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1 Introduction

In this paper we will apply Gaussian Process Subspace (GPS) prediction for general subspace
valued maps to reduced order modeling. To begin we will introduce various classical methods
of reduced order modeling and prove that when the initial Linear Time Invariant (LTT)
system is a C* function of a parameter space © C R?, the reduced system generated by
a particular method of model order reduction has a particular smoothness structure. We
will find that for different methods of model order reduction we can create stronger results
regarding the smoothness of the reduced system. Once we have proved smoothness, we will
begin to make predictions using GPS. We will numerically create sample points, each point
consisting of parameter values and a basis for a subspace, for both model order reduction
methods and smaller problems. For each case, most sample points will be used to create
GPS models for the respective problems and the rest will be used to test the error of our
models. We will then quantify our error using the Grassman Distance, a common metric for
the Grassman Manifold, and find sample sizes such that our model is reasonably accurate.

2 Smoothness of Rational Krylov Interpolation

Lemma 1. Let X € R™™ y € R", and z € R"*". Assume (X,y,z)(0) € C* for x €
ZZO U {OO,(.U}. [f

V = Ran(V(0)) = Kn(X(6), y(9)) = colsp([y () X (0)y(6), ..., X(6)" "y (6)]),

W = Ran(W(0)) = Kn(X(0)7,2(0)") = colsp([z(0)T X (0)7z(0)", ..., X(0)"™ z(6)T)),
then the bases to V, W given by the columns of V(6) and W (0) respectively are in C*.

Proof. The vector y is a C* function of the parameters by assumption. Since matrix-vector
multiplication is a linear combination of the columns of the matrix according to the entries
of the vector, given a matrix X (0) € C* acting on a vector y(0) € C?, the resulting vector
X(0)y(0) is C*. Therefore, the vector X (6)y(#) is a C* function of the parameters: the
mapping

T:C"—=C" T(x) — X(O)x (1)



is smooth. Define:

hi T (y(9)), hi(0) — X (0)y(0). (2)

The mapping h; is smooth. Then, by smoothness of compositions, the mapping
hy:Tohy, hy(0) = X(0)%y(0) (3)
is also smooth. By induction, it is then true that the mapping
hy:Toh, 1, hy,(0)— X(6)"y(6) (4)
is smooth. Therefore, for any n, the vectors X (0)"y(f) are smooth functions of §. Define:

f(0) = span(ho(0),h1(0), ..., hpm_1(0)). (5)

Since the span operation is smooth, the span of smooth vectors is a smooth mapping. There-
fore, f is a smooth mapping. The basis to the Krylov subspace I, = (X (0),y(0)) is a C*
function of the parameter vector 6.

The transpose operation is smooth. Given that X (0),z(0) € C*, X(0)T, (2)T(0) € C=.
Using the argument above for X ()7 and the vector z(0)?, we conclude the columns of the
matrix W (#) are C* functions of the parameter vector. O

Lemma 2. Let (X,Y)(0) € C* for x € ZsoU {oo,w}, and 0 X —Y be invertible for o € C,
the mapping
F(X(0),Y(0)) = (e X(0) —Y(0))™™

is C* for any m.

Proof. Since scalar multiplication and matrix addition are smooth functions, by smoothness
of compositions, given system matrices X, Y that are C* functions of a parameter vector 6,
the mapping

g(o, X(0),Y(0)) — X(0) — Y (0)

is C”. The inverse mapping, when defined, is the composition of determinant functions
(Cramer’s rule) which are smooth. Since the matrix pencil o X — Y is invertible by assump-
tion, the inverse mapping is smooth.
By the same logic as above, taking powers of a smooth matrix is a smooth function: the
mapping
hp(X) — X™

is smooth. By smoothness of compositions,

m

f(m, o, X(0),Y(0)) := hy, o invo g(o, X (0),Y(0)) = [(cX(0) — Y (6) ]
is C*. U

Theorem 3. Let E(6), A(9), B(0),C(0) € C* forx € Z>oU{oo,w}. LetS; = {pu, p2, ..., i} C
C be a set of K left interpolating points closed under conjugation, S N A(A(0)) = 0 and let
the left nontrivial tangent directions be given by {cl}fil Let S, = {01,09,....,0} C C be a



set of K right interpolating points closed under conjugation, S, N A(A(6)) = 0 and let the
right nontrivial tangent directions be given by {bi}le. Then the bases given by

K
1=1

{(0:E(6) — A9))"'B(6)bs}

and
K

{(cfCO(mEW®) — AW0) )T},

constructed by tangential rational interpolation are C* functions of 6.

Proof. By Lemma 2, given system matrices E(6), A(0), B(#),C(0) € C* and considering
m = 1, the mapping
F(E(9), A(6)) = (0E(9) — A@®)) "

is C*. Also, by the same token
FE(0), A(0)) — (nE(0) — A(6)) "

is C*. By Lemma 1, the basis vectors of the Krylov subspace are C* functions of the
parameter vector 6. Consider the vectors v; = B(f)b; and w] = ¢/ C(0) for i = 1,..., K.
These vectors are formed from C?® matrices and constant vectors, therefore, they are C*
functions of 6. Applying Lemma 1 to the matrix (o;E(0) — A(6))"" and the vector v, for
1 =1,..., K arbitrary and considering the Krylov subspace with m = 1, we find that each of

the basis vectors «

{(@:B(0) = A()) Vi),
are C*. By the same logic, each of the basis vectors given by

(W (B (0) — A0) ™

are C* functions. Since span is a smooth function, by smoothness of compositions, for
fixed right interpolating frequencies {Ji}le, right nontrivial tangent directions {bi}le, left

interpolating frequencies { ,ui}f:l and left nontrivial tangent directions {c;}'_,, the mappings

=1

K

g:0— spcm({(aiE(@) — A(@))_lB(H)bi}izl)
and
h: 9 — span({(cI C(O)(mE®) — AB) )T} )
are C%. O]

Corollary 4. Let A(0),E(0) € R™™ and b,c’ € R" be C® for x € Zso U {oo,w}. Let
S = {o01,09,...,0x} C C be a set of K distinct interpolating points with multiplicities
M ={my,,myy, ... My, } closed under conjugation and S N A(A(6)) = 0. Define

K K



and define
Voi(8) = [b (0,E(6) — A(6))'b, ..., (0:E(8) — A(6)) "=~ VD]
Wo,(0) = [c" (G, E(0)" — A(0)") e, .., (@ E(0)" — A(B)") "=~ DeT].
Let V(0) = [V, (0), Vs (0), ..., V5 (0)] and W(0) = [W,,(0), W,,(0), ..., W, (0)] be such that

YV = Ran(V(0)) and W = Ran(W(@)). Then the bases formed by the columns of V(0) and
the columns of W (8) are C*.

Proof. By Lemma 2, given smooth system matrices E(f), A(), the mapping
hi: (E,A)(0) — (cE(0) — A0))"

is smooth. Likewise, by Lemma 2, the mapping

iy (B, A)(0) = (@E@O)" = A0)")
is smooth. Applying Lemma 1 to the matrix (0;E(0) — A(A))~" and the vector b, we have

that since
Ran(Vy,(0)) = Ko, ((0:E(0) — A(6)) ", b)

the columns of V() are smooth functions.
Applying Lemma 1 to the matrix (7E(A)7 — A()T)"" and the vector ¢”, we have that

since

-1

Ran(Wy, (8)) = Ko, (G:E(0)" — A(6)T)

;')

the columns of W () are smooth functions.
Therefore, since the frequency o; was arbitrary, the columns of {V, (9)}5; are smooth
functions, and hence the basis formed by their union is a smooth function. The same

reasoning holds for {W,, ()}~ . Therefore, the bases given by the columns of V/(6), W (6)
are smooth functions. ]

The rational Krylov method takes the union of Krylov subspaces, so, by Theorem 3, the
bases given by the columns of the matrices V(#) and W (#) constructed for V, W by the
rational Krylov method are C* functions.

Theorem 5. Let C(s,0), K(s,0), and B(s,0) be matriz-valued functions which are C* func-
tions of the parameter 6 for x € Zso U {oo,w}. Then the structured transfer function

Gr = C(s)K(s)"'B(s) (6)

is a C* function of the parameter 6.



Proof. Given that the individual matrices in the matrix function are smooth functions of
the parameter #, any linear combination of the matrices according to smooth functions of
the parameter 6 are smooth. Since the matrix function KC(s) is guaranteed to be invertible,
the inverse exists and is a smooth function of the parameter 6 as it is the composition of
smooth functions since K(s) is a C* function of the parameter 6 (cf. Cramer’s Rule). since
matrix multiplication preserves smoothness, the product of C* matrices is a C* function of
the parameter 0. Therefore, the structured transfer function given by equation (1) is a C*
function of the parameter 6. [

Second order rational krylov is a special case of this where the matrix-valued functions
are given by

C(s) =Cy,+5C,, K(s)=s*M+sE+ K, B(s)=DB,.

Therefore, since the transfer function is a C* function of the parameter ¢ the bases generated
via second order rational krylov interpolation are * functions of the parameter 6.

3 Smoothness for Balanced Truncation

Theorem 6. Let A(0) € C¥(©,S8(n)) where © is an open subset of R%. If the top-k repeated
eigenvalues (N (0))5_, of A(0) are separated from the smaller eigenvalues, let Uy, be the
total eigenspace associated with \;, i =1,--- |k, then By (0) € C*(0,G,). If A(0) is only
continuous at Oy, then U (0) is continuous at .

Proof. Since the top-k and bottom-(n — k) repeated eigenvalues of A are separated through-
out O, the mapping Vy(0) : © — Gj, is well-defined. To prove the first part of the
theorem, it suffices to show that for any 6, € ©, there exists U(0) € C*(B(6,), M, ) such
that span(U) = Uy, where B(6,) C O is a neighborhood of 8y. Since Uy|p(g,) = spano U,
this implies that Uy|p(g,) € C¥(B(00), Gin)- It follows that Uy, € C*(0, Gy,,).

Let A\; > --- > Ay be the largest eigenvalues of A(6y), with total multiplicity > ., m; =
k. Applying Theorem 12 to A(8) at 8y, there exist U;(0) € C¥(B;(0o), M}, ), i =1,--- s,
where B;(6y) C © are neighborhoods of 6y, such that U;(8) is a basis of the total eigenspace
associated with the A\;i-group. Let U = (Uy,--- ,Uy) and B(6y) C N{_,B;(0y) such that
U(6.) € My, for all 0. € B(6y), then U(0) € C“(B(0q), M, ). This proves the first part
of the theorem.

The continuous version can be proved similarly. Let $;(0) be the total eigenspace as-
sociated with the A\;-group, i = 1,--- ,s. Applying Theorem 9, $1;(8) are continuous at 6.
Since Uy, = ®;_ U, L (0) is also continuous at Oy. O

Theorem 7. Given a linear time-invariant, like that described in Chapter 6 of Benner
et al. (2017), with matrices A(6),B(0), C(0), each that are C° functions of the parameter 6.
The space, By, Wy, onto which classical balanced truncation projects the system onto is a C°
function of 0. Additionally, if A(0),B(0), C(0), each that are C* and the Hankel singular
values satify o (0) > op41(0), VO € O, then the space By, Wy, onto which classical balanced
truncation projects the system onto is a C* function of 6.



Proof. The transformations of balanced truncation are characterized by diagonilizing both
the controlability gramian matrix, P, and the observability gramian Matrix, Q. To begin we
need to prove that these matrices are either C° or C* functions of #, when the least smooth
of A, B, and C as functions of  is either C° or C*, respectively.

We have the following expressions for the Gramian matrices P and @,

P= / e BBT M dt (7)
0

Q= /0 AT CT O dt (8)

To begin, notice that AT preserves the smoothness of A, because we are simply rearranging
the C° or C* functions that make up A. Now, we look at the matrix exponential. The matrix
exponential is best defined in terms of its Taylor series.

(t4? |, (¢4

tA
e =1+ (A + 5 a0

+ ...

Now we use Higham (2008), Thm 4.7, which proves that this series has an infinite radius of
convergence and therefore converges for all A € M, , It is also true that C*(M,,(C), GL,(C)).
The Taylor series can only exist for a function that is at least C“, so we have that this matrix
exponential is as smooth as A(#). We have that each of the four terms in the product of
each integrand is as smooth as A, B, and C. Their product is similarly smooth since matrix
multiplication preserves smoothness. Lastly, integrating a function, which is what the inte-
gral is doing to the individual component functions that comprise the integrand, outputs a
function that is at least as smooth, therefore our Gramian matrices, P and Q), are at least
as smooth as the least smooth among A, B, and C.

Now that we have P and (), we need to prove that the balanced transformation we need can
be reach through smooth mappings. To begin, we note that the next step of classical bal-
anced truncation is to find Cholesky decompositions of P and Q. For the purpose of proving
a smooth mapping exists, assume that the Cholesky factors are generated in the following
way. We can write an eigenvalue decomposition of P as,

k
P=> AP,
i=1
where all the P,, matrices are projection matrices. Now, write

= \/)\_kp’vk

Since we have P} = P,, for all P,,, we do the Cholesky deomosition as P = Pz(Pz)T. This is
a specific way that we can do the Cholesky decomposition for positive semi-definite matrices,
which is unique, unlike general Cholesky decomposition. To prove that the mapping from P
to P2 is smooth, notice that there is a clear smooth, bijection from P3 to P. The inverse
function theorem applies and we see that this is a smooth mapping. The same process yields
a smooth Cholesky decomposition of (). So now as we move forward we denote, Pz as Rp

I

P



and Q% as Rg.
We now can get a basis for the space that we are projecting onto. To begin we take a full
Singular Value Decomposition of RpR}, which we write as

RpRE =UxZ"

Then the desired transformations for our system are written as
-1
Vi = RLULY,? (9)

;1
Qi = RngE,j (10)

Where U, and Z,, are based on the first k rows that are selected of the U and Z. Now we
denote the space that the columns of V}, is a basis for as V, and similarly define W,. Now to
show that this space is a smooth mapping we notice that we can reduce column space of V.

-1
Vi. = range(RLULY,? ) = range(REUY)

Since E,?l is just a diagonal matrix and therefore does not change the span. So now we
know that the subspace V} is as smooth as the less smooth one of Rp and U,. We have
already seen that R, is as smooth as A, B, and C. So we finish off the proof by proving
the smoothness of U, and for the W, case, we show that Z; is also smooth. To do this we
do an eigenvalue decomposition of the symmetric matrices RoPRg and RpQ)Rp, which we
write as,

RoPRg = 75227
RpQRp = US2UT

For both the case where Rg and Rp are C° and the case where Rg and Rp are C we apply
Thereom 6 that is proved in [add reference to smooth-PC.tex], in order to prove that the space
we are projecting on to is C° or C¥ respectively. We apply our assumption that the Hankel
singular values satisfy o.(0) > 0x.1(0), V0 € ©, which implies that the top-k eigenvalues of
the left hand side of both equations are separated from the smaller eigenvalues and therefore
we can apply Thereom 6. So we now have that 2, 20, the associated eigenspaces are C°
when Rg and Rp are C° and C* when Rg and Rp are C¥. O

3.1 Smoothness for Frequency-Limited Balanced Truncation

We follow the setup of Frequency-Limited Balanced Truncation layed out in [add reference
Benner 2016]. In the frequency-domain, we have the following transformed Gramians.

1 o

:% N

P (iwl — A)"'BBT ((iwl — A) ™) dw

L[~ . CINH AT (s -1
Q:%/_ (o] — A YT (il — A))dw

[e.9]



For frequency-limited balanced truncation, we only select a subset of the real number line to
integrate over. We impose that this subset is symmetric around the origin. In other words,
let the domain of integration be €2, defined as below,

k
Q= U[_W% —wa—1] U [wai—1, way]

i=1
where 0 < w; < wy < ... < wyg. Then the frequency limited Gramians are,

1
P=— [ (iwl — A)'BB"((iwl — A)"")"dw
27T Q

1 : CINH AT (s -1
Q:%/Q((zwI—A) VECT (il — A

Once we have our frequency-limited Gramians, we continue in the same way as classical
balanced truncation, so we now endeavor to show this entire process is as smooth as the
matrices that defined the initial LTT.

Theorem 8. Given a system with matrices A(0),B(0), C (), each that are C° functions of
the parameter 8. The space, Ty, 3, onto which frequency limited balanced truncation projects
the system onto is a C° function of 0. Additionally, if A(9),B(9), C(0), each that are C¥
and the frequency-limited Hankel singular values satify oy (0) > o,41(0), Y0 € O, then the
space , Ty, Uy, onto which frequency-limited balanced truncation projects the system onto is a

CY function of 6.

Proof. When we proved Thereom 7, we first proved that the Gramians were as smooth
as the least smooth of A(#),B(#), and C(¢). Then we proved that projection constructed
from the Gramians is similarly as smooth. The process of creating this projection for the
frequency-limited case is identical once we have our Gramians, therefore once we prove that
the frequency-limited Gramians are smooth, we can just refer to the proof of Theorem 6 and
replace P, () with Py,Qq.

To show the frequency-limited Gramians are as smooth as the least smooth of A(6),B(#), and
C(0), we begin with a reference to Lemma 2, with X = I and m = 1, to show (iwl — A)™!
is as at least as smooth as A. The product in the integrand will be at least as smooth as
the least smooth of its factors, which are all as least as smooth as our original system. We
then integrate with respect to a variable that is not in the parameter space, which preserves
smoothness structure. Therefore, each of our frequency-limited Gramians are at least as
smooth as our initial LTI and we can refer to the proof of Theorem 7 to show that the
reduced-system follows the same smoothness structure as the time domain case of balanced
truncation. [

4 Numerical Results

4.1 Measuring the Accuracy of our Predictions

To measure the error in the predictions made by GPS after training on the sample dataset,
we used the Grassman distance to measure the distance between the predicted subspace and



the subspace computed via the model reduction method we wished GPS to approximate. For
each of the predictions given matrix representations of the actual and predicted subspaces
Virue and Viyedicted, Tespectively, we computed

dist(Virue, Voredictea) = || arccos(0 (VyreaicteaVerue)|

where o(-) denotes the vector of singular values of its matrix argument. The maximum

value for this distance is %E, where k is the dimension of the subspace to be predicted.

To normalize the error metric on a more interpretable scale of from 0 to 1 we divided the
distance metric by this maximal value.

4.2 Predicting Functions on the 1,2-Grassmanian Manifold

To motivate the importance of the smoothness structure of the underlying subspace-valued
map in providing theoretical guidance on the accuracy of GPS predictions, we used GPS to
approximate the following subspace-valued function:

fo:R = Gia, fa(f) = span{cos(a(h)),sin(c(0))}.

We varied the smoothness structure of the function « to observe the effect on the accuracy
of GPS in predicting f,. We investigated the accuracy of GPS predictions of f, for the
following variants of a:

1. a € C¥, low sensitivity to perturbations

a(f) = g(cosﬁ +1)

2. a € C¥, high sensitivity to perturbations
a(f) = arccos(vy + sign(vy))

where v = (v1,v9) is the eigenvector associated with the largest eigenvalue of the
following matrix K with functional dependence on the parameter

0154+ 2246 —0.05
K(9>_[ ~0.05 105 |
3. aeC’ o
0)=10——=|+—
0(0) =102+
4. a ¢ C°
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Figure 1: GPS Predictions in Case (1) Analytic Function, Low Sensitivity
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GPS Prediction with 4 Sample Points for Eigenmode
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Figure 2: GPS Predictions in Case (2) Analytic Function, High Sensitivity
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Figure 3: GPS Predictions in Case (3) Continuous Function
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GPS Prediction with 4 Sample Points for a(6) Discontinuous With a Jump of 0.9%
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Figure 4: GPS Predictions in Case (4) Discontinuous Functions
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Figure 5: L5 Error Convergence for Subspace-valued Functions with Varying Smoothness
Structure

Qualitatively, GPS predictions can be seen to improve as the number of sample points ¢
used to build the model increases. GPS can be seen to be most accurate in predicting Case
(1) (cf. Figure 1). The 95% predictive interval is narrowest for the analytic, low sensitivity
case for ¢ = 4 compared to the remaining cases. In the case where o € C, qualitatively, the
error in predicting the non-differentiable point at 7 decreases as we increase the number of
points sampled (cf. Figure 2). In the discontinuous case, the error made in approximating
the discontinuity improves as we increase the number of sample points ¢. However, since
GPS predicts f, as a smooth function, there will always be nonzero error in approximating
a discontinuous function (cf. Figure 4).

Comparing the convergence rate in the Lo error metric (cf. Figure 5), it can be seen that
the higher the sensitivity of the subspace-valued function to perturbations, the slower the
rate of convergence of the error. The convergence rate is fastest for the analytic case with
low sensitivity, i.e., a(f) = 5 (cosf + 1), followed by the analytic case with high sensitivity,
the Eigenmode problem, followed by the merely continuous case, and slowest for the discon-
tinuous case. For discontinuous functions, the error fails to converge to zero since there will
always be nonzero error in approximating the finite jump in the function. Here the error is
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Error in the Analytic Case a(6) = g(cose +1)

04 Ly error
—— Ly error
-1 — L error

-2 4

-3

-4

Logarithm Base 10 of the Error

-7

-8

0 20 40 60 80 100
Number of Sample Points

Figure 6: Error Convergence for Analytic, Low Sensitivity f,

measured as 3
e = ||dg(f(9), F(O)]]p
where p = L4, Lo, L.

For each number of sample points, ¢, we selected a fixed length scale § that depended
on the reciprocal of the number of sample points ¢. As the number of sample points ¢
increase, the error in the £y, £, and L., norms decreases as the number of sample points
[ increases. In the analytic case with low sensitivity to perturbations, we can expect the
fastest convergence in the error to the lowest values. On a logarithm base 10 scale, the error
in approximating the subspace-valued map f, converges linearly (cf. Figure 6).

4.3 Anemometer

Now we move to a larger problem, beginning with a LTT of order greater than 20000, namely
29008. A realization of the LTI is given by system matrices E, A, B, and C. The data we
begin with consists of matrices A; and A;. We define the system matrix A in terms of a
parameter p € [0,1] in the following way,

A=p(A1) + (1 - p)(4)

We wish to use GPS to approximate the mapping from p to the bases computed to perform
model reduction for each of the methods explored. In the sections below, we will explain
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how samples were generated for each case, check any necessary conditions to ensure GPS
is applicable, and use our sample data to create a GPS model and predict the subspace-
mapping. We will also analyze how many samples are necessary to get good predictions as
well as provide numerical results on sensitivity of the subspace-mapping when the conditions
for GPS to work well are violated or nearly violated.

4.3.1 Generating a Sample Dataset Via Rational Krylov Interpolation

Using Rational Krylov interpolation, we generated left and right modeling subspaces with
dimension k = 20. Both modeling subspaces were computed by choosing ten complex shift
frequencies at which to interpolate the transfer function H(s) = CT(sE — A)™'B of the
system. For each value of the parameter p, the vectors giving a basis to the left modeling
subspace were computed as (sE— A) ™! B for each of the ten chosen complex shift frequencies.
Similarly, to compute the vectors giving a basis to the right modeling subspace, we computed
(sE— A)~TCT for each of the ten chosen frequencies. To generate a real set of basis vectors,
the real part of the vector was taken as one basis vector and the imaginary part of the
computed vector was taken as another basis vector. Hence, given 10 frequencies at which
to interpolate the transfer function, we arrive at a basis of dimension 20. To generate an
orthonormal set of basis vectors we normalized each of vectors and computed the singular
value decomposition of the matrix of basis vectors for the left and right modeling subspaces,
respectively. We took the top 20 left singular vectors as orthonormal representations of the
respective subspaces they span.

4.3.2 Predicting Subspace-Valued Mappings Computed Via Rational Krylov

We predicted the subspace-valued map given by Rational Krylov interpolation with two real
shifts {0,10%} so that k = 2, two imaginary shifts +10% so that k¥ = 2, and for 20 imaginary
shift frequencies {£j * 10%}2, so that k = 20.

For 50 evenly spaced values of the parameter p between 0 and 1, we generated a basis
to the left and right modeling subspaces, respectively using rational krylov interpolation
as discussed above. We selected 10 of the values and corresponding bases as target points
for which we wanted to predict the subspace mapping using GPS. To generate the set of
target values for which to predict the mapping, we selected every modulo 5 point of the
50 evenly spaced points on the interval from (0, 1). We used the remaining 40 points and
corresponding bases for training. We predicted the mapping from the parameter p to the
left modeling subspace and the mapping from the parameter to the right modeling subspace
separately. Although information is lost in predicting the mappings separately, there is
currently no methodology for using GPS to predict the mapping from a parameter p to a
tuple of subspaces, i.e., the mapping

fip—= (VW)

The error converges linearly for each of the cases explored.
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GPS prediction of RK bases: real shifts, k = 2
1e+00
— MAE
— RMSE
X ——— Max Error
1e-01 -

1e-02 -

1e-05

1e-06 -

| I I I
5 10 15 20 25

sample size

Figure 7: Error Convergence in Predicting the Subspace-Valued Map given by Rational
Krylov Interpolation for k£ = 2 Real Shifts
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GPS prediction of RK bases: imaginary shifts, k = 2
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Figure 8: Error Convergence in Predicting the Subspace-Valued Map given by Rational
Krylov Interpolation for k£ = 2 Imaginary Shifts
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Figure 9: Error Convergence in Predicting the Subspace-Valued Map given by Rational
Krylov Interpolation for £ = 20 Imaginary Shifts
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4.3.3 Predicting Subspace-Valued Mappings Computed via Balanced Trunca-
tion

Similar to the Rational Krylov, we want to create sample points consisting of a value of p
and a basis for our reduced system. However, we now have to check the Hankel Singular
Values condition from Theorem 6, o4 (6) > o441(6), to ensure that the projection is smooth.
We will verify this numerically by computing the Hankel singular values for a sample of
values of p. We chose to compute 21 samples for evenly spaced values of p on [0, 1]. We will
reduce the system to order k, such that the top k Hankel singular values do not cross over
our parameter space. The following plot is of the top 15 Hankel singular values over the
parameter space. In the plot, we take the logarithm of the Hankel singular value to make
the differences visible.

Log of HSVs as function of p

0 0.2 0.4 0.6 0.8 1
P

It is clear that some of the Hankel singular values that we are plotting crossing over our
parameter space as there are apparent points where the singular values jump. However,
the top four Hankel singular values do not appear to cross over the parameter space and
therefore the transformation that reduces the system to order 4 should be C* according to
Theorem 6. For each of the values of p that we have plotted Hankel singular values we record
the matrices V' and W that reduce the system to order 4, these are matrices are basis for the
subspaces that we want to apply GPS prediction to. As mentioned for the Rational Krylov,
we apply GPS to the left transformations, V', and right transformations, W, separately.
The error converges linearly in the case where £ = 5 but as the persistent spectral gap
assumption is relaxed (cf. Figure 11 too see the singular value crossings), the error fails to
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Figure 10: Error Convergence for GPS Prediction of the Subspace-valued Mapping given by
Balanced Truncation
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Figure 11: Hankel Singular Value Plot

converge. In the case where £ = 6, we no longer have a persistent spectral gap between
the sixth and seventh largest Hankel singular values. Therefore, convergence is worst in the
case k = 6. In the case k = 7, the spectral gap condition is satisfied but its convergence is
worse than the k = 5 case, which can be explained, in part, by the diminishing spectral gap
as the parameter approaches 0.5 (cf. Figure 11). This demonstrates the importance of the
spectral gap assumption in assuring the accuracy of GPS predictions when using Balanced
Truncation.

The convergence is best for the Rational Krylov case, illustrating that the bases con-
structed through Rational Krylov Interpolation preserve smoothness structure for arbitrary
differentiability class, while with Balanced Truncation we can only show this for continuous
and analytic functions.

5 Conclusion

In this paper, we have shown various smoothness guarantees for classical methods of reduced
order modeling when applied to LTI systems as functions of a parameter space © C R%. For
any given differentiability class (C* for € ZsoU{oo,w}) of system matrices as functions of
the parameter # € O, bases constructed through Rational Krylov Interpolation preserve this
underlying differentiability class as functions of #. This also holds for Structured Rational
Krylov Interpolation, from which the result holds for second-order Rational Krylov as a spe-
cial case of the above. We have also shown that bases constructed via Balanced Truncation
are C* functions of the parameter 6 for {0,w}. Putting this all together, we have demon-
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strated that GPS will work well in approximating any mapping from a parameter 6 to the
bases needed for model order reduction when the individual model order reduction methods
used in building the mapping are smooth functions of . These guarantees on smoothness
enable faster computations speeds that can allow for increased sample sizes and improved
prediction accuracy.
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Appendix A: Perturbation Theory Used for Proofs of
Smoothness

Theorem 9 (Kato (1930), Thm 5.1, Sec 5.7). Let A(0) : C? — M,(C) be continuous at
0 = 0. The unordered n-tuple of repeated eigenvalues s = (N;)ien of A is continuous at
0 = 0. For any eigenvalue \ of A(0) with algebraic multiplicity 1, let T C C be a closed
curve enclosing X but no other eigenvalues of A(0). For sufficiently small neighborhoods
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of the origin in C¢, the number of repeated eigenvalues of A(0) equals I; the \-group is
the unordered n-tuple of these repeated eigenvalues. Total eigenspace associated with the
A-group is the sum of the eigenspaces associated with the eigenvalues in the A-group, which
is continuous at @ = 0.

Theorem 10 (IKato (1980), Sec 5.8). The unordered n-tuple of repeated eigenvalues s =
(Ai)ien as a function of an order-n matriz A is partially differentiable at A = Ay if and
only if Ag is diagonable, and is holomorphic in a neighborhood of Ay if Ag has n distinct
eigenvalues.

Theorem 11 (IKato (1980), Sec 6.4). The unordered n-tuple of repeated eigenvalues s as a
function of an order-n symmetric matrix A is partially continuously differentiable.

Theorem 12 (Chu (1990) Sec 4.1). Let A(0) € C¥(B, M,(C)) be an analytic function where
B is a neighborhood of the origin in C%. For any eigenvalue \ of A(0), which has algebraic
multiplicity 1, let Xo, Yo € M;:,Z((C) be bases of the corresponding right- and left-invariant
subspaces. There exist analytic functions X(0),Y (0) € C¥(By, M;,(C)) in a neighborhood
By C B that are bases of the right and left total eigenspaces associated with the A-group such
that X(0) = Xo and Y (0) = Y.

Theorem 13 (Sun (1990) Thm 3.2). Let A(0) € C¥(B,S(n)) and B(0) € C¥(B,S54(n)) be
analytic functions, where B is a neighborhood of the origin in R%, S(n) is the set of symmetric
order-n matrices, and S, (n) is the set of symmetric positive definite order-n matrices. For
any l-multiple eigenvalue \ of the generalized eigenvalue problem (GEVP) Ax = ABx at
6 =0, let X € M} (R) be a basis of the corresponding eigenspace such that X A(0)Xo = AL
and X{B(0)Xog = L. There exists an analytic function X(0) € C“(By, M}, (R)) in a
neighborhood By C B that is a basis of the total eigenspace associated with the \-group such
that X(0) = X.
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