
⊕
α

⊕
β

mα,βqβ(U)⊗ pα(s).

However, it turns out that not only do P (s) and Q(U) commute, but these two groups centralize
each other, allowing us to note that each of the mα,β is zero or one, giving

Q(U)P (s) ∼=
⊕
λ

qλ(U)⊗ pλ(s).

This allows us to decompose the space as

(Cd)⊗n ∼=
⊕
λ

Qdλ ⊗ Pλ

as desired. The λ indexing the expression are given by partitions of n into ≤ d parts.

2.2 Implementation
The main result of [1] was an efficient recursive implementation of the quantum Schur transform
for n qudits. However, this requires some more representation theory and quantum mechanics, and
thus we will instead restrict our attention to the qubit case, which is equivalent to understanding
addition of angular momentum. Thus, we summarize the result on qubits from [1].

The basic intuition is that one can successively add the angular momentum of each new qubit
to our existing system using a Clebsch Gordan transform, and then cascade these Clebsch Gordan
transforms to obtain a Schur transform. The addition of angular momentum follows the typical

4

calculation of the coefficients, with the permutation label of the irrep arising from the different
pathways one might take to reach a certain total J .

In particular, if we let J be the total angular momentum of a state andm be the z-component of
angular momentum, the Clebsch-Gordan transform UCG takes in a state |J,m〉 along with a spin |s〉
and outputs a linear combination of the possible total angular momentums, |J ± 1

2 ,m±
1
2 〉, along

with a permutation label. The amplitudes of these states are derived from the ladder operators as
explained in [4]. Formally, UCG is given by a rotation[

|J ′−,m′, p = − 1
2 〉

|J ′+,m′, p = + 1
2 〉

]
=

[
cos θJ,m′ − sin θJ,m′

sin θJ,m′ cos θJ,m′

] [
|J,m+〉 |s = − 1

2 〉
|J,m−〉 |s = 1

2 〉

]
(1)

where J ′± = J ± 1/2, m± = m′ ± 1/2, and cos θJ,m′ =
√

J+m′+1/2
2J+1 . The circuit for UCG is given

below,

|J〉 / • X |J ′〉

|m〉 / X • |m′〉

|s〉 • Ry(θJ,m′) • |p〉

Figure 1: Circuit for the Clebsch-Gordan transform. The rotation gate implements the rotation
matrix given in equation 1.

As mentioned above, the Schur transform is constructed simply by stringing together these
Clebsch-Gordan transforms, as shown below in the diagram from [5],

Figure 2: Circuit for the Schur transform, taken from [5] .

One of the goals of this project was to implement this circuit on IBM Q’s quantum computers.
The implementation is given in section 3.

2.3 Application to Optimal Single Qubit Purification
The Schur transform applies directly to the procedure for optimal single qubit purification when
restricted to the case of qubits. In particular, the decomposition of ρ⊗n referenced in [2] is precisely
the consequence of rewriting this state in the Schur basis.

Following the suggestion of Professor Marvian, we propose a simplified version of the Schur
transform for use on states of the form ρ⊗n which will help optimize our circuit. Note that since
ρ⊗n is clearly invariant under the action of the permutation group, we have the decomposition

ρ⊗n =
⊕
j

pjρj ⊗ Idj .

In particular, the relevant information regarding the state is all stored in pj and ρj , and pj is
dependent only on j and not the permutation label. Therefore, in any protocol in which we
implement a Schur transform and then measure the permutation labels, we may assume by the
principle of deferred measurement that the permutation labels are measured after each Clebsch
Gordan transform instead, giving an equivalent circuit.

We may further simplify by noting that the permutation labels give the transitions in angular
momentum, and thus the J register of the Schur transform may be replaced by a classical register

5

which is updated based on the measurements of the pi values. Thus, we only need quantum
registers to store the m values and each spin which is added.

Note this apparatus simplifies the protocol for optimal qubit purification significantly. We can
also implement an additional simplification. Note that a restrictive step in the implementation of
the protocol is the construction of the Uj,α transforms which taken an arbitrary ρj,α to ρj,1. Since
we are measuring the p labels as we go, we claim we can reduce the problem of constructing these
Uj,α to a subset of all Uj,α by rotating our state ρj,α into the standard ρj,1 after each measurement
of the p register.

3 Building the Schur Transform in IBM Q
All code for these implementations can be found on Github at https://github.com/Octophi/
pruv19. The user should have the latest version of QISKit in order to properly run these notebooks.

To understand the Schur transform, we implemented it for two and three qubits in the IBM Q
interface. A more general implementation for n qubits will require a J register of roughly log2 n
qubits, a m register of roughly log2 n+ 1 qubits, more general circuits for addition, and a general
construction of the controlled rotation gate. This code can be found in the file ‘Two and Three
Qubit Schur’.

Additionally, we have calculated the matrices for the Schur basis implementations of several
permutations. Since permutations reduce to their actions on irreps in the Schur basis, one might
expect that they would afford relatively clean implementations, and we have worked out these
implementations for the case of three qubits. One can work out what the actions of these irreps
should be or look them up in [6]. Since the three qubit case is relatively simple, we also wrote
a script in the file ‘Matrix Calculator’ to compute the change of basis for a desired permutation,
which confirmed the transformation predicted by [6]. The challenge, however, is building the
circuits to implement the desired actions on the irreps.

In particular, in our implementation of the three qubit Schur transform, we use five qubits
in order to store all the information in the |J〉, |m〉 and |p〉 registers. This poses a challenge
when constructing the physical circuits which correspond to the desired logical operations we have
calculated. In the case of the (12) permutation, the desired operation is essentially equivalent to
performing a Z gate on the irrep indexed by the (2, 1) Young tableaux, and conveniently, this
corresponds with applying a CZ gate with the |J〉 register as control and the fourth qubit as our
target. In the case of the (23) permutation, it is more difficult to realize our logical operator. We
see that the permutation should have no impact on the subspace with J = 3/2, while it should
apply the matrix [

−1/2
√
3/2√

3/2 1/2

]
to the subspace with J = 1/2. Physically, this means we must apply a gate which acts by the
above matrix on the states |01〉 and |10〉 in the fourth and fifth qubit slots, and do so only if the
top qubit is one. This would seem to be a controlled rotation, but this is somewhat complicated
by the fact that we are not rotating a single qubit, but rather, between the states |01〉 and |10〉.
We have tried to make the appropriate adjustment by sandwiching a controlled rotation from the
J qubit to the first qubit of the |p〉 register between two CCX gates, however, this has introduced
additional entanglement which is causing some factors of other permutations to appear. Currently,
we are working on fixing this issue.

4 Future Directions
One immediate goal for future work would involve finishing the experimental runs for all the pro-
posed protocols above. In particular, as of now we have not finished implementing the permutation
matrices in the Schur basis. Additionally, it might be worthwhile to run these protocols on IBM’s
actual computers, as so far all runs have been conducted on the simulators. This may happen
soon, contingent on continued work on this project and the acquiring of enough IBM Q credits to
properly run the experiment.

Future theoretical work on this project would involve solidifying understanding of the proof
of Schur-Weyl duality and of the efficient implementation of the Schur transform for a general

6

https://github.com/Octophi/pruv19
https://github.com/Octophi/pruv19

qudit scenario. From a practical standpoint, it is unlikely that the general Schur transform will be
relevant in the near future, but it is an important protocol to understand theoretically.

Another potential avenue for continued work on this project would involve developing a general
framework for n qubit Schur transforms using the standard gates, as well as perhaps developing a
circuit for the transform adapted to the natural gates of ion trap quantum computers.

One other topic that could be interesting would be studying the practical efficiency of the qubit
purification procedure of [2] relative to simpler, more naive procedures for qubit purification. We
have carried out some preliminary analysis on this topic in A, but have not had the chance to
actually run these experiments on IBM’s computers. The value of such an experiment might be
somewhat nebulous, however, as the relative quality of different protocols will surely change with
the advances of new hardware for quantum computers.

References
[1] Dave Bacon, Isaac L Chuang, and Aram W Harrow. Efficient quantum circuits for schur and

clebsch-gordan transforms. Physical review letters, 97(17):170502, 2006.

[2] J. I. Cirac, A. K. Ekert, and C. Macchiavello. Optimal purification of single qubits. Phys. Rev.
Lett., 82:4344–4347, 1999.

[3] Peter Woit, Woit, and Bartolini. Quantum theory, groups and representations. Springer, 2017.

[4] Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, revised edition. AAPT,
1995.

[5] Dave Bacon, Isaac L Chuang, and Aram W Harrow. The quantum schur transform: I. efficient
qudit circuits. arXiv preprint quant-ph/0601001, 2005.

[6] Jin-Quan Chen, Jialun Ping, and Fan Wang. Group representation theory for physicists. World
Scientific Publishing Company, 2002.

[7] William Fulton and Joe Harris. Representation theory: a first course, volume 129. Springer
Science & Business Media, 2013.

7

A A Simplified Approach to Qubit Purification
Suppose as in [2] that we would like to purify several copies of a mixed state ρ = a|1〉〈1| + (1 −
a) 12I. While [2] has given an outline of the optimal procedure for such a task, one might ask
whether its usefulness is hampered by the relative complexity of performing the Schur transform.
In this section, we consider an alternative approach to qubit purification given by the simple naive
procedure: tensor two copies of ρ together, measure the Swap operator on the pair, and trace over
one of the qubits. Here, we seek to optimize this procedure and compare it to the [2] procedure.

This purification procedure works as follows. Since Swap is a Hermitian, unitary operator, it
has eigenvalues of ±1, and thus the operators I+Swap

2 and I−Swap
2 are projections onto the positive

and negative eigenspaces of Swap, respectively. These spaces are spanned by {|00〉 , |11〉 , |01〉+|10〉2 }
and { |01〉−|10〉2 }, respectively. By inspection, if we project onto the negative eigenspace and trace
out a qubit, our resulting state is the completely mixed state. However, if we project onto the
positive eigenspace, we will gain information.

To see this, note that if we project onto the positive eigenspace, we will obtain

I + Swap

2
(ρ⊗ ρ)I + Swap

2
=

1

4
(ρ⊗ ρ+ Swap(ρ⊗ ρ) + (ρ⊗ ρ)Swap+ Swap(ρ⊗ ρ)Swap)

=
1

4
(2ρ⊗ ρ+ Swap(ρ⊗ ρ) + (ρ⊗ ρ)Swap)

and noting that this expression is symmetric in both qubits, we may trace over one of them, using

TrB(Swap(ρ⊗ ρ)) = TrB

∑
i,j

(|i〉〈j| ⊗ |j〉〈i|)(ρ⊗ ρ)


=
∑
i,j

Tr(|j〉〈i|ρ)|i〉〈j|ρ

= ρ2.

The same holds for TrB((ρ⊗ ρ)Swap) so we obtain output

1

2
ρ+

1

4
(TrB(Swap(ρ⊗ ρ) + (ρ⊗ ρ)Swap)) = 1

2
(ρ+ ρ2).

This state is not yet normalized, but note that for ρ = a|1〉〈1| + (1 − a) 12I, this expression gives
the final state a|1〉〈1|+ 1

2 ((1−a)
2+(1−a)) · 12I, which is more pure than our original state as long

as a > 0.5.
Thus, we can ask the following question: given n copies of a mixed state ρ = a|1〉〈1|+(1−a) 12I,

what is the greatest expected fidelity we can achieve through a process of repeatedly measuring
Swap operators on pairs of qubits?

In the n = 2 case, our expected fidelity is

P (+1)F (+1) + P (−1)F (−1)

for F (a) the fidelity of an outcome a with |1〉〈1| and P (a) the probability of projecting onto the
eigenspace corresponding to a.

The probability of projecting onto the positive eigenspace is the trace of the state above, which
we may compute to be 1

2 (1+Tr(ρ2)). By a simple calculation, the fidelity of ρ = a|1〉〈1|+(1−a) 12I
with |1〉〈1| is 1

2 (1 + a), and so we may substitute in to get

1

2
(1 + Tr(ρ2)) · F (+1) +

1

2
(1− Tr(ρ2)) · 1

2
.

With a little bit more work, we can obtain the expression 1
2 (1 + 4a

3+a2) for F (+1), and plugging
back in for expected fidelity, we obtain

1

2

(
1 +

1

2
(1 + a2)

)
· 1
2

(
1 +

4a

3 + a2

)
+

1

2

(
1− 1

2
(1 + a2)

)
· 1
2
=

1

2
(1 + a),

8

which is our original fidelity. Thus, in the n = 2 case, this process actually does not increase the
average fidelity.

However, in the n = 3 case, we can obtain real gains. As before, measure the Swap operator
on the first two mixed states, and if this projects onto the positive eigenspace, trace out over one
qubit to get a more purified qubit, and if it projects onto the negative eigenspace, take the third
mixed state as our estimate.

Reusing some calculations from above, we obtain the expected fidelity

1

8
(3 + a2 + 4a+ (1− a2)(1 + a)) =

1

8
(a2 + 4a+ 3 + 1 + a− a2 − a3)

=
1

8
(4 + 5a− a3),

which is better than doing nothing, for all values of a, as expected.
It is not directly obvious how to compare the results of this simplified protocol to the [2]

procedure because this procedure is necessarily influenced by the outcome we wish to achieve. For
example, our strategy for maximizing expected fidelity will depend on how many purified states
we wish to obtain, whereas the [2] protocol will randomly output some number of purified states.

However, we can do some basic calculations. In the case of n = 2 qubits, note that this
purification procedure is exactly equivalent to the optimal procedure. In the case of n = 4 qubits,
we begin by measuring Swap on the first pair of qubits. If it is unsuccessful, we are back in the
n = 2 case, and have fidelity 1

2 (1 + a). If it is successful, we may either measure Swap on the new
qubit along with an unpurified qubit or on two unpurified qubits. Notice that measuring Swap on
the two unpurified qubits cannot give us anything more pure, so this cannot be optimal. Measuring
Swap on the new qubit along with an unpurified qubit gives expected value

P (1 fails) · 1
2
(1 + a) + P (1 works, 2 fails) · 1

2
(1 + a) + P (both work) · ab+ 2a+ 2b+ 3

2(3 + ab)

where b is the value obtained from the first purification. In comparison, running the optimal
purification procedure gives results as described in [2]. One could compare these two procedures
by computing expected fidelity of one purified qubit and graphing the results as a function of
the randomness of the initial state ρ, and we have done this in the below graph, where green
shows expected fidelity from our procedure and red shows the expected fidelity from the optimal
procedure.

Figure 3: Comparison of Expected Fidelity of Purified Qubits Between Two Protocols

However, one must beware that this is not exactly a reasonable comparison, since in reality the
optimal procedure will output two purified qubits with a nontrivial probability, and this is more
valuable than can be captured in a simple expected value. A practical analysis of the efficiency
of each procedure, however, would require actual experiments on a quantum computer, which we
have not done here. However, the graph suggests that the expected fidelities of the procedures
may not differ so much as to warrant using the optimal procedure over the simplified one, for at
least cases in which we have a small number of qubits and have a clear objective for number of
purified qubits.

9

B Basic Background
This section is by no means exhaustive, but hopefully contains enough information to roughly
grasp the flow of the rest of this paper.

B.1 Quantum Notions
In contrast to AntMan’s fantastical depictions of the quantum realm, mathematicians understand
it as a complex Hilbert space, with the state of a system represented by a vector. Throughout
this paper, we will be working with systems of n qudits, given by vector |ψ〉 ∈ (Cd)⊗n. The time
evolution of such a system is governed by the Schrodinger equation

−ih d
dt
|ψ(t)〉 = H |ψ(0)〉

where H is the Hamiltonian, a Hermitian matrix specific to the system. For a time independent
Hamiltonian, one can easily solve this equation by separation of variables and see as a consequence
that the state vector evolves according to unitary time evolutions.

Generally, we will pick basis |1〉 , . . . , |d〉 for our qudit |ψ〉, which will give in some sense a
standard basis. Frequently, we will default to the case d = 2, the case of the qubit, in which case
we will deviate and let our basis be |0〉, |1〉 with the convention that

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
.

A state vector, then, is simply obtained by tensoring together these individual systems to get some
state of the form |i1 . . . in〉 .

B.2 Representation Theory
The information in this section follows the presentation from [3] and [7].

A representation (ρ, V) of group G is a homomorphism ρ : G → GL(V) for some vector space
V . Equivalently, it may also be considered a specification of the action of some group on V , or a
left module V with action by C[G] the group algebra. This is a useful notion because it allows us
to apply the tools of linear algebra to understand properties of groups.

Examples: Any group G always has the trivial representation ρ(g) = 1 for all g ∈ G. Any matrix
group, such as GL(V), has the natural representation on V given by typical matrix multiplication.

Two representations (ρ1, V1), (ρ2, V2) are isomorphic if there exists an intertwiner, an invertible
linear map P ∈ Hom(V1, V2) such that Pρ1(g) = ρ2(g)P for all g ∈ G. This can be thought of as
finding a suitable change of basis matrix.

A subrepresentation of (ρ, V) is a subspace W ⊂ V such that ρ(g)(w) ∈ W for all g ∈ G,
w ∈ W . Correspondingly, an irreducible representation (abbreviated irrep) is one with no proper
subrepresentations. Optimistically, one might hope that every representation can be decomposed
into a direct sum of irreducible representations, and it turns out in the case of finite groups and
compact Lie groups, this is exactly the case. There are a few important results that will be relevant
in this discussion.

Decomposition of Representations: For any complex representation (π, V) or a finite group
or compact Lie group with subrepresentation (π �W ,W), there exists another subrepresentation
(π �U , U) such that V =W ⊕ U .

Proof. We follow the presentation of [7] for finite groups, and note that the case of compact
Lie groups is analogous, with sums replaced by integrals. The key idea is introducing a positive
definite Hermitian inner product H on V which is fixed under the action of G, such that H(v, w) =
H(π(g)v, π(g)w). Notice this is equivalent to having a unitary representation ofG on V with respect
to some Hermitian inner product. To construct such an inner product, simply take any Hermitian
inner product H0 and let H(v, w) =

∑
g∈GH(gv, gw). The existence of U follows because we can

find the orthogonal complement of W in V using the Hermitian inner product and it is invariant
under the action of G since H is fixed under the action of G by construction.

10

Notice this implies that any representation of a finite group or compact Lie group may be
decomposed into a direct sum of irreps, which is sometimes referred to as Maschke’s theorem in
the finite group case.

Schur’s Lemma: Given any irreducible complex representations (π, V) and (π′,W) and map
ϕ : V → W which satisfies ϕπ(g) = π′(g)ϕ for all g ∈ G, we must either have that ϕ is the zero
map or V is isomorphic to W and ϕ = λI for some λ ∈ C.

Proof. Note that kerϕ and im ϕ must be subrepresentations of (π, V) and (π′,W), respectively.
Since these are irreducible representations by assumption, we see that either ϕ is the zero map or
ϕ gives an isomorphism between V and W . Since V and W are complex vector spaces, ϕ must
have an eigenvalue λ, and since the map ϕ′ = ϕ−λI also satisfies ϕ′π(g) = π′(g)ϕ′ and must have
nontrivial kernel, we obtain ϕ′ = 0, or ϕ = λI, as desired.

Notice that combining these two theorems gives us a sort of existence and uniqueness theorem
on complex representations of a finite group or compact Lie group. In particular, for any complex
representation, we obtain that there exists a unique direct sum decomposition into irreps, up to
reordering.

We also get as a direct corollary that the irreducible representations of finite abelian groups
are one-dimensional constant maps, which follows because any complex representation π(g) of a
finite abelian group must be an intertwiner of itself by definition.

11

	Addition of Angular Momenta
	The J Operator
	Quantized Angular Momenta
	Addition of Angular Momenta

	The Schur Transform
	Schur Weyl Duality
	Implementation
	Application to Optimal Single Qubit Purification

	Building the Schur Transform in IBM Q
	Future Directions
	A Simplified Approach to Qubit Purification
	Basic Background
	Quantum Notions
	Representation Theory

