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1 Summary

I examined the root system of GLn in order to understand and calculate the
i-trails between Λi → w0siΛi. Dr. Leslie, along with work from Berenstein
and Zelevinsky, has developed a formula to easily calculate monomails that are
used for integrals in studying Mirkovic-Vilonen polytopes in a non-archimedean
context. Specifically, I automated the process of calculating the i−trails and
the corresponding monomials for GLn, and then calculated some of these MV
integrals in order to study the behavior of these integrals off the polytope with
the idea of resonance.

2 Reduced Words and Calculating Monomials

This part of the project required a number of combinatorial steps, and my work
served to automate these steps using Python code to facilitate calculation of
the MV integrals of the next section. The first step is based on the following
proposition, from Berenstein and Zelevinsky and simplified by Dr. Leslie:

Proposition 2.1. Fix a fundamental weight Λi and a long word i. Let w0siΛi =
viΛi be a minimal representative. The i-trails from Λi to w0siΛi are in bijection
with subwords (ik(1), . . . , ik(p)) of i where l(vi) = p and k(1) < · · · < k(p) that

are reduced words for v−1
i .

Using this proposition, I wrote a function to calculate the subwords that are
reduced words for v−1

i . This function has three discrete sub-functions, which
each accomplish a specific task in building up the subwords.

First, I wrote a sub-function to generate all of the possible long words. This
is important because each long word gives me another test case, and looking at
all of the long words is important for understanding the context in general. The
number of long words was found to be OEIS sequence A005118, and are given
by

an =

(
n
2

)
!∏n−2

i=0 (2i+ 1)−i+n−1
.
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This was done through applying the ”braid” and ”switch” relations in a recursive
manner until there is no longer a way to apply either to get a unique long word.

The next sub-function calculated the v−1
i , which was done through a recur-

sive process that continued to shorten w0siΛi until a minimal representative was
reached. This is done through four techniques: the first two are to remove sim-
ple reflections off the right side that are inverses of each other (i.e., if the same
reflection appears twice, it can be cancelled), and removing simple reflections
that are not i, as sjΛi = Λi when j 6= i, as can be shown relatively trivially.
Once it cannot be shortened through these two techniques, the algorithm ap-
plies the braid and switch relation until one of them can apply. If, after applying
every possible braid and switch, it cannot be shortened any more, then it must
be a minimal representative, and the inverse is returned.

The third step is to use these first two steps to calculate subwords that are
reduced words for v−1

i , which is done by looking at the powerset of the long
word (without the empty set) and checking if each subset is equivalent to v−1

i ,
and then only taking those of minimum length (the reduced ones). The function
ends by exporting all this data into a nicely formatted CSV to facilitate analysis.

The second function calculates the monomials that are used in the MV
integrals. This is done according to the following formula from Dr. Leslie:

si(u) =
∑

π:Λi→w0siΛi

dπ
b
c1(π)
1 · · · bcN (π)

N

b
〈Λi,βii〉
1 · · · b〈Λi,β

i
N〉

N

.

Just like the last function, this one contains three discrete steps. The first sub-
function generates the i-trails from the subword calculated in the first function,
and then uses this to trivially produce the c vectors. This is important because
it determines the exponents in the numerator of the sum that we are using.
The second sub-function calculates the βi, and then uses the Λi to calculate
the denominators of the monomials. The third sub-function combines these and
simplifies the fractions to produce the final monomials. This allows us to write
down the actual sum without any hand calculation, which means that we can
focus on the integrals. All of the aformentioned code is provided in section 4.

3 The MV Integrals

I first state some results which are important in understanding the integrals.
We define

I(a, b) =

{
qa+b

∫
$aO ψ(t)dt : b = 0

qa+b
∫
$aO× ψ(t)dt : b > 0

First, there are important vanishing statements, which appear often and allow
for easy simplification.

Lemma 3.1. I(a, b) = 0 if a < −1 or if a = −1 and b = 0.

Proof. For a < −1, it vanishes because one of the terms in the product that
comes out of ψ(t) is

∑p−1
a=0 e

2πia/p, which is 0, and for a = −1 and b = 0, the
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integral can be rewritten as∫
Zp
ψ(t)dt+

∫
p−1Z×

p

ψ(t)dt.

Given that ψ on Zp is 1, this is equivalent to 1 +
∑p−1
a=1

∫
ap−1+Zp ψ(t)dt. Using

a change of variables t = ap−1 + y for y ∈ Zp, we get dt = dy and the integral
equals

p−1∑
a=1

e2πia/p

∫
Zp
dy = (−1)(1),

which makes I(a, b) zero.

This next lemma writes the same I(a, b) in a different form which often is
what actually appears in the integrals.

Lemma 3.2.

I(sα,mα) =

{∫
p−mαZ×

p
ψ(psα+mαtα)dtα) mα > 0∫

Zp ψ(psαtα)dtα) mα = 0
.

Proof. Consider the two cases. First, mα > 0. Then

I(sα,mα) = qsα+mα

∫
psαZ×

p

ψ(t)dt.

Then through a change of variables t = psαx, this is equivalent to

qmα
∫
Z×
p

ψ(psαx)dx

On the other hand,∫
p−mαZ×

p

ψ(psα+mαtα)dtα = pmα
∫
Z×
p

ψ(psαx)dx,

through a change of variables t = p−mαx with x ∈ Z×p .
For the second case, mα = 0. Thus we have

I(sα,mα) = qsα
∫
psαZp

ψ(t)dt =

∫
Zp
ψ(psαx)dx

through the same t = psαx change of variables. This is equivalent to the desired
integral.
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3.1 GL3 example

I will demonstrate these calculations for the simplest example, GL3. For GL3,
there are two long words, s1s2s1 and s2s1s2.

Consider i = (1, 2, 1). This induces the ordering α2 < α1 + α2 < α1 on
the positive roots. There are two i-trails from Λ1 → w0s1Λ1 and one from
Λ2 → w0s2Λ2. We can then calculate that

s1 =
1

b2
+

b3
b1b2

and s2 =
1

b3
.

Because there are the same number of i-trails as there are positive roots, we
have that the monomial change of variables to the Xk only leads to terms with
Xk to the power of zero or one. This means that the construction of the gis is
trivial, giving

g1 = t2 +
t1w2

w3
and g2 = t3,

and we get that s1 = λ1 +m3 −m2 −m1, s2 = λ1 −m2, and s3 = λ2 −m3.
This gives

Iλ(m) =

∫
Ci(m)

f(u)ψ
(
pλ1
(
t2 +

t1w2

w3

)
+ pλ2t3

)
du.

We have f(u)du =
∏
α(p−1xα)mαdtα, giving∏

α

(p−1xα)mα
∫
ψ(pλ1t2)

∫
ψ(pλ2t3)

∫
ψ
(
pλ1

t1w2

w3

)
dt.

Now consider

G(s1,m1) =

∫
ψ
(
pλ1

t1w2

w3

)
dt1.

Due to the vanishing conditions of I(a, b), we have that if s1 < −1, or if s1 = −1
and m1 = 0, then G(s1,m1) = 0.

Let m1 > 0. Then∫
p−m1Z×

p

ψ
(
pλ1

t1t2
t3

)
dt1 = pm1

∫
Z×
p

ψ
(
pλ1−m1

xt2
t3

)
dx.

If s1 ≥ 0, this integral equals

pm1

∫
Z×
p

dx = pm1(1− p−1).

If s1 = −1, we can re-write the integral as

pm1

p−1∑
a=1

∫
a+pZp

ψ
(
pλ1

t2
t3
x
)
dx
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and through a change of variables x = a+ py we get

pm1−1

p−1∑
a=1

ψ
(
pλ1

t2
t3
a
)∫

Zp
ψ
(
pλ1+1 t2

t3
y
)
dy.

The integral on the right is 1, which means the sum evaluates to −1, leaving
−pm1−1. The last case to consider is mα = 0 and sα ≥ 0. We get that∫

Zp
ψ
(
pλ1

t1t2
t3

)
dt = 1.

It is clear that the same can be done for the other two integrals. Thus, we
can write

Iλ(m) =
∏
α

xmαα G(sα,mα),

with

G(sα,mα) =


1− p−1 mα > 0, sα ≥ 0

−p−1 mα > 0, sα = −1

1 mα = 0, sα ≥ 0

0 otherwise

.

3.2 GL4 degenerate example

I now demonstrate a calculation for an ”interesting” example, in GL4. Note
that there are 6 positive roots, but 7 monomials, which means that the resulting
integrals are nontrivial and we have nonzero contribution outside the polytope.

Consider i = (2, 3, 1, 2, 3, 1). This induces the ordering

α2 < α1 + α2 < α2 + α3 < α1 + α2 + α3 < α3 < α1

on the positive roots. There is one i−trail from Λ1 → w0s1Λ1, five from Λ2 →
w0s2Λ2, and one from Λ3 → w0s2Λ3. We get

s1 =
1

b5
= X5

s2 =
1

b4
+

b6
b3b4

+
b5
b2b4

+
b5b6
b2b3b4

+
bsb6
b1b2b3

= X4 +X3 +
X2X4

X3
+X2 +X1

s3 =
1

b6
= X6,

which gives

g1 = t5, g2 = t4 +
t3w4

w6
+
t2t4
w5

+
t2w3w4

w5w6
+
t1w2w3

w5w6
, g3 = t6.

Thus we have

s1 = λ2 −m1 −m2 −m3 +m5 +m6, s2 = λ2 −m2 −m3 −m4 +m5 +m6
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s3 = λ2 −m3 −m4 +m6, s4 = λ2 −m4, s5 = λ1 −m5, s6 = λ3 −m6

s2 + s4 − s3 = λ2 −m2 −m4 +m5.

This gives

Iλ(m) =

∫
Ci(m)

f (u)ψ

(
pλ1t5 + pλ3t6 + pλ2

(
t4 +

t3w4

w6
+
t2t4
w5

+
t2w3w4

w5w6
+
t1w2w3

w5w6

))
du

which we can simplify by writing as∫
ψ

(
pλ2

t1w2w3

w5w6

)∫ ∫ ∫ ∫ ∫
ψ

(
pλ1t5 + pλ3t6 + pλ2

(
t4 +

t3w4

w6
+
t2t4
w5

+
t2w3w4

w5w6

))∏
α

(
p−1xα

)mα
dtα

= I(s1,m1)Jλ(m)
∏
α

(
p−1xα

)mα
Case 1: s2 + s4 − s3 ≥ 0

In this case we see that there is no contribution from the t2t4/w5 term, and
thus we can write

Jλ(m) = I(s5,m5)I(s6,m6)qm2+m3+m4

∫ ∫ ∫
ψ ($s2t2 +$s3t3 +$s4t4) dt2dt3dt4,

and we get the standard contribution. Thus now we assume s2 + s4 − s3 < 0

Case 2: s2 = −1, s4 = s3 ≥ 0

Note that we have s2 + s4 − s3 = −1, and further that m6 = m3. Thus for this
case, consider s2 = λ2−m2−m4 +m5. This demonstrates that we cannot have
m2 = m4 = 0, because we cannot have that λ2 +m5 = −1.

We can simplify Jλ(m) by writing

Jλ(m) = I(s5,m5)I(s6,m6)Iλ(s2, s3, s4;m2,m3,m4)

and do a change of variables to write Iλ(s2, s3, s4;m2,m3,m4) as

qm2+m3+m4

∫ ∫ ∫
ψ

(
$s2y2 +$s3y3 +$s2+s4−s3 y2y4

y3
+$s4y4

)
dy2dy3dy4.

Because we have s4 = s3 ≥ 0, we have that the $s3y3 and $s4y4 do not
contribute, and thus we can write this as∫

ψ

(
$−1 y2y4

y3
+$−1y2

)
dy2dy3dy4.
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Case 2.1 m2 > 0,m3 > 0,m4 > 0

This is the singular nonzero subcase of Case 2. Because s4 = s3 ≥ 0, we have
that the $s3y3 and $s4y4 do not contribute, and we can write this triple integral∫

(O×)3
ψ

(
$−1 y2y4

y3
+$−1y2

)
dy2dy3dy4,

and we can do a change of variables to get

q−1

(
1− 1

q

)∫
$−1O×

∫
O×

ψ(xy + x)dydx.

Now let z = xy and we get

q−2

(
1− 1

q

)∫
$−1O×

∫
$−1O×

ψ(z + x)dzdx.

These two integrals both evaluate to -1 and cancel, giving

q−2

(
1− 1

q

)
.

Case 2.2 m2 = 0,m3 > 0,m4 > 0

We have ∫
(O×)2

∫
O
ψ

(
$−1 y2y4

y3
+$−1y2

)
dy2dy3dy4,

and we can do a change of variables to get

q−1

(
1− 1

q

)∫
$−1O

∫
O×

ψ(xy + x)dydx.

Now let z = xy and we get

q−2

(
1− 1

q

)∫
$−1O

∫
$−1O×

ψ(z + x)dzdx.

This outer (first) integral evaluates to 0, meaning the whole case is 0.

Case 2.3 m2 > 0,m3 = m4 = 0

This case follows almost identically to Case 2.2, and we also get 0.

Case 2.4 m2 > 0,m3 = 0,m4 > 0

We have ∫
(O×)2

∫
O
ψ

(
$−1 y2y4

y3
+$−1y2

)
dy3dy2dy4,
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Do a change of variables to get

q−1

(
1− 1

q

)∫
$−1O×

ψ(x)

∫
O
ψ

(
x

y

)
dydx

which we can write as

q−1

(
1− 1

q

)∫
$−1O×

ψ(x)

(∫
O×

ψ

(
x

y

)
+

∫
$O

ψ

(
x

y

))
which can be written as(

1− 1

q

)∫
O×

ψ($−1x)

(∫
O×

ψ
(
$−1y

)
+$

∫
O
ψ
(
$−2y

))
which equals

q−2

(
1− 1

q

)
because the second integral is 0.

Case 2.5 m2 > 0,m3 > 0,m4 = 0

We have ∫
(O×)2

∫
O
ψ

(
$−1 y2y4

y3
+$−1y2

)
dy3dy2dy4,

and we can simplify through a change of variables to

q−2

(
1− 1

q

)∫
O×

ψ(x)

∫
O
ψ(y)dydx

which equals 0 because the right integral is 0.

Case 2.6 m2 = 0,m3 = 0,m4 > 0

We have ∫
O×

∫
O2

ψ

(
$−1 y2y4

y3
+$−1y2

)
dy3dy2dy4,

Do a change of variables to get

q−1

(
1− 1

q

)∫
$−1O

ψ(x)

∫
O
ψ

(
x

y

)
dydx

which we can write as

q−1

(
1− 1

q

)∫
$−1O

ψ(x)

(∫
O×

ψ

(
x

y

)
+

∫
$O

ψ

(
x

y

))
which can be written as(

1− 1

q

)∫
O
ψ($−1x)

(∫
O×

ψ
(
$−1y

)
+$

∫
O
ψ
(
$−2y

))
which equals 0 because the first integral is 0.
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Case 2 Summary

We can summarize the case as follows:

Iλ(s2, s3, s4;m2,m3,m4) =

{
q−2

(
1− 1

q

)
m2 > 0,m4 > 0

0 otherwise

Case 3 s4 = −1, s2 = s3 ≥ 0

First, note that s2 = s3 implies that m5 = m2. Further, because we have
s4 = −1 = λ2 −m4, we must have that m4 > 0.

Note that in this case, we can do the same change of variables as in case 2,
and get

qm2+m3+m4

∫
ψ

(
$−1 y2y4

y3
+$−1y4

)
dy2dy3dy4.

Case 3.1 m2 > 0,m3 > 0

Note that this is the same as case 2.1. We get

q−2

(
1− 1

q

)
.

Case 3.2 m2 = 0,m3 > 0

It is clear that in case 3, y4 is playing the role of y2 from case 2. Thus, this is
equivalent to case 2.5 and we get 0.

Case 3.3 m2 = 0,m3 = 0

This is equivalent to case 2.3, which equals 0.

Case 3.4 m2 > 0,m3 = 0

This is equivalent to case 2.4, which equals

q−2

(
1− 1

q

)
.

Case 3 Summary

We can see that this is almost identical to case 2, with the additional restriction
that m4 6= 0, thus giving

Iλ(s2, s3, s4;m2,m3,m4) =

{
q−2

(
1− 1

q

)
m2 > 0

0 otherwise
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Case 4 s4 = s3 = s2 = −1

This is the final case inside the polytope. Note that we have m4 > 0 by the
same logic as in case 3, and further m5 = m2 and m6 = m3.

Case 4.1 m2 > 0,m3 > 0

Do a change of variables y2 = $−s2x, y3 = $−s3z, y4 = $−s4y, leaving us with

q−3

∫
$s2O×

∫
$s3O×

∫
$s4O×

ψ
(
x+ y +

xy

z
+ z
)
dzdydx.

Now again change variables by y = wz, giving

q−2

∫
$s2O×

∫
$s3O×

∫
O×

ψ (x+ z + xw + wz) dwdzdx.

We can write this as

q−2

∫
$s2O×

∫
$s3O×

ψ(x+ z)

∫
O×

ψ (w(x+ z)) dwdzdx.

Now let w = a+$v, which gives

q−3

∫
$s2O×

∫
$s3O×

ψ(x+ z)

$−1∑
a=1

ψ (a(x+ z))

∫
O
ψ ($v(x+ y)) dvdzdx.

We can again change variables to get

q−1

∫
O×

∫
O×

ψ($s2x+$s3z)

$−1∑
a=1

ψ
(
a$−1(x+ z)

) ∫
O
ψ (v(x+ z)) dvdzdx.

Let x = x′z, which gives

q−1

∫
O×

∫
O×

ψ($−1z(x′+ 1))

$−1∑
a=1

ψ
(
a$−1z(x′ + 1)

) ∫
O
ψ (vy(x′ + 1)) dvdzdx′.

Let x′ = b+$x′′. We can write

q−2
$−1∑
b=1

∫
O

∫
O×

ψ($−1z(b+$x′′+1))

$−1∑
a=1

ψ
(
a$−1z(b+$x′′ + 1)

) ∫
O
ψ (vz(b+$x′′ + 1)) dvdzdx′′.

In the last integral, the $x′′ term does not contribute, and it becomes clear that
the integral (and thus the whole expression) is 0 for b 6= −1 [write out steps
here]. Thus let b = −1. We get

q−1

∫
O

∫
O×

ψ(zx′′)

$−1∑
a=1

ψ(azx′′)dzdx′′.
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This sum evaluates to $ − 1 because each term is 1, and we get

q−1(q − 1)

∫
O

∫
O×

ψ(zx′′)dydx′′,

and through a change of variables we get

q−1(q − 1)

(
1− 1

q

)∫
O
ψ(x′′)dx′′ = q−1(q − 1)

(
1− 1

q

)
=

(
1− 1

q

)2

Case 4.2 m2 = 0,m3 > 0

In this case we get

q−3

∫
$s2O

∫
$s3O×

∫
$s4O×

ψ
(
x+ y +

xy

z
+ z
)
dydzdx.

and we similarly change variables to get

q−2

∫
$s2O

∫
$s3O×

∫
O×

ψ (x+ z + xw + wz) dwdzdx.

Now let w = a+$v, which gives

q−3

∫
$s2O

∫
$s3O×

ψ(x+ z)

$−1∑
a=1

ψ (a(x+ z))

∫
O
ψ ($v(x+ y)) dvdzdx.

We can again change variables to get

q−1

∫
O

∫
O×

ψ($s2x+$s3z)

$−1∑
a=1

ψ
(
a$−1(x+ z)

) ∫
O
ψ (v(x+ z)) dvdzdx.

Let x = x′z, which gives

q−1

∫
O

∫
O×

ψ($−1z(x′ + 1))

$−1∑
a=1

ψ
(
a$−1z(x′ + 1)

) ∫
O
ψ (vy(x′ + 1)) dvdzdx′.

Let x′ = b+$x′′. We can write

q−2
$−1∑
b=0

∫
O

∫
O×

ψ($−1z(b+$x′′+1))

$−1∑
a=1

ψ
(
a$−1z(b+$x′′ + 1)

) ∫
O
ψ (vz(b+$x′′ + 1)) dvdzdx′′.

Case 5 s4 = s3 = s2 = −k for k > 1

In this case, we also have m4 > 0, and furthermore that m5 = m2 and m6 = m3.
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Case 5.1 m2 > 0,m3 > 0

Do a change of variables y2 = $−s2x, y3 = $−s3z, y4 = $−s4y, leaving us with

q−3k

∫
$s2O×

∫
$s3O×

∫
$s4O×

ψ
(
x+ y +

xy

z
+ z
)
dydzdx.

Now again change variables by y = wz, giving

q−2k

∫
$s2O×

∫
$s3O×

∫
O×

ψ (x+ z + xw + wz) dwdzdx.

We can write this as

q−2k

∫
$s2O×

∫
$s3O×

ψ(x+ z)

∫
O×

ψ (w(x+ z)) dwdzdx

or ∫
O×

∫
O×

ψ
(
$−k(x+ z)

) ∫
O×

ψ
(
$−kw(x+ z)

)
dwdzdx

It is clear in this case that we care about the valuation of x + z. Thus, let
t = x+ z. We note that |t| < |x| = |z| = 1. Thus we can write this as(

1− 1

q

) ∞∑
`=0

∫
|t|=$−`

ψ($−kt)

∫
O×

ψ
(
$−kwt

)
dwdt

and do a change of variables t = $`t to get(
1− 1

q

) ∞∑
`=0

q−`
∫
O×

ψ($`−kt)

∫
O×

ψ
(
$`−kwt

)
dwdt.

Recognize this as (
1− 1

q

) ∞∑
`=0

q−`I(`− k, 1)2

and by Lemma 1.1 we have that it equals 0 if ` < k − 1. Furthermore, when
` = k − 1, we have that I(`− k, 1) equals −q−1, and when ` ≥ k, we have that
I(`− k, 1) equals 1− q−1. Thus we can write this as(

1− 1

q

)(
q−k−1 + (1− q−1)2

∞∑
`=k

q−`

)

and this sum is a geometric series, giving(
1− 1

q

)(
q−k−1 + (1− q−1)2 q−k

1− q−1

)
=

(
1− 1

q

)
q−k
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Case 5.2 m2 = 0,m3 > 0

We start the same way as in Case 5.1, with the only difference being that we
are integrating x over O instead of O. We get∫

O

∫
O×

ψ
(
$−k(x+ z)

) ∫
O×

ψ
(
$−kw(x+ z)

)
dwdzdx

We can write this as∫
O×

∫
O×

ψ
(
$−k(x+ z)

) ∫
O×

ψ
(
$−kw(x+ z)

)
dwdzdx

+

∫
$O

∫
O×

ψ
(
$−k(x+ z)

) ∫
O×

ψ
(
$−kw(x+ z)

)
dwdzdx

The first integral is equivalent to Case 5.1, and in the second integral we can a
change of variables t = x+ z, and we know that t has valuation 1. Thus we can
recognize it as

q−1I(−k, 1)2

and we are assuming that k > 1, which means it is 0. Thus it evaluates to the
same as in case 5.1.

Case 5.3 m2 > 0,m3 = 0

Do a change of variables y2 = $−s2x, y3 = $−s3z, y4 = $−s4y, and expand to
get

∞∑
j=0

q−3k

∫
$s2O×

∫
$s3+jO×

∫
$s4O×

ψ
(
x+ y +

xy

z
+ z
)
dydzdx.

We get

∞∑
j=0

q−j
∫
O×

∫
O×

ψ
(
$−k(x+ z)

) ∫
O×

ψ
(
$−j−kw(x+ z)

)
dwdzdx

And then using the same logic as in Case 5.1, we get(
1− 1

q

) ∞∑
j=0

q−j
∞∑
`=0

q−`I(`− k, 1)I(−j + `− k, 1)

which is 0 when ` < k − 1 + j, −q−1 when ` = k − 1 + j, and 1 − q−1 when
` ≥ k + j. Thus we can write

(
1− 1

q

)
q−k +

(
1− 1

q

) ∞∑
j=1

q−j

−q−k−j (1− q−1
)

+

∞∑
`=k+j

q−`(1− q−1)2


=

(
1− 1

q

)
q−k
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Case 5.4 m2 = 0,m3 = 0

It follows that this is equivalent to case 5.3.

Case 6 s2 = s3 = −1, s4 = −k for k > 1

Note that we have m4 > 0 by the same logic as in case 5, and further m5 = m2.

Case 6.1 m2 > 0,m3 > 0

Do a change of variables y2 = $−s2x, y3 = $−s3z, y4 = $−s4y, leaving us with

q−2−k
∫
$s2O×

∫
$s3O×

∫
$s4O×

ψ
(
x+ y +

xy

z
+ z
)
dydzdx.

Now again change variables by y = wz, giving

q−1−k
∫
$s2O×

∫
$s3O×

∫
$−k+1O×

ψ (x+ z + xw + wz) dwdzdx.

We can write this as

q−2k

∫
$s2O×

∫
$s3O×

ψ(x+ z)

∫
O×

ψ (w(x+ z)) dwdzdx

or ∫
O×

∫
O×

ψ
(
$−1(x+ z)

) ∫
O×

ψ
(
$−kw(x+ z)

)
dwdzdx

It is clear in this case that we care about the valuation of x + z. Thus, let
t = x+ z. We note that |t| < |x| = |z| = 1. Thus we can write this as(

1− 1

q

) ∞∑
`=0

∫
|t|=$−`

ψ($−1t)

∫
O×

ψ
(
$−kwt

)
dwdt

which is equivalent to(
1− 1

q

) ∞∑
`=0

q−`I(`− 1, 1)I(`− k, 1)

or (
1− 1

q

)(
−q−k(1− q−1) + (1− q−1)2

∞∑
`=k

q−`

)
which equals 0 because the second term sums to 0.
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4 Python Code For Generating Monomials

import csv
from i t e r t o o l s import chain , combinat ions
#new : c a l c betas , g e t i c , get c f rom subword index , g e t r o o t
#−−−−−−−−−−−−−−HELPER FUNCTIONS−−−−−−−−−−−−−
de f rev ( x ) :

r e turn x [ : : − 1 ] #simple he lpe r func t i on to r e v e r s e l i s t
de f w r i t e e l e m e n t c o r r e c t l y ( e l e ) :

whi l e e l e [ 0 ] ! = min ( e l e ) :
e l e = e l e [ 1 : ] + [ e l e [ 0 ] ]

r e turn e l e
de f powerset ( i t e r a b l e ) :

” powerset ( [ 1 , 2 , 3 ] ) −−> ( ) ( 1 , ) ( 2 , ) ( 3 , ) ( 1 , 2 ) ( 1 , 3 ) ( 2 , 3 ) (1 , 2 , 3 )”
s = l i s t ( i t e r a b l e )
re turn chain . f r o m i t e r a b l e ( [ l i s t ( x ) f o r x in combinat ions ( s , r ) ] f o r r in range ( l en ( s )+1))

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
de f c r e a t e c s v f o r l o n g w o r d ( long word ) :

f i l ename = ” , ” . j o i n ( [ s t r ( x ) f o r x in long word ] )
with open (”/ Users / luca s f agan /Desktop/PRUV code/”+f i l ename . r e p l a c e (” ,” ,””)+”. csv ” ,”w” , newl ine =””) as c s v f i l e :

w r i t e r = csv . w r i t e r ( c s v f i l e )
w r i t e r . writerow ( [ ’ Long word ’ , ’ i ’ , ’ vˆ−1 ’ , ’ subword ’ , ’ i nd i c e s ’ , ’ c ’ ] )
v i n v l i s t = [ f i n d v i n v e r s e ( long word , i ) f o r i in range (1 ,max( long word )+1)]
f o r i in range ( l en ( v i n v l i s t ) ) :

indx , subwords = get subwords ( long word , v i n v l i s t [ i ] )
f o r j in range ( l en ( indx ) ) :

c = get c f rom subword index ( subwords [ j ] , indx [ j ] , long word , i +1)
w r i t e r . writerow ( [ long word , i +1, v i n v l i s t [ i ] , subwords [ j ] , indx [ j ] , c ] )

p r i n t (” Created csv f o r ”+f i l ename )
de f g e t i c ( long word ) :

f i n a l l i s t = [ ]
v i n v l i s t = [ f i n d v i n v e r s e ( long word , i ) f o r i in range (1 ,max( long word )+1)]
f o r i in range ( l en ( v i n v l i s t ) ) :

indx , subwords = get subwords ( long word , v i n v l i s t [ i ] )
f o r j in range ( l en ( indx ) ) :

c = get c f rom subword index ( subwords [ j ] , indx [ j ] , long word , i +1)
f i n a l l i s t . append ( ( i +1,c ) )

re turn f i n a l l i s t
de f ge t c f rom subword index ( subword , indx , long word , i ) :

c =[ ]
f o r x in range ( l en ( long word ) ) :

i f x in indx :
i f l en ( c)==0 and subword [ indx . index ( x ) ] != i :

c . append (0 )
e l s e :
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c . append (1 )
e l s e :

c . append (0 )
re turn c

de f c r e a t e c s v f o r g l (n ) :
with open (”/ Users / luca s f agan /Desktop/PRUV code /GL ”+s t r (n)+”. csv ” , ”w” , newl ine =””) as c s v f i l e :

w r i t e r = csv . w r i t e r ( c s v f i l e )
w r i t e r . writerow ( [ ’ Long word ’ , ’ i ’ , ’ vˆ−1 ’ , ’# subwords ’ , ’ subwords ’ ] )
w r i t e r . writerow ( [ ] )
i f n<=5:

long words = genera te l ong words (n ,10000)
e l s e :

long words = genera te l ong words (n , 1 00 )
f i r s t l w = long words [ 0 ] #O(1) a c c e s s
v i n v l i s t = [ f i n d v i n v e r s e ( f i r s t l w , i ) f o r i in range (1 , n ) ]
f o r word in long words :

f o r i in range (1 , n ) :
v inv = v i n v l i s t [ i −1]
indx , subw = get subwords ( word , v inv )
w r i t e r . writerow ( [ word , i , v inv , l en ( subw ) , subw ] )

w r i t e r . writerow ( [ ] )
p r i n t (” Generated csv f o r GL {}” . format (n ) )

de f gene ra te l ong words (n , num words ) :
#c r e a t e s long word by [ 1 , 2 , 1 , 3 , 2 , 1 . . . n , n− 1 , . . . , 2 , 1 ]
f i r s t =[ ]
f o r k in range (1 , n ) :

a = l i s t ( range (1 , k+1))
a . r e v e r s e ( )
f i r s t . extend ( a )

#pr in t (” f i r s t ” , f i r s t )
a l l l o n g w o r d s = r e c u r s e ( [ f i r s t ] , f i r s t , num words )
re turn a l l l o n g w o r d s
#pr in t ( a l l l o n g w o r d s )
#pr in t ( l en ( a l l l o n g w o r d s ) )
#p r i n t a l l v i n v e r s e f o r c h o i c e o f l w ( f i r s t )
# f o r long word in a l l l o n g w o r d s :
# pr in t ( ge t e l ement ( long word ) )

de f r e c u r s e ( words , lw , num words ) :
i f l en ( words)>=num words :

r e turn words
#lw=long word
f o r i in range ( l en ( lw )−2):

#pr in t ( i )
i f lw [ i ]==lw [ i +2] and ( lw [ i +1]−1==lw [ i ] or lw [ i+1]+1==lw [ i ] ) : #can be bra ided

#pr in t (” can be bra ided ”)
lw bra ided = lw [ : i ]+[ lw [ i +1] , lw [ i ] , lw [ i +1]]+ lw [ i +3: ]
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#pr in t ( lw bra ided )
#pr in t ( words )
i f lw bra ided not in words :

#pr in t (” can be bra ided ” , lw bra ided )
words=r e c u r s e ( words+[ lw bra ided ] , lw bra ided , num words ) #bra id i t

f o r i in range ( l en ( lw )−1):
i f lw [ i ]− lw [ i +1]>1 or lw [ i ]− lw [ i +1]<−1: #| i−j |>1

lw switched = lw [ : i ]+[ lw [ i +1] , lw [ i ] ]+ lw [ i +2: ]
i f lw switched not in words :

#pr in t (” can be switched ” , lw switched )
words=r e c u r s e ( words+[ lw switched ] , lw switched , num words )

re turn words
#get e l ement ( f i r s t )

de f f i n d v i n v e r s e ( long word , i ) :
#f i n d v i n v e r s e such that w 0∗ s i ∗ lambda i=v i ∗ lambda i
long word = long word + [ i ] #add s i to w 0
long word = rev ( long word ) #r e v e r s e i t in order to work L−>R
reduced forms = r e c u r s e v i n v ( [ long word ] , long word , i )
#pr in t ( reduced forms )
min len = min ( [ l en ( x ) f o r x in reduced forms ] )
f o r r f in reduced forms :

i f l en ( r f )==min len :
r e turn r f

de f r e c u r s e v i n v ( reduced forms , cur , i ) :
i f l en ( cur )<=1:

reduced forms . append ( cur )
re turn reduced forms

i f cur [ 0 ] ! = i : #f i r s t remove a l l the s j such that i =/= j with lambda i
cur=cur [ 1 : ]
reduced forms . append ( cur )
reduced forms = r e c u r s e v i n v ( reduced forms , cur , i )

f o r j in range ( l en ( cur )−1): #then remove a l l o f the repeated e lements ( s s ˆ−1)
i f cur [ j ]==cur [ j +1] :

temp = cur [ : j ] + cur [ j +2: ]
reduced forms . append ( temp )
reduced forms = r e c u r s e v i n v ( reduced forms , temp , i )

f o r j in range ( l en ( cur )−1): #then try a l l o f the | i−j |>1
i f cur [ j ]− cur [ j +1]>1 or cur [ j ]− cur [ j +1]<−1:

temp = cur [ : j ]+[ cur [ j +1] , cur [ j ] ]+ cur [ j +2: ]
i f temp not in reduced forms :

reduced forms . append ( temp )
reduced forms = r e c u r s e v i n v ( reduced forms , temp , i )

f o r j in range ( l en ( cur )−2): #then try a l l o f the bra id r e l a t i o n s
i f cur [ j ]==cur [ j +2] and ( cur [ j+1]−1==cur [ j ] or cur [ j+1]+1==cur [ j ] ) :

temp = cur [ : j ]+[ cur [ j +1] , cur [ j ] , cur [ j +1]]+ cur [ j +3: ]
i f temp not in reduced forms :
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reduced forms . append ( temp )
reduced forms = r e c u r s e v i n v ( reduced forms , temp , i )

r e turn reduced forms
de f p r i n t a l l v i n v e r s e f o r c h o i c e o f l w ( long word ) :

f o r j in range (1 ,max( long word )+1):
p r i n t (” vˆ−1 =”, f i n d v i n v e r s e ( long word , j ) , ” f o r lambda ”+s t r ( j ) )

de f get subwords ( long word , v i i n v ) :
# a l l subwords = [ ]
# f o r i in range ( l en ( long word ) ) :
# f o r j in range ( i +1, l en ( long word )+1):
# a l l subwords . append ( long word [ i : j ] )
# #p r i n t ( a l l subwords )
a l l i n d i c e s = l i s t ( powerset ( l i s t ( range ( l en ( long word ) ) ) ) ) [ 1 : ]

#a l l subwords = l i s t ( powerset ( long word ) ) [ 1 : ]
subwords ind i c e s = [ x f o r x in a l l i n d i c e s i f ge t e l ement ( [ long word [ y ] f o r y in x])== get e l ement ( v i i n v ) ]
minlen = min ( [ l en ( x ) f o r x in subwords ind i c e s ] )
r educed subwords ind i c e s = [ x f o r x in subwords ind i c e s i f l en ( x)==minlen ]
r e turn reduced subwords ind i ce s , [ [ long word [ y ] f o r y in x ] f o r x in r educed subwords ind i c e s ]
# subwords e l ement d ic t = { tup l e ( subword ) : ge t e l ement ( subword ) f o r subword in a l l subwords }
# pr in t ( subwords e l ement d ic t )
# e l ement to subwords d i c t = { tup l e ( e l e ) : [ x f o r x in subwords e l ement d ic t . keys ( ) i f subwords e l ement d ic t [ x]== e l e ] f o r e l e in subwords e l ement d ic t . va lue s ( )}
# return c r e a t e s u b w o r d s d i c t

de f ge t e l ement ( word ) :
#parameters : word ( l i s t ) , e . g . [ 1 , 3 , 2 ] r e f e r s to s 1 s 3 s 2 = (1 2)(3 4) (2 3) = (1 2 4 3)
s t a r t e r = l i s t ( range (1 ,max( word )+2))
word=rev ( word )
r e s u l t a n t p l a c e s = [ ]
f o r num in s t a r t e r :

cur = num
f o r r e f l in word :

i f cur==r e f l :
cur+=1

e l i f cur==r e f l +1:
cur−=1

r e s u l t a n t p l a c e s . append ( cur )
#pr in t (num, ” goes to ” , cur )

f i n a l e l e m e n t = [ ]

f o r num in s t a r t e r :
e l e = [num]
x = r e s u l t a n t p l a c e s [num−1] #−1 to ad jus t f o r array s t a r t i n g at 0
whi l e x!=num:

e l e . append ( x )
x=r e s u l t a n t p l a c e s [ x−1]

c o r r e c t e l e = w r i t e e l e m e n t c o r r e c t l y ( e l e )
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i f c o r r e c t e l e not in f i n a l e l e m e n t and l en ( c o r r e c t e l e )>1:
f i n a l e l e m e n t . append ( c o r r e c t e l e )

re turn f i n a l e l e m e n t
de f g e t r o o t ( r e f l e c t i o n s , a ) :

maxnum = max( r e f l e c t i o n s +[a ] )
a l p h a f i n a l = [ 0 ] ∗maxnum
a l p h a f i n a l [ a−1]=1

#r i g h t now we have j u s t a l p h a i

r e f l e c t i o n s = rev ( r e f l e c t i o n s )
f o r r e f in r e f l e c t i o n s : #i t e r a t i n g backwards

#pr in t ( a l p h a f i n a l )
to t = 0
i f r e f −2>=0:

to t+=a l p h a f i n a l [ r e f −2]
i f r e f<l en ( a l p h a f i n a l ) :

t o t+=a l p h a f i n a l [ r e f ]
tot−=a l p h a f i n a l [ r e f −1]
a l p h a f i n a l [ r e f −1]= tot

re turn a l p h a f i n a l
de f p r i n t b e t a s ( long word ) :

p r i n t (” a = alpha , b = beta ”)
betas = [ g e t r o o t ( long word [ : i ] , long word [ i ] ) f o r i in range ( l en ( long word ) ) ]
b e t a s t r i n g s = [ ]
f o r beta in betas :

temp = ””
f o r i , num alpha in enumerate ( beta ) :

temp+=(”a ”+s t r ( i +1)+” + ”)∗ num alpha
b e t a s t r i n g s . append ( temp [ : −3 ] )

f o r i , b e t a s t r in enumerate ( b e t a s t r i n g s ) :
p r i n t (” b ”+s t r ( i +1)+” = ”+b e t a s t r+” dual ”)

de f ca l c denominator s ( long word ) :
t o r e t u r n = [ ]
betas = [ g e t r o o t ( long word [ : i ] , long word [ i ] ) f o r i in range ( l en ( long word ) ) ]
f o r i in range (max( long word ) ) :

t o r e t u r n . append ( [ 1 i f l en ( beta)>=i+1 and beta [ i ]>0 e l s e 0 f o r beta in betas ] )
r e turn t o r e t u r n

de f g e t b s ( long word ) :
numerators = g e t i c ( long word )
denoms = ca l c denominator s ( long word )
t o r e t u r n = [ ]
f o r i in range (1 ,max( long word )+1):

r e l evant numerator s = [ x [ 1 ] f o r x in numerators i f x[0]== i ]
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terms = [ [ num − denom f o r num, denom in z ip ( rel num , denoms [ i −1 ] ) ] f o r rel num in re l evant numerator s ]
t o r e t u r n . append ( terms )

re turn t o r e t u r n
de f p r i n t b s ( long word ) :

bs = ge t b s ( long word )
f o r j , b in enumerate ( bs ) :

s = ””
f o r term in b :

s+=” ” . j o i n ( [ ” b ”+s t r ( i +1) f o r i , x in enumerate ( term ) i f x==1]) i f max( term)>0 e l s e ”1”
s+=” / ”
s+=” ” . j o i n ( [ ” b ”+s t r ( i +1) f o r i , x in enumerate ( term ) i f x==−1]) i f min ( term)<0 e l s e ”1”
s+=” + ”

pr in t (” s ”+s t r ( j +1)+” = ”+s [ : −3 ] )
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