PRUV Final Report

Lucas Fagan

August 2020

1 Summary

I examined the root system of GL,, in order to understand and calculate the
i-trails between A; — wgs;A;. Dr. Leslie, along with work from Berenstein
and Zelevinsky, has developed a formula to easily calculate monomails that are
used for integrals in studying Mirkovic-Vilonen polytopes in a non-archimedean
context. Specifically, I automated the process of calculating the i—trails and
the corresponding monomials for GL,,, and then calculated some of these MV
integrals in order to study the behavior of these integrals off the polytope with
the idea of resonance.

2 Reduced Words and Calculating Monomials

This part of the project required a number of combinatorial steps, and my work
served to automate these steps using Python code to facilitate calculation of
the MV integrals of the next section. The first step is based on the following
proposition, from Berenstein and Zelevinsky and simplified by Dr. Leslie:

Proposition 2.1. Fiz a fundamental weight A; and a long word i. Let wys;A; =
v;\; be a minimal representative. The i-trails from A; to wos;\; are in bijection
with subwords (ip(1),- -, ikp)) of i where l(v;) = p and k(1) < --- < k(p) that
are reduced words for v; *.

Using this proposition, I wrote a function to calculate the subwords that are
reduced words for v, ! This function has three discrete sub-functions, which
each accomplish a specific task in building up the subwords.

First, I wrote a sub-function to generate all of the possible long words. This
is important because each long word gives me another test case, and looking at
all of the long words is important for understanding the context in general. The

number of long words was found to be OEIS sequence A005118, and are given
by

G
H?;o2(2i +1)—itn—1

Qp =

This was done through applying the "braid” and ”switch” relations in a recursive
manner until there is no longer a way to apply either to get a unique long word.

The next sub-function calculated the v; ! which was done through a recur-
sive process that continued to shorten wgs;A; until a minimal representative was
reached. This is done through four techniques: the first two are to remove sim-
ple reflections off the right side that are inverses of each other (i.e., if the same
reflection appears twice, it can be cancelled), and removing simple reflections
that are not ¢, as s;A; = A; when j # 4, as can be shown relatively trivially.
Once it cannot be shortened through these two techniques, the algorithm ap-
plies the braid and switch relation until one of them can apply. If, after applying
every possible braid and switch, it cannot be shortened any more, then it must
be a minimal representative, and the inverse is returned.

The third step is to use these first two steps to calculate subwords that are
reduced words for v; ! which is done by looking at the powerset of the long
word (without the empty set) and checking if each subset is equivalent to v; L
and then only taking those of minimum length (the reduced ones). The function
ends by exporting all this data into a nicely formatted CSV to facilitate analysis.

The second function calculates the monomials that are used in the MV
integrals. This is done according to the following formula from Dr. Leslie:

bcl () o ch(ﬂ’)

s;(u) = Z dy——— N
A;,BE A;,pBY
N —wosi A\ bi Bl> cee b§\/ BN>

Just like the last function, this one contains three discrete steps. The first sub-
function generates the i-trails from the subword calculated in the first function,
and then uses this to trivially produce the ¢ vectors. This is important because
it determines the exponents in the numerator of the sum that we are using.
The second sub-function calculates the (;, and then uses the A; to calculate
the denominators of the monomials. The third sub-function combines these and
simplifies the fractions to produce the final monomials. This allows us to write
down the actual sum without any hand calculation, which means that we can
focus on the integrals. All of the aformentioned code is provided in section 4.

3 The MYV Integrals
I first state some results which are important in understanding the integrals.

We define ‘H’f 0
T e w()dt b =0
Ia,b) = { ¢ [T (bt b >0

First, there are important vanishing statements, which appear often and allow
for easy simplification.

Lemma 3.1. I(a,b) =0 ifa< -1 orifa=—1 and b=0.

Proof. For a < —1, it vanishes because one of the terms in the product that
comes out of 1(t) is Zz;é e2ma/P which is 0, and for « = —1 and b = 0, the

integral can be rewritten as

/Zp b(t)dt + /p-lz; b(t)dt.

Given that 9 on Z, is 1, this is equivalent to 1 + Zz;i op-147, P (t)dt. Using
a change of variables t = ap™! + y for y € Z,, we get dt = dy and the integral

equals
p—1

3 ezrialr / dy = (~1)(1),

a=1

which makes I(a,b) zero. O

This next lemma writes the same I(a,b) in a different form which often is
what actually appears in the integrals.

Lemma 3.2.

[y gy Bt)dl) i > 0

I(50,Ma) = {fz,, B(p*eta)dte) M. =0

Proof. Consider the two cases. First, m, > 0. Then
Isaima) =g+ [iyt
psa Z,f
Then through a change of variables t = p®>z, this is equivalent to

g | Y(ptex)de
Zy

On the other hand,
/ Y(p*etete)dt = pe / Y(p*ex)da,
prme Ly Zy

through a change of variables ¢ = p™™~z with = € Z.
For the second case, m, = 0. Thus we have

I(Savmoz) =g’ /

p3elZp

P(t)dt = i Y(p*ex)ds

through the same ¢t = p®>x change of variables. This is equivalent to the desired
integral. O

3.1 GLj3 example

I will demonstrate these calculations for the simplest example, GL3. For GLs3,
there are two long words, s1s251 and s2s19.

Consider i = (1,2,1). This induces the ordering as < a3 + as < a; on
the positive roots. There are two i-trails from A; — wpsyA; and one from
Ao — wosaAs. We can then calculate that

Because there are the same number of i-trails as there are positive roots, we
have that the monomial change of variables to the X}, only leads to terms with
X} to the power of zero or one. This means that the construction of the g;s is
trivial, giving

g1 =12+

thw
172 and go = t3,
w

and we get that s; = Ay + m3 — mo — mq, S = Ay — ma, and s3 = Ay — m3.
This gives

tyws

In(m) = /Ci(m) f(U)lb(pAl (t2 +) +p*2t3)du.

w3

We have f(u)du =[], (p~'za)™dtq, giving

[T e J e [o [o(p s

Now consider

t
G(s1,m1) :/1&(?/\1%)dt1~

Due to the vanishing conditions of I(a, b), we have that if s; < —1, orif s; = —1
and my = 0, then G(s1,m;) = 0.
Let mq; > 0. Then

tit t
/ w(p“ﬁ)dtl =p™ / w(ph_mlﬁ)dm-
p—ml Z; t3 Z;,(t3
If s; > 0, this integral equals
™ / dr =p™ (1 —p7h).
Ly
If s = —1, we can re-write the integral as

p—1
to
pm™ / W (pAl *z) dx
2 . vy

a=1

and through a change of variables x = a + py we get

p—1
_ to to
(e) [ol)
a=1 3 Zp 3

The integral on the right is 1, which means the sum evaluates to —1, leaving
—p™1~1, The last case to consider is m, = 0 and s, > 0. We get that

/pr(p’\ltllt?)dtzl.

It is clear that the same can be done for the other two integrals. Thus, we
can write

Ix(m) = HxZLQG(sa,ma),

with
1—p_1 ma>0’5a20
-1
- Mg > 0,84 = —1
G(sa,ma) — P @ «a
Mmq =0,84 >0
0 otherwise

3.2 (L4 degenerate example

I now demonstrate a calculation for an ”interesting” example, in GL4. Note

that there are 6 positive roots, but 7 monomials, which means that the resulting

integrals are nontrivial and we have nonzero contribution outside the polytope.
Consider i = (2,3,1,2,3,1). This induces the ordering

g <oy tay<agt+az<at+at+az <az<ag

on the positive roots. There is one i—trail from A; — wgs1Aq, five from Ay —
wosaAo, and one from Az — wpsoAz. We get

1
=— =X
51 b 5
1 bg bs bsbg bsbg XXy
_ - =X X X X
82 by babs | bababs | bibghy r T et Ty, TAzTA
1
= — =X,
53 bg 65
which gives
tsw tot towsw t1wow
g1:t5,92:t4+34+£+234+123 _—

We Ws WsWe WsWe ’
Thus we have

$1 = Ao —m1 —mg —m3+ ms+ Mg, So= Ay — Mg — M3 — My + M5+ Mg

83 = Ag — M3 — My + Mg, S4= Ay — My, S5= A1 — M5, S¢= A3 — Mg
S+ 84— 83 = A9 — Mg — My + Mms.

This gives

tsw tot towsw tiwow
34+24+234+123)>du
We Wy WsWe WsWe

A(m)/@()f(u)w< Mg + pMte +p (t +

which we can simplify by writing as

tiwow tsw tot towsw
/d}(hl 2 3>///// (phtﬁp&tﬁph(t g 0 Tl T 4>)Hp 2a)™ dt,
WsWe We Ws W5 We o

= I(s1,m1)Jx(m) H (p_1xa)ma

[e%

Case 1: s9+ 54 —53>0

In this case we see that there is no contribution from the tot4/ws term, and
thus we can write

J)\(m) = 1(557 m5)I(867 mG)qm2+m3+m4 ///w (w52t2 + w3ty + ws4t4) dtodtsdty,
and we get the standard contribution. Thus now we assume so + s4 — s3 < 0

Case 2: so =—1,54 =53>0

Note that we have sg 4+ s4 — s3 = —1, and further that mg = mg. Thus for this
case, consider s, = Ao —mgo —my +ms. This demonstrates that we cannot have
ms = my = 0, because we cannot have that Ay + ms = —1.

We can simplify Jy(m) by writing
Ja(m) = I(s5,ms5)1(s6,m6)Ir(52, 53, 545 M2, M3, M4)

and do a change of variables to write I)(sa, s3, S4; ma, ms, my) as

qm2+m3+m4///¢ <w52y2+w53y3+w52+s483 yZZ4 +7ﬂs4y4> ddeygdy4_

Because we have s; = s3 > 0, we have that the w®y; and w®*y; do not
contribute, and thus we can write this as

/w(—1Y2U - yz) dyadysdya.

Y3

Case 2.1 my >0,m3 >0,myq4 >0

This is the singular nonzero subcase of Case 2. Because s4 = s3 > 0, we have
that the w3 y3; and w’*y, do not contribute, and we can write this triple integral

/(- p (lezim + w1y2> dy2dy3dya,
OX

and we can do a change of variables to get

1
-1 (1 -) / Y(zy + x)dydx.
q) Jw—10x JOx

Now let z = zy and we get

) (1 - ;) /wflox /wflox (2 + z)dzda.

These two integrals both evaluate to -1 and cancel, giving

=)

Case 2.2 my = 0,m3>0,my >0

We have
/ / (_1y2y4 +w” yz) dyadysdyy,
(0x)?2

and we can do a change of variables to get

1 (1 — ;) /w*lo . Y(xy + x)dydz.

Now let z = zy and we get
—9 1
1—- U(z + x)dzdx.
q w10 Jw—10X%
This outer (first) integral evaluates to 0, meaning the whole case is 0.

Case 2.3 my >0,mzg=my =0

This case follows almost identically to Case 2.2, and we also get 0.

Case 2.4 mg > 0,m3 =0,myq >0

We have
/ / < _1y2y4 + w_1y2) dyzdyadys,
(0%)?

Do a change of variables to get

) Lo [() e

which we can write as

S Lo (oG Lor ()

which can be written as

(1 — 2) . Y(w) </o ¢ (w'y) +w/oz/1(w_2y)>

W thh equals
2 < 1)
q

because the second integral is 0.
Case 2.5 my > 0,m3 >0,mg =0

We have
/ / (_1y2y4 +w” yz) dyzdyadyy,
(0x)?2

and we can simplify through a change of variables to

#(1-0) e o

which equals 0 because the right integral is 0.

Case 2.6 mo =0,m3 =0,myq >0

We have
/ / (_1y2y4 +w y2) dysdy2dys,
ox Jo2

Do a change of variables to get

e

which we can write as

S Lo (e G Lor ()

which can be written as

(1 ;) /Ozp(w*:c) (/O Y (@ ly) +w/01/1(w2y))

which equals 0 because the first integral is 0.

Case 2 Summary
We can summarize the case as follows:

q_2 (1—%) mo > 0,my >0

In\(s2, 53, 545 m2, m3,Mm4) = _
otherwise

Case 3 sy, = —1,80=53>0

First, note that sy = s3 implies that ms = mso. Further, because we have
s4 = —1 = Mg — my, we must have that m4 > 0.

Note that in this case, we can do the same change of variables as in case 2,
and get

qm2+’rn3+’rn4 /,w <w—1 y;y4 + w—1y4) dy2dy3dy4
3

Case 3.1 mg > 0,m3 >0

Note that this is the same as case 2.1. We get
1

(-3)
q

It is clear that in case 3, y4 is playing the role of ys from case 2. Thus, this is
equivalent to case 2.5 and we get 0.

Case 3.2 my =0,m3 >0

Case 3.3 mo =0,m3 =0

This is equivalent to case 2.3, which equals 0.

Case 3.4 my >0,m3=0

This is equivalent to case 2.4, which equals
1

o 1-3)
q

We can see that this is almost identical to case 2, with the additional restriction
that my4 # 0, thus giving

Case 3 Summary

q72<17%) mey >0

I\(s2, 53, 84; M2, M3, Mmy) = .
0 otherwise

Case 4 s4 = s3 =859 = —1

This is the final case inside the polytope. Note that we have m4 > 0 by the
same logic as in case 3, and further ms = mo and mg = ms.

Case 4.1 mg > 0,m3 >0

Do a change of variables yo = w™ "2z, y3 = w™ %3z, yy, = w4y, leaving us with

q_3/ / /) (ac +y+ il + z) dzdydzx.
ws20X Jws3OX Jws4OX Z

Now again change variables by y = wz, giving

/ / Y (x4 2+ 2w + wz) dwdzdz.
so0x JszOx JOx

We can write this as

q 2/ / Y(x+ z) Y (w(z + 2)) dwdzdz.
ws20% Jws3OX Ox

Now let w = a + wwv, which gives

w—1
[[e Y vlale+2) [6@t y) ddzda,
@ 20% Jwmss0x Pt o
We can again change variables to get
w—1
! / Y(wPx + wz) Z ¢ (aw ™z + 2)) / ¥ (v(z + 2)) dvdzdz.
ox Jox = o
Let © = 2z, which gives
w—1
gt / Y(w tz(z' +1)) Z Y (aw™'z2(2' + 1)) / WP (vy(z’ + 1)) dvdzda’.
ox Jox Pt o
Let ' = b+ wa”. We can write
w— w—1
g2 Z / z(b+wz+1)) Z Y (aw ' 2(b+ wa” + 1)) / ¥ (vz2(b+ wa” + 1)) dvdzdz”.
a=1

In the last integral, the wz” term does not contribute, and it becomes clear that
the integral (and thus the whole expression) is 0 for b # —1 [write out steps
here]. Thus let b = —1. We get

w—1
q_l/ P(zz'") Z P(azz")dzdx".
0 Jox a=1

10

This sum evaluates to @ — 1 because each term is 1, and we get
g '(¢—1) / (za")dyda”,
o0 Jox

and through a change of variables we get

oo {1-2) - (1)

Case 4.2 my =0,m3 >0

In this case we get

q’3/ / / 0 (x +y+ i + z) dydzdx.
w520 JwsB3OX Jws4OX z

and we similarly change variables to get

q—z/ / Y (x+ 2z + 2w+ wz) dwdzdz.
20 Jwss0x Jox

Now let w = a + wwv, which gives

—1

73/ / Y(r + 2) Z?/) (x +2) /¢ wv(z +y)) dvdzdx.
s20 s3 (X

a=1

We can again change variables to get

w—1
q_l/ 1/J(wszx+w832)zw awHz + 2) /1/)) dvdzda.
o0 Jox ot
Let © = 2z, which gives
w—1
q—l/ Y@ 2@ +1) Y ¢ (aw 2@ + 1) /wvyxﬂ))dvdzdx
o Jox =

Let ' = b+ wa”. We can write
w—1 w—1
q? Z / Y(w ™ 2(b+wa”+1)) Z ¥ (aw ' 2(b+ wa” + 1)) / Y (vz(b+ wa” + 1)) dvdzdz”.
x a=1 o

Case 5 sy = s3 =8, = —k for k> 1

In this case, we also have m4 > 0, and furthermore that ms = mo and mg = ms.

11

Case 5.1 my >0,m3 >0

Do a change of variables yo = w™ "2z, y3 = w™ %3z, yy, = w4y, leaving us with

q_gk/ / /) (x +y+ il + z) dydzdzx.
w520% Jws3Ox Jwwsa®x z

Now again change variables by y = wz, giving

q 2k / / Y (z+ 2z + zw + wz) dwdzdz.
wS20X Jws3OX JOX
We can write this as

—2k
! -/17152(9>< ~/w53(j)x 'I,ZJ(LC—i—Z) ox T/J(H)(x—i—z)) dwdzdx

Or /ox /(’)x v (@ (e +2) /OX ¥ (w Fw(z + 2)) dwdzdx

It is clear in this case that we care about the valuation of x + z. Thus, let
t = x + z. We note that |t| < |z| = |z] = 1. Thus we can write this as

and do a change of variables ¢t = w’t to get

1 o0
(1 -) Zq—f/ z/;(wf—kt)/ ¥ (w'Fwt) dwdt.
7 5 ox Ox
Recognize this as
1 o0
(1 -) > q It -k, 1)
17 =
and by Lemma 1.1 we have that it equals 0 if { < k — 1. Furthermore, when

¢ =k —1, we have that I(¢ — k, 1) equals —¢~!, and when ¢ > k, we have that
I(¢ —k,1) equals 1 — g—*. Thus we can write this as

1 e e
-2) (e eorrie)
q =k
and this sum is a geometric series, giving
1 q
1-= —k=1_ (] _ ,~1)2
(q)<q Tl)1—q*1
1
(Y
q

12

Case 5.2 my =0,m3 >0

We start the same way as in Case 5.1, with the only difference being that we
are integrating x over O instead of O. We get

/ /o e+) /O ¥ (@ w(z + 2)) dwdzde

We can write this as

/(Qx /@ (z+2)) /O ¥ (@ w(z + 2)) dwdzdz
/wo /o (@ a+2)) /O Y (@ Fw(z + 2)) dwdzds

The first integral is equivalent to Case 5.1, and in the second integral we can a
change of variables t = x + z, and we know that ¢ has valuation 1. Thus we can
recognize it as

q I (—k,1)?

and we are assuming that k¥ > 1, which means it is 0. Thus it evaluates to the
same as in case 5.1.
Case 5.3 mg > 0,m3 =0

Do a change of variables ys = w™*2x, y3 = w~ %2, y4 = w~ **y, and expand to

get
E q’?’k/ / / P (x +y+—+ z) dydzdzx.
- ws20% Jws3tiOx Jwsa@®x z

7=0
We get

Z q’ / / (@ *(z +2)) / ¥ (w7 w(z + 2)) dwdzdx
=0 ox Jox ox
And then using the same logic as in Case 5.1, we get
<I)ZqJZq I =k, DI(—j+0—k,1)

7=0 £=0

which is 0 when ¢ < k — 144, —¢~! when £ = k — 14 j, and 1 — ¢~ ! when
£ >k + j. Thus we can write

(1 - ;) g "+ (1 - ;) > g7 (gt (1-¢7")+ i ¢ (1—q")?

j=1 (=k+j

13

Case 5.4 my =0,m3 =0

It follows that this is equivalent to case 5.3.

Case 6 s, =s3=—-1,s4=—k for k> 1

Note that we have my > 0 by the same logic as in case 5, and further ms = m.

Case 6.1 my >0,m3 >0

Do a change of variables yo = w™ "2z, y3 = w™ %3z, yy, = w4y, leaving us with

q_Q_k/ / / P (m +y+ o + z) dydzdz.
w520% Jwsz3Ox Jsa@x z

Now again change variables by y = wz, giving

gt / / / Y (z+ 2z + 2w + wz) dwdzdz.
w20% Jws3OX Jw—k+t1Ox

We can write this as

_2’“/ / Wz + 2) Y (w(z + 2)) dwdzdx
s2 0% JszOx Ox

/ox /o “Z))/ox ¥ (@ w(z + 2)) dwdzdz

It is clear in this case that we care about the valuation of x + z. Thus, let
t = x + z. We note that |t| < |z| = |z] = 1. Thus we can write this as

which is equivalent to

(1 — 1) iq—fl(f —1,0)I(f—Fk,1)

q £=0

(=) (raeaerg)

which equals 0 because the second term sums to 0.

or

or

14

4 Python Code For Generating Monomials

import csv
from itertools import chain, combinations
#new: calc betas, get_i_c, get_c_from_subword_index, get_root
HELPER FUNCTIONS
def rev(x):

return x[:: —1] #simple helper function to reverse list
def write_element_correctly (ele):

while ele[0]!=min(ele):

ele = ele[1:]4+[ele[0]]

return ele
def powerset(iterable):

"powerset ([1,2,3]) —> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)”

s = list (iterable)

return chain.from_iterable ([list (x) for x in combinations(s, r)] for r in

def create_csv_for_long_word (long_word):

filename = 7,7 . join ([str(x) for x in long_word])
with open(”/Users/lucasfagan/Desktop/PRUV code/”+filename.replace (”,”,””)-
writer = csv.writer (csvfile)
writer . writerow ([’Long word’,’i’,’v"—1’,’subword’, ’indices ’,’¢’])
v_inv_list = [find_v_inverse (long.word, i) for i in range(1l,max(long_s
for i in range(len(v_inv_list)):
indx, subwords = get_subwords (long_word ,v_inv_list[i])
for j in range(len(indx)):
¢ = get_c_from_subword_index (subwords[j],indx[j],long_word ,i+

writer . writerow ([long_word ,i+1,v_inv_list [i],subwords[]j],indx
print (” Created csv for ”+filename)
def get_i_c(long-word):
final_list = []
v_inv_list [find_v_inverse (long_word, i) for i in range(l,max(long_word
for i in range(len(v_inv_list)):

indx, subwords = get_subwords(long_word ,v_inv_list[i])
for j in range(len(indx)):
¢ = get_c_from_subword_index (subwords[j],indx[]],long-word ,i+1)

final_list .append((i+1,c))

return final_list
def get_c_from_subword_index (subword, indx, long.-word,i):
c=(]
for x in range(len(long_word)):
if x in indx:
if len(c)==0 and subword[indx.index(x)]!=1:
¢.append (0)
else:

15

c.append (1)
else:
c¢.append (0)
return c

def create_csv_for_gl(mn):
with open(”/Users/lucasfagan/Desktop/PRUV code/GL+str (n)+7.csv”, "w”, n

writer = csv.writer(csvfile)
writer.writerow ([’Long word’,’i’,’v " —1","# subwords’,’subwords’])
writer.writerow ([])
if n<=5:
long_words = generate_long_words(n,10000)
else:
long_words = generate_long_words(n,100)
first_lw = long_words [0] #0(1) access
v_inv_list = [find_v_inverse(first_.lw , i) for i in range(l,n)]

for word in long_words:
for i in range(1l,n):
v_inv = v_inv_list [i—1]
indx, subw = get_subwords(word, v_inv)
writer . writerow ([word, i, v_inv, len (subw), subw])
writer . writerow ([])
print (” Generated csv for GL_{}”.format(n))
def generate_long_words(n, num_words):
#creates long word by [1,2,1,3,2,1...n,n—1,...,2,1]
first =[]
for k in range(l,n):
a = list (range(1,k+1))
a.reverse ()
first .extend (a)
#print (7 first” , first)
all_long_words = recurse ([first], first , num_words)
return all_long_words
#print (all_long_words)
#print (len (all_long_words))
#print_all_v_inverse_for_choice_of_lw (first)
for long_word in all_long_words:
print (get_element (long_word))
def recurse(words, lw, num_words):
if len(words)>=num_words:
return words
#lw=long word
for i in range(len(lw)—2):
#print (i)
if lwli]==lw[i+42] and (lw[i+1]-1==lw[i] or lw[i+l]+1l==Ilw[i]): F#can be
#print (" can be braided”)
lw_braided = lw[:i]+[lw[i4+1],lw[i],lw[i+1]]+1lw[i+3:]

16

def

def

#print (lw_braided)
#print (words)
if lw_braided not in words:
#print (" can be braided”, lw_braided)
words=recurse (words+[lw_braided], lw_braided , num_words) #bra
for i in range(len(lw)—1):
if lwli]=lw[i+1]>1 or lw[i]-lw[i+1]<—1: #|i—j|>1
lw_switched = lw [:i]+[lw[i+1],lw[i]]+1lw[i+2:]
if lw_switched not in words:
#print (" can be switched”, lw_switched)
words=recurse (words+[lw_switched], lw_switched , num_words)
return words
#get_element (first)
find_v_inverse (long_word ,i):
#find v inverse such that w_Oxs_ixlambda_i=v_ixlambda_i
long_-word = long_-word + [i] #add s_-i to w_0

long_-word = rev(long_word) #reverse it in order to work L—>R
reduced_forms = recurse_vinv ([long_word],long_word, i)
#print (reduced_forms)

min_len = min([len(x) for x in reduced_forms])

for rf in reduced_forms:
if len(rf)==min_len:
return rf
recurse_vinv (reduced_forms, cur, i):
if len(cur)<=1:
reduced_forms.append (cur)
return reduced_forms
if cur[0]!=i: #first remove all the s_j such that i =/= j with lambda_i
cur=cur [1:]
reduced_forms .append (cur)
reduced_forms = recurse_vinv (reduced_forms, cur, i)
for j in range(len(cur)—1): #then remove all of the repeated elements (s
if cur|[j]==cur[j+1]:
temp = cur[:j] + cur[]j+2:]
reduced _forms . append (temp)
reduced _forms = recurse_vinv (reduced_forms , temp, i)
for j in range(len(cur)—1): #then try all of the |i—j|>1
if cur[j]—cur[j+1]>1 or cur[j]—cur[j+1]<-1:
temp = cur [:j]+[cur[j+1],cur[j]]4+cur[j+2:]
if temp not in reduced_forms:
reduced_forms . append (temp)
reduced_forms = recurse_vinv (reduced_forms, temp, 1)
for j in range(len(cur)—2): #then try all of the braid relations
if cur[j]==cur[j+2] and (cur[j+1]-1==cur[j] or cur[j+1]+l==cur[j]):
temp = cur [:j]+[cur[j+1],cur[j],cur[j+1]]+cur[j—+3:]
if temp not in reduced_forms:

17

reduced_forms .append (temp)
reduced_forms = recurse_vinv (reduced_forms, temp, i)
return reduced_forms
def print_all_v_inverse_for_choice_of_lw (long_word):
for j in range(l,max(long_-word)+1):
print ("v'—1 =" find_v_inverse (long_-word,j),” for lambda."+str(j))
def get_subwords(long_word, vi_-inv):
all_subwords = []
for i in range(len(long_word)):
for j in range(i+1,len(long_word)+1):
all_subwords.append(long_word [i:]])
#print (all_subwords)
all_indices = list (powerset(list (range(len(long-word)))))[1:]
#all_subwords = list (powerset (long_word))[1:]

subwords_indices = [x for x in all_indices if get_element ([long_ word[y] f
minlen = min([len(x) for x in subwords_indices])

reduced_subwords_indices = [x for x in subwords_indices if len (x)==minlen
return reduced_subwords_indices ,[[long_-word[y] for y in x] for x in reduc
subwords_element_dict = {tuple(subword): get_element (subword) for subword
print (subwords_element_dict)

element_to_subwords_dict = {tuple(ele):[x for x in subwords_element_dic

return create_subwords_dict
def get_element (word):
#parameters: word (list), e.g. [1,3,2] refers to s_.1 s.3 5.2 = (1 2)(3 4)
starter = list (range (1 ,max(word)+2))
word=rev (word)
resultant_places = []
for num in starter:
cur = num
for refl in word:
if cur==refl:

cur+=1
elif cur=—refl+1:
cur—=1

resultant_places.append(cur)
#print (num,” goes to” ,cur)

final_element = []

for num in starter:
ele = [num]
x = resultant_places [num—1] #-1 to adjust for array starting at 0
while x!=num:
ele .append(x)
x=resultant_places [x—1]
correct_ele = write_element_correctly (ele)

18

def

def

def

def

if correct_ele not in final_element and len(correct_ele)>1:
final_element .append(correct_ele)

return final_element

get_root (reflections , a):
maxnum = max(reflections+[a])
alpha_final = [0]*maxnum
alpha_final [a—1]=1

#right now we have just alpha_i

reflections = rev(reflections)
for ref in reflections: #iterating backwards
#print (alpha_final)
tot = 0
if ref—2>=0:
tot+=alpha_final [ref —2]
if ref<len(alpha_final):
tot+=alpha_final [ref]
tot—=alpha_final [ref —1]
alpha_final [ref —1]=tot

return alpha_final
print_betas (long_word):
print (”a = alpha, b = beta”)
betas = [get_root (long_word[:i],long_word[i]) for i in range(len(long_ wort
beta_strings = []
for beta in betas:
temp = 9
for i,num_alpha in enumerate(beta):
temp+="a_"+str (i+1)+” 4+ ”)*num_alpha
beta_strings.append (temp[: —3])
for i, beta_str in enumerate(beta_strings):
print ("b_"+str (i4+1)+” = "+beta_str+” dual”)
calc_denominators (long_word):
to_return = []
betas = [get_root (long-word[:i],long_-word[i]) for i in range(len(long_wort
for i in range(max(long_word)):
to_return.append ([1 if len(beta)>=i+1 and beta[i]>0 else 0 for beta i
return to_return
get_bs (long_word):
numerators = get_i_c (long_word)
denoms = calc_.denominators(long_word)
to_return = []
for i in range(1,max(long_word)+1):
relevant_numerators = [x[1] for x in numerators if x[0]==1]

19

terms = [[num — denom for num, denom in zip (rel_num ,denoms[i—1])] for
to_return.append (terms)
return to_return
def print_bs(long_word):
bs = get_bs(long_word)
for j,b in enumerate(bs):

9

S =

for term in b:
s+=" 7.join ([" b_"+str (i+1) for i,x in enumerate(term) if x==1]) i
s+=" /7
s+=" 7.join ([" b"+str (i+1) for i,x in enumerate(term) if x==-1])
s+=" + 7

print (" s_”+str (j+1)+” = "+s[: —3])

20

