
Solution Booklet

DMM 2022

1 Power Round

The theme is Borda Score and Elections. There are a total of 60 points for this round. Throughout
the problem, ties are broken arbitrarily (you cannot break ties to your favor).

1.1 Borda Score in Single-Winner Elections

The Duke University Math Union (DUMU) is running an election for officers! There are three
voters: Alice, Bob, and Cady, and three candidates: Xavier, Yisa, and Zack. We want to select a
single winner. Each voter ranks the three candidates as follows:

Alice : Xavier > Yisa > Zack,

Bob : Zack > Xavier > Yisa,

Cady : Yisa > Xavier > Zack,

This means, for instance, Alice prefers Xavier the most and Zack the least. In this election, one
might intuitively conclude that Xavier, who has the highest average rank, should win. The DUMU
executive board wants to formalize this intuition, so they decide to select the candidate with the
smallest Borda score.

The definition for Borda score is straightforward: the Borda score of a candidate c for a voter v is
simply the rank of c in v’s ranking, and the Borda score of c is simply her average rank. In this
example, the Borda score of Zack for both Alice and Cady are 3, and 1 for Bob. Hence, the Borda
score of Zack is (1 + 3 + 3)/3 = 7

3
.

Problem 1: (4 points total)

(a) (2 points) Similarly compute the Borda score for Xavier and Yisa, and explain why Xavier
wins under Borda score.

Solution. Borda score for Xavier is (1+2+2)/3 = 5
3
, and the Borda score for Yisa is (1+2+3)/3 =

2. Xavier wins under Borda score because he has the smallest Borda score.

(b) (2 points) If we add one more voter, is it possible for Yisa to win? Prove your answer.

Solution. Yes. If the preference of the fourth voter is Yisa > Zack > Xavier, then Yisa wins.

Going beyond this example, we explore some properties of Borda score.

Problem 2: (6 points total)
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(a) (2 points) If a candidate c is ranked first by more than half of the votes in an election, does c
necessarily win under Borda score? Prove your answer.

Solution. No. Consider the following election with five voters v1, v2, v3, v4, v5 and four candidates
c1, c2, c3, c4, where the preferences of the voters for the candidates are

v1 : c1 > c2 > c3 > c4,

v2 : c1 > c2 > c3 > c4,

v3 : c1 > c2 > c3 > c4,

v4 : c4 > c2 > c3 > c1,

v5 : c4 > c2 > c3 > c1.

Then, even though c1 is ranked first by more than half of the votes, c2 wins the election.

(b) (2 points) Suppose c wins under Borda score in an election. If we improve the position of c in
some votes and leave everything else the same (i.e. if we exclude c, the rankings remain the same
after the change), does c still win? Prove your answer.

Solution. Yes, because the Borda score of c strictly decreases while the Borda score of other
candidates won’t decrease. Thus, c still wins.

(c) (2 points) Suppose c wins under Borda score in an election. We then change votes in such a
way that for each vote, if a candidate w was ranked below c originally, w is still ranked below c in
the new vote. Does c still win under the new votes? Prove your answer.

Solution. No. Consider the same election as in (a). If we change the votes of v4 and v5 such
that the preferences of both voters become c4 > c2 > c1 > c3, then c1 would win the election.

1.2 Borda Score in Multi-Winner Elections

More generally, let V denote the set of voters and C denote the set of candidates. Suppose there
are n voters and m candidates, i.e. |V| = n and |C| = m. Let rv(c) denote the Borda score of
candidate c for voter v.

In multi-winner elections, we select a set of candidates T , which we call a committee, instead of a
single candidate. The Borda score of T for a voter v is rv(T ) = minc∈T rv(c), and the Borda score
of T is rV(T ) =

1
n

∑
v∈V rv(T ). To interpret this score, for each voter, we consider the candidate

with the smallest Borda score; then, we take the sum of these scores, and average it over all voters.

Problem 3: (10 points total)

(a) (2 points) Consider the following election, where we have 5 voters V = {v1, . . . , v5} and 5
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candidates C = {c1, . . . , c5}, where the preferences of the voters for the candidates are

v1 : c1 > c2 > c3 > c4 > c5,

v2 : c2 > c1 > c4 > c3 > c5,

v3 : c5 > c2 > c1 > c3 > c4,

v4 : c3 > c4 > c2 > c5 > c1,

v5 : c4 > c1 > c2 > c3 > c5.

Find the committee of size 2 with the smallest Borda score, and compute its Borda score.

Solution. The committee with the smallest Borda score is {c2, c4}, whose Borda score is (2 +
1 + 2 + 2 + 1)/5 = 8

5
.

(b) (3 points) Given an election, let T ∗
k denote the committee with the smallest Borda score of size

k. Is it necessarily true that T ∗
k ⊂ T ∗

k+1? Prove your answer.

Solution. No. Consider the election given in the solution for Problem 2(a). The committee of
size 1 with the smallest Borda score is {c2}. However, the committee of size 2 with the smallest
Borda score is {c1, c4}. Hence, we do not necessarily have T ∗

k ⊂ T ∗
k+1.

(c) (5 points) If we select k candidates uniformly at random from V to form a committee T , what
is E[rV(T )], i.e. the expected value of the Borda score of T? Express your answer in terms of
n,m, k, and prove your answer.

Solution. We show that E[rV(T )] =
m+1
k+1

. Mark m + 1 points on a circle. Pick a subset of
k + 1 points uniformly at random, and then choose one point P of these k + 1 as the cut-off
point uniformly at random. Starting from P and going clockwise, mark the next point as the
candidate with rank 1, and the point after that as the candidate with rank 2, and so on, until the
last point which is marked as the candidate with rank m. The picked subset comprises P and a
uniformly random size-k subset of C. By symmetry, the expected clockwise distance going from
the tth-smallest ranked chosen candidate to the (t + 1)st is the same for every t ∈ {0, 1, . . . , k}, if
we view P as simultaneously the 0th and the (k+1)st smallest. Since these k+1 distances sum to
m+ 1, all of them should be m+1

k+1
. In particular, we have E[rV(T )] =

m+1
k+1

.

1.3 Finding a Good Committee

In practice, we often find a good committee with the following procedure: pick candidates in k
rounds, during which we build sets ∅ = T0 ⊊ T1 ⊊ · · · ⊊ Tk, and declare Tk as the selected
committee. In the jth round, we pick candidate cj ∈ C \ Tj−1 that minimizes rV(Tj−1 ∪ {cj}). In
other words, we greedily pick the candidate that minimizes the Borda score in each round. We
denote this procedure by Greedy.

In this section, we explore some properties of Greedy.

Problem 4: (10 points total)
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(a) (2 points) For k = 3, compute the committee that Greedy produces in the election given in
Problem 3(a).

Solution. The committee that Greedy produces is {c1, c2, c4}.

(b) (3 points) Does Greedy always produce the optimal committee, i.e. the committee with the
smallest Borda score? Prove your answer.

Solution. No. Consider the election given in the solution for Problem 2(a). The committee of
size 2 with the smallest Borda score is {c1, c4}. However, Greedy produces {c1, c2}.

(c) (5 points) Recall that Tj is the committee produced by Greedy after j rounds, rv(Tj) is the
Borda score of Tj for voter v, and rV(Tj) is the Borda score of Tj. Prove that

rV(Tj)− rV(Tj+1) ≥
∑

v∈V rv(Tj)(rv(Tj)− 1)

2n(m− j)
.

Solution. For a candidate c /∈ Tj, define ∆c := rV(Tj)− rV(Tj ∪ {c}), i.e. the current marginal
contribution of c to the 1-Borda score. Taking the sum of ∆c over c /∈ Tj:

∑
c∈C\Tj

∆c =
1

n

∑
v∈V

rv(Tj)−1∑
j=1

j =

∑
v∈V rv(Tj)(rv(Tj)− 1)

2n
.

Greedy chooses c∗ = argmaxc∆c at the (j + 1)st iteration, giving us

rV(Tj)− rV(Tj+1) = ∆c∗ ≥
1

m− j

∑
c∈C\Tj

∆c =

∑
v∈V rv(Tj)(rv(Tj)− 1)

2n(m− j)
.

In the following, we investigate theoretical guarantees on the quality of the committee produced by
Greedy. You can use the conclusion from Problem 4(c) even if you haven’t solved it. Complete
proofs to the Problem 5 can be hard, and partial credits will be offered to useful observations and
reasonable attempts. Write down whatever you think can take you closer to the solution!

Let Rand(k) denote the answer of Problem 3(c), i.e. the expected Borda score of a randomly
selected committee of size k. Recall that Tk is the committee produced by Greedy after k rounds.

Problem 5: (20 points total)

(a) (15 points) Show that, for any election, we have

rV(Tk) ≤ 2 ·Rand(k).
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Solution. Since Rand(k) = m+1
k+1

, we actually want to prove rV(Tk) ≤ 2 · m+1
k+1

. We prove by
induction. The base case clearly holds. Now suppose that the claim holds for some k − 1 and we
will prove that it also holds for k. By induction hypothesis, we have:

rV(Tk−1) ≤ 2 · m+ 1

k
.

If rV(Tk−1) ≤ 2 · m+1
k+1

, then rV(Tk) ≤ rV(Tk−1) ≤ 2 · m+1
k+1

finishes the proof. Thus, we only need to
consider the following case:

2 · m+ 1

k + 1
< rV(Tk−1) ≤ 2 · m+ 1

k
.

We now have the following, where the first inequality is by the conclusion from Problem 4(c) and
second by Cauchy-Schwarz inequality:

rV(Tk−1)− rV(Tk) ≥
∑

v∈V rv(Tk−1)(rv(Tk−1)− 1)

2n(m− k + 1)

≥
1
n
(
∑

v∈V rv(Tk−1))
2 −

∑
v∈V rv(Tk−1)

2n(m− k + 1)

=
(
∑

v∈V rv(Tk−1))
2

2n2(m+ 1)
· m+ 1

m− k + 1
·
∑

v∈V(rv(Tk−1)− 1)∑
v∈V rv(Tk−1)

.

Since rV(Tk−1) ≥ 2 · m+1
k+1

by assumption, we have:

m+ 1

m− k + 1
·
∑

v∈V(rv(Tk−1)− 1)∑
v∈V rv(Tk−1)

≥ m+ 1

m− k + 1
·
2 · m+1

k+1
− 1

2 · m+1
k+1

=
2(m+ 1)− k − 1

2(m+ 1)− 2k
≥ 1.

Combining the previous two inequalities, we therefore have:

rV(Tk−1)− rV(Tk) ≥
(
∑

v∈V rv(Tk−1))
2

2n2(m+ 1)
=

r2V(Tk−1)

2(m+ 1)
,

which is equivalent to:

rV(Tk) ≤ − 1

2(m+ 1)
r2V(Tk−1) + rV(Tk−1).

Notice that the right hand side is a quadratic function in rV(Tk−1), which is monotonically in-
creasing for rV(Tk−1) ≤ m + 1. Since rV(Tk−1) ≤ 2 · m+1

k
≤ m + 1, the right hand side reaches its

maximum at 2 · m+1
k

. Thus, we have:

rV(Tk) ≤ − 1

2(m+ 1)
·
(
2(m+ 1)

k

)2

+
2(m+ 1)

k
≤ 2(m+ 1)

k + 1
,
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which concludes our induction.

(b) (5 points) Show that there exists an instance such that

rV(Tk) > Rand(k).

(Hint: You want to show that with appropriate choice of n,m, k, and rankings of voters for
candidates, this inequality is possible.)

Solution. Take m to be a power of 2 that is large enough, n = (m − 1)!, and k = 2. Suppose
the candidates are {c1, . . . , cm}. c1 ranks at the (m2 )

th place for every voter, and any pair of voters
have different preferences on other candidates. Greedy chooses candidate 1 in the first round,
and without loss of generality, we assume that Greedy chooses candidate 2 in the second round;
i.e. Tk = {c1, c2}. The Borda score of this committee is 3

8
m, while Rand(k) = 1

3
(m+ 1). Since m

is large enough, we have rV(Tk) > Rand(k). in this instance.

1.4 Generalization: s-Borda Score

One commonly used generalization of Borda Score is s-Borda score. In this section, we use rV(T )
to denote the s-Borda score of T instead of the usual Borda score, which is defined by

rV(T ) =
1

n

∑
v∈V

(
min

Q⊆T,|Q|=s

∑
c∈Q

rv(c)

)
.

Here, rv(c) still denotes the Borda score of c for v, which is the rank of c in v’s ranking.

Problem 6: (10 points total)

(a) (3 points) Interpret this definition in plain English.

Solution. For each voter, consider the s candidates in T whose Borda score is the smallest. Now,
take the sum of these scores, and average it over all the voters.

(b) (2 points) For s = 2, compute the committee of size 3 with the smallest s-Borda score in the
election given in Problem 3(a).

Solution. The committee with the smallest s-Borda score is {c1, c2, c4}.

(c) (5 points) If we select k candidates uniformly at random from V to form a committee T , what
is E[rV(T )], i.e. the expected value of the s-Borda score of T? Prove your answer.

Solution. The proof for Problem 3(c) actually shows that E[rV(T )] =
s(s+1)

2
· m+1

k+1
.
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2 Team Round

1. The serpent of fire and the serpent of ice play a game. Since the serpent of ice loves the
lucky number 6, he will roll a fair 6-sided die with faces numbered 1 through 6. The serpent
of fire will pay him log10 x, where x is the number he rolls. The serpent of ice rolls the die 6
times. His expected total amount of winnings across the 6 rounds is k. Find 10k.

Solution. The expected winnings for one roll of the die is

1

6
(log10 1 + log10 2 + · · ·+ log10 6) =

log 6!

6
.

Hence, we have k = log10 6! and 10k = 10log10 6! = 6! = 720 .

2. Let a = log3 5, b = log3 4, c = − log3 20, evaluate
a2+b2

a2+b2+ab
+ b2+c2

b2+c2+bc
+ c2+a2

c2+a2+ca
.

Solution. We can easily verify that a+b+c = 0. Hence, a2+b2+ab = 1
2
[a2+b2+(a+b)2] =

1
2
(a2 + b2 + c2). Similarly, we have b2 + c2 + bc = c2 + a2 + ca = 1

2
(a2 + b2 + c2). Therefore,

the required sum is (a2+b2)+(b2+c2)+(c2+a2)
1
2
(a2+b2+c2)

= 4 .

3. Let △ABC be an isosceles obtuse triangle with AB = AC and circumcenter O. The circle
with diameter AO meets BC at pointsX, Y , whereX is closer to B. SupposeXB = Y C = 4,
XY = 6, and the area of △ABC is m

√
n for positive integers m and n, where n does not

contain any square factors. Find m+ n.

Solution. Let M be the intersection of BC and AO. Suppose AM = x and MO = y.
Applying Pythagorean theorem on △OMC, we get (x + y)2 = y2 + 49. Also, we have
xy = XM ·MY = 9. Solving these equations gives x =

√
31. Hence, the area of △ABC is

7
√
31, giving m+ n = 38 .

4. Alice is not sure what to have for dinner, so she uses a fair 6-sided die to decide. She keeps
rolling, and if she gets all the even numbers (i.e. getting all of 2, 4, 6) before getting any
odd number, she will reward herself with McDonald’s. Find the probability that Alice could
have McDonald’s for dinner.

Solution. The probability that Alice gets three evens for the first three distinct numbers
is equal to the probability that she gets any three distinct numbers. Hence, the probability

that Alice could have McDonald’s for dinner is 1

(63)
=

1

20
.

5. How many distinct ways are there to split 50 apples, 50 oranges, 50 bananas into two boxes,
such that the products of the number of apples, oranges, and bananas in each box are non-
zero and equal?
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Solution. Let 25+ a (resp. 25+ b, 25+ c) and 25− a (resp. 25− b, 25− c) be the number
of apples (resp. oranges, bananas) in box 1 and 2 respectively, where −24 ≤ a, b, c ≤ 24. We
have (25+a)(25+b)(25+c) = (25−a)(25−b)(25−c), which simplifies to abc = 54(a+b+c).
Hence, at least one of a, b, c must be 0. This implies a + b + c = abc = 0. If a = 0, then
b = −c, and we have 49 choices for b and c. Similarly, we have 49 choices each for b = 0 and
c = 0. The case of (a, b, c) = (0, 0, 0) is triple counted, so the answer is 49× 3− 2 = 145 .

6. Sujay and Rishabh are taking turns marking lattice points within a square board in the
Cartesian plane with opposite vertices (1, 1), (n, n) for some constant n. Sujay loses when
the two-point pattern P below shows up:

That is, Sujay loses when there exists a pair of points (x, y) and (x + 2, y + 1). He and
Rishabh stop marking points when the pattern P appears on the board. If Rishabh goes
first, let S be the set of all integers 3 ≤ n ≤ 100 such that Rishabh has a strategy to always
trick Sujay into being the one who creates P . Find the sum of all elements of S.

Solution. We claim that Rishabh has a winning strategy for odd n only. Firstly, if n is even,
then Sujay should perform the same moves as Rishabh but rotated 180◦ about the center of
the region. It is clear that this is always a valid move. Since P is rotationally symmetric,
Sujay can only complete the pattern if Rishabh completes the pattern right before. Thus,
Sujay wins in this case.

For odd n, Rishabh should first mark the center of the region. Since the rotation of the
center point is itself, Sujay cannot use his previous strategy and must arbitrarily mark a
point. Rishabh can then mirror Sujay’s moves and will therefore win using similar logic as
in the even n case. Thus, the answer is 3 + 5 + . . .+ 99 = 2499 .

7. Let a be the shortest distance between the origin (0, 0) and the graph of y3 = x(6y−x2)− 8.
Find ⌊a2⌋. (⌊x⌋ is the largest integer not exceeding x)

Solution. From the equation, we obtain x3 + y3 + 23 − 2 · 3xy = 0. Using the equality
a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca), we get (x+ y+2)(x2 + y2 +4−
2x−2y−xy) = 0. Noting that x2+y2+4−2x−2y−xy = 1

2
(x−y)2+ 1

2
(x−2)2+ 1

2
(y−2)2,

we have either x+ y+2 = 0 or x = y = 2. The shortest distance from (0, 0) to x+ y+2 = 0
is
√
2; the distance from (0, 0) to (2, 2) is

√
8. Hence, the answer is 2 .

8. Find all real solutions to the following equation:

2
√
2x2 + x−

√
1− x2 −

√
2 = 0.

8
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Solution. Let x = sin θ, where θ ∈ [−π
2
, π
2
]. Then, we have

2
√
2 sin2 θ + sin θ − cos θ −

√
2 = 0,

which simplifies to

(sin θ − cos θ)
[
2 sin

(
θ +

π

4

)
+ 1
]
= 0.

If sin θ−cos θ = 0, we have θ = π
4
and x =

√
2
2
. If sin

(
θ + π

4

)
= −1

2
, we have θ = − 5

12
π and x =

−
√
6+

√
2

4
. Hence, all real solutions to the given equation are x =

√
2

2
or x = −

√
6 +

√
2

4
.

9. Given the expression S = (x4 − x)(x2 − x3) for x = cos 2π
5
+ i sin 2π

5
, find the value of S2.

Solution. The given value of x is a fifth root of unity, with x5 = 1. This allows us to
expand S and divide out factors of x5:

S = (x4 − x)(x2 − x3) = x6 − x7 − x3 + x4 = x4 − x3 − x2 + x.

Squaring this expression yields

S2 = (x4 − x3 − x2 + x)2 = x8 + x6 + x4 + x2 + 2(−x7 − x6 + x5 + x5 − x4 − x3).

We again use the fact that x5 = 1 to divide out factors of x5, obtaining

S2 = x3 + x+ x4 + x2 + 2(−x2 − x+ 2− x4 − x3)

= 4− (x+ x2 + x3 + x4).

Factoring x5 − 1 = 0, we obtain (x− 1)(x4 + x3 + x2 + x+ 1) = 0. Division by x− 1 yields
x4 + x3 + x2 + x = −1, which can be plugged into the expression for S2 to obtain

S2 = 4− (x+ x2 + x3 + x4) = 4− (−1) = 5 .

10. In a 32 team single-elimination rock-paper-scissors tournament, the teams are numbered from
1 to 32. Each team is guaranteed (through incredible rock-paper-scissors skill) to win any
match against a team with a higher number than it, and therefore will lose to any team with
a lower number. Each round, teams who have not lost yet are randomly paired with other
teams, and the losers of each match are eliminated. After the 5 rounds of the tournament,
the team that won all 5 rounds is ranked 1st, the team that lost the 5th round is ranked
2nd, and the two teams that lost the 4th round play each other for 3rd and 4th place. What
is the probability that the teams numbered 1, 2, 3, and 4 are ranked 1st, 2nd, 3rd, and 4th
respectively? If the probability is m

n
for relatively prime integers m and n, find m.

9
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Solution. The first 3 rounds of the tournament are equivalent to randomly dividing all 32
teams into four groups of 8 and selecting the best of each group to advance to the semifinals.
For the top 4 teams to be ranked correctly, they all must make it to the semifinals and
therefore must all be in different groups. Imagine placing the teams into the four groups in
order: team 1 is placed first, so there is a 32

32
chance they are placed in a different group than

the others; team 2 is placed second with a 24
31

chance of avoiding being in the same group as
team 1; team 3 is placed third with a 16

30
chance of avoiding team 1 and team 2’s groups; and

team 4 has a 8
29

chance of being placed correctly.

After making it to the semifinals, the top 4 teams must still be matched correctly to be
ranked in the right order. Team 1 will certainly win the semifinals and finals, while team
4 will lose the semifinals and the match for 3rd place. Team 2 and 3, however, must be
paired correctly to ensure that team 2 advances to the finals instead of team 3. This has a
2
3
chance of happening, because team 2 will be randomly paired with team 1, 3, or 4 for the

semifinals, and will make it to the finals if paired against team 3 or 4. All in all, this gives a
total probability of the top 4 teams being ranked correctly of

24

31
· 16
30

· 8

29
· 2
3
=

1024

13485
,

the numerator of which is 1024 .

3 Individual Round

1. Sujay sees a shooting star go across the night sky, and took a picture of it. The shooting
star consists of a star body, which is bounded by four quarter-circle arcs, and a triangular
tail. Suppose AB = 2, AC = 4. Let the area of the shooting star be X. If 6X = a− bπ for
positive integers a, b, find a+ b.

A

B

C

Solution. We have 6X = 6
(
4 + 2− π

2

)
= 36− 3π. Hence, a+ b = 39 .

2. Assuming that each distinct arrangement of the letters in DISCUSSIONS is equally likely to
occur, what is the probability that a random arrangement of the letters in DISCUSSIONS
has all the S’s together?

10
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Solution. The total number of arrangements is 11!
2!4!

, and the number of arrangements with
S’s together is 8!

2!
. Hence, the probability that a random arrangements has all the S’s together

is 8!/2!
11!/(2!·4!) =

4

165
.

3. Evaluate
(1 + 2022)(1 + 20222)(1 + 20224) · · · (1 + 20222

2022
)

1 + 2022 + 20222 + . . .+ 202222023−1
.

Solution. Multiply both the numerator and the denominator by (2022− 1). Observe that
(x− 1)(x+1)(x2 +1) · · · (x2n +1) = x2n+1 − 1 and (x− 1)(1+ x+ x2 + · · ·+ xn) = xn+1 − 1,
we get the answer is 1 .

4. Dr. Kraines has 27 unit cubes, each of which has one side painted red while the other five
are white. If he assembles his cubes into one 3× 3× 3 cube by placing each unit cube in a
random orientation, what is the probability that the entire surface of the cube will be white,
with no red faces visible? If the answer is 2a3b5c for integers a, b, c, find |a+ b+ c|.

Solution. Each of the 8 corner pieces has a 1
2
probability of having only white faces visible,

as 3 of the 6 faces are concealed by other unit cubes. The 12 edge pieces each have a 2
3

probability of having only white faces visible, as 4 of the 6 possible locations for the red face
to be are concealed. Finally, the 6 pieces at the center of a side have a 5

6
chance of being

placed so the 1 visible face is white. This gives a total probabilty of(
1

2

)8

·
(
2

3

)12

·
(
5

6

)6

=
56

31822
,

so the answer is |6− 18− 2| = 14 .

5. Let S be a subset of {1, 2, 3, . . . , 1000, 1001} such that no two elements of S have a difference
of 4 or 7. What is the largest number of elements S can have?

Solution. First consider taking such a subset of {1, 2, . . . , 11}. There can be no disadvan-
tage to including 1 in our subset, so we begin by including 1 and eliminating 5 and 8. Now,
at most one from each pair (2, 9), (3, 7), (4, 11), (6, 10) can be chosen, so no more than 5
elements can be in our subset, with the subset {1, 3, 4, 6, 9} being a possible example of a
subset containing 5 elements.

Taking the complete set from the problem, it can be divided into 91 groups of 11, from each
of which a maximum of 5 elements can be taken by the logic above. This gives an upper
bound of 5·91 = 455 , which is possible by taking S = {x | x ∈ S, x mod 11 ∈ {1, 3, 4, 6, 9}}.

6. George writes the number 1. At each iteration, he removes the number x written and instead
writes either 4x+1 or 8x+1. He does this until x > 1000, after which the game ends. What
is the minimum possible value of the last number George writes?

11
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Solution. We will consider every number George writes in binary. In binary, turning x
into 4x+1 is equivalent to concatenating 01 right after x. Similarly, turning x into 8x+1 is
equivalent to concatenating 001 right after x. Essentially, George starts with 1, and at each
step, he appends either 01 or 001 right after x.

Note that it is impossible to use only 10 digits. If we use only 10 digits, the second digit
of x must be 0, making it smaller than 1000. Thus, the final number must have at least 11
digits. The first digit of x must be 1, and we want to fill the rest of the 10 digits with 01
and 001. Suppose we use a 01’s and b 001’s. Then, we have 2a+ 3b = 10, the only solution
of which is a = b = 2. In order to minimize the value of x, we need to place 01’s as right
as possible and place 001’s as left as possible. Thus, the binary representation of the final
answer is 10010010101, which equals 1173 .

7. List all positive integer ordered pairs (a, b) satisfying a4 + 4b4 = 281 · 61.

Solution. By Sophie Germain, we can write

a4 + 4b4 = ((a+ b)2 + b2)((a− b)2 + b2) = 61 · 281.

Since a, b > 0, the first term is greater than the second term so we have two cases. If
(a− b)2 + b2 = 1, then either a− b = 0, b = 1, or a− b = 1, b = 0, or a− b = −1, b = 0. None
of them satisfies the given equation, so (a− b)2 + b2 = 61 and (a+ b)2 + b2 = 281. The only
two square numbers that sum to 61 are 25 and 36, so either a−b = 5, b = 6 or a−b = 6, b = 5
which implies that a = 11, b = 5, 6. Testing these two pairs on (a + b)2 + b2 = 281 gives

(a, b) = (11, 5) .

8. Karthik the farmer is trying to protect his crops from a wildfire. Karthik’s land is a 5 × 6
rectangle divided into 30 smaller square plots. The 5 plots on the left edge contain fire, the
5 plots on the right edge contain blueberry trees, and the other 5 × 4 plots of land contain
banana bushes. Fire will repeatedly spread to all squares with bushes or trees that share a
side with a square with fire. How many ways can Karthik replace 5 of his 20 plots of banana
bushes with firebreaks so that fire will not consume any of his prized blueberry trees?

Solution. It is clear that each of the 5 rows must have a firebreak, and that the firebreaks
must be at most 1 column away from adjacent firebreaks. Let the second and fifth columns
be edge columns, and let the third and fourth columns be center columns. We proceed by
recursion.

Let Ek be the number of configurations where the firebreaks in the first k rows are at most
1 columns away from each other and the kth firebreak is on an edge column. Likewise, let
Ck be the number of configurations where the firebreaks in the first k rows are at most 1
columns away from each other and the kth firebreak is on a center column. We have the
following recursive formula

Ek = Ek−1 + Ck−1, Ck = Ek−1 + 2Ck−1.

12
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This is true because when we add a firebreak in the kth row and an edge column, the previous
firebreak is either in an edge column or center column. When we add a firebreak in the kth
row and a center column, the previous firebreak is either in an edge column or one of two
center columns. Since E1 = C1 = 2, we can calculate E5 and C5 as follows:

k 1 2 3 4 5
Ek 2 4 10 26 68
Ck 2 6 16 42 110

Thus, our answer is 68+110 = 178 . Note that the terms in the table are actually twice the
terms of the Fibonacci sequence which can be proven by induction.

9. Find a0 ∈ R such that the sequence {an}∞n=0 defined by an+1 = −3an+2n is strictly increasing.

Solution. Dividing both sides of the recurrence relation by 2n+1 gives

an+1

2n+1
= −3

2
· an
2n

+
1

2
.

Letting bn = an
2n

gives bn+1 = −3
2
bn + 1

2
, which is equivalent to bn+1 − 1

5
= −3

2

(
bn − 1

5

)
.

Hence, we get bn − 1
5
= (b0 − 1

5
)(−3

2
)n = (a0 − 1

5
)(−3

2
)n. Therefore, we have an = 2n · bn =

(−3)n[(a0 − 1
5
) + 1

5
(−2

3
)n]. Since {an}∞n=0 is strictly increasing, we must have a0 − 1

5
= 0, i.e.

a0 =
1

5
.

10. Jonathan is playing with his life savings. He lines up a penny, nickel, dime, quarter, and
half-dollar from left to right. At each step, Jonathan takes the leftmost coin at position 1
and uniformly chooses a position 2 ≤ k ≤ 5. He then moves the coin to position k, shifting
all coins at positions 2 through k leftward. What is the expected number of steps it takes
for the half-dollar to leave and subsequently return to position 5?

Solution. Let Tk denote the expected number of steps required for a coin at position k to
reach position 1. Note that, at each step, the probability of the coin shifting from position
k to k− 1 is 6−k

4
, so we expect that it will take 4

6−k
steps to reach position k− 1. This gives

the recursive formula Tk =
4

6−k
+ Tk−1 with T1 = 0, so we can compute the following:

k 1 2 3 4 5
Tk 0 1 7

3
13
3

25
3

The half-dollar will then take 25
3
steps in expectation to reach position 1. Afterwards, there

is a 1
4
chance that the next step will return the half-dollar to position 5 and a 3

4
chance that

it will be taken elsewhere. This means that it takes 4
1
− 1 = 3 failed trials in expectation

for the half-dollar to successfully return to position 5. Each failed trial is expected to take
1 + 1

3
(T2 + T3 + T4) steps, and the successful trial takes only 1 step to return to position 5.

Thus, the overall expected value is T5 + 3(1 + 1
3
(T2 + T3 + T4)) + 1 = 20 steps.

13
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4 Relay Round

Problem 1

Problem 1.1: A robot is located at 2 on the number line, and it needs to reach either 5 or 0.
Every second, there’s a 1

3
chance it breaks down, a 1

3
chance it moves one unit in the positive

direction, and a 1
3
chance it moves one unit in the negative direction. The probability the robot

manages to reach 5 or 0 before breaking down is m
n
, where m and n are coprime. Find n.

Solution. Let Pn for 1 ≤ n ≤ 4 be the probability that starting at point n, the robot will manage
to reach 5 or 0 before breaking down. Then we have the system

P1 =
1

3
+

1

3
P2,

P2 =
1

3
P1 +

1

3
P3,

P3 =
1

3
P2 +

1

3
P4,

P4 =
1

3
P3 +

1

3
,

solving which gives P2 =
1
5
. Hence, n = 5 .

Problem 1.2: Let T = TNYWR. Navya, the fruit ninja, has a bitter feud with watermelon
and strawberries. She can only cut 3 watermelon with one slice or T strawberries with one
slice. Suppose she slices 17 times tomorrow, and let N be the total number of watermelon and
strawberries she cuts tomorrow. How many possible values of N are prime?

Solution. Suppose Navya slices strawberries s times. Then, she cuts

3(17− s) + 5s = 51 + 2s.

Since s ranges from 0 to 17 inclusive, the possible values of N are

51, 53, 55, . . . , 83, 85.

Searching through this list, we see that the primes are

53, 59, 61, 67, 71, 73, 79, 83,

for a total of 8 primes.

Problem 1.3: Let T = TNYWR and f(x) = x5 + 18x4 + 19x3 + 20x2 + 21x+ T . The roots of f
are a, b, c, d and e. Find (a− 1)(b− 1)(c− 1)(d− 1)(e− 1).

Solution. Notice that f(x) = (x − a)(x − b)(x − c)(x − d)(x − e). Hence, we have (a − 1)(b −
1)(c− 1)(d− 1)(e− 1) = −f(1) = −87 .
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Problem 2

Problem 2.1: x, y ∈ R satisfies x
√
y − 1 + y

√
x− 1 = xy. Find x.

Solution. From the problem, we know that x, y > 1. Hence, we suppose x = sec2 α, y = csc2 β,
where 0 < α, β < π

2
. This gives

sec2 α
√

csc2 β − 1 + csc2 β
√
sec2 α− 1 = sec2 α csc2 β,

which simplifies to sin 2α+sin 2β = 2. Hence, we have sin 2α = sin 2β = 1, which gives α = β = π
4
.

Thus, we have x = 2 .

Problem 2.2: Let T = TNYWR. A sequence {an} satisfies that for any m,n ∈ N such that
m ≥ n we have am+n + am−n = 1

T
(a2m + a2n). Given a1 = 1, find the last digit of a2023.

Solution. We observe that

1

2
(a2m + a2m) = a2m + a0 = 2(am + am),

which gives a0 = 0 and a2m = 4am. Then, we can easily show that am = m2 with induction.
Hence, the last digit of a2023 is 9 .

Problem 2.3: Let T = TNYWR. The sequence {an} satisfies a1 = 7 and the recurrence relation

an+1 = Tan + 7.

Find the sum of all values of i such that ai is a divisor of a88.

Solution. We write the numbers in base 9. Then note that

a1 = (7)9, a2 = (77)9, a3 = (777)9, · · ·

This pattern holds because multiplying an by 9 moves the decimal place over when in base 9. So,
in general, an is n sevens in base 9. Now we consider when ai | am for positive integers i ≤ m. To
do so, note that if we use long division, we get that

am ≡ am (mod i) (mod ai),

where we let a0 = 0 for notational purposes. From this, it’s clear that ai | am iff i|m. So, our
answer is the sum of the divisors of 88 = 23 · 11, which is

(1 + 2 + 22 + 23)(1 + 11) = (15)(12) = 180 .
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5 Devil Round

1. Number of undergraduate students at Duke in fall 2021.

Answer: 6789

2. Number of graduate and professional students at Duke in fall 2021.

Answer: 9991

3. Maximum number of people that Duke chapel can hold.

Answer: 1800

4. Height of Duke chapel (in feet).

Answer: 210

5. Number of computer stations in Bostock library.

Answer: 96

6. The maximum prime factor of the year in which Duke was created.

Answer: 37

7. Number of tenured professors at Duke in fall 2021.

Answer: 1650

8. Median age of Duke alumni by summer 2021.

Answer: 47

9. Percentage of undergraduate receiving financial aid.

Answer: 52

10. Percentage of undergraduates that successfully graduate in four years.

Answer: 95

6 Tiebreaker

Problem 1: The sequence {xn} is defined by

xn+1 =

{
2xn − 1, if 1

2
≤ xn < 1

2xn, if 0 ≤ xn < 1
2

where 0 ≤ x0 < 1 and x7 = x0. Find the number of sequences satisfying these conditions.

16



Solution Booklet Page 17

Solution. First, we observe that the sequence {xn} is fully determined once x0 is determined.
Hence, we essentially need to find the number of different choices for x0.

We represent the numbers in binary. Suppose xn = (0.b1b2 · · · )2. If b1 = 1, then we have 1
2
≤ xn < 1

and xn+1 = 2xn − 1 = (0.b2b3 · · · )2. If b1 = 0, then we have 0 ≤ xn < 1
2
and xn+1 = 2xn =

(0.b2b3 · · · )2. Hence, given xn = (0.b1b2 · · · )2, we always have xn+1 = (0.b2b3 · · · )2.

Suppose x0 = (0.a1a2 · · · )2. Then, we have x7 = (0.a8a9 · · · )2. Since x0 = x7, we have ai = ai+7

for all i ∈ N∗. Hence, we only need to count the number of choices for {a1, . . . , a7}. Since we have
2 choices for each of them, we have 27 − 1 = 127 choices in total.

Problem 2: Let M = {1, . . . , 2022}. For any nonempty set X ⊆ M , let aX be the sum of the
maximum and the minimum number of X. Find the average value of aX across all nonempty
subsets X of M .

Solution. For any nonempty subset X of M , let X ′ = {2023 − x | x ∈ X}. Then, X ′ is a
nonempty subset of M as well. Moreover, if X ̸= Y , then X ′ ̸= Y ′. Hence, we can pair up X and
X ′, so that aX + aX′ = 2 · 2023 = 4046 by definition of X ′. The only case in which we can not do
such pairing is when X = X ′. However, we must have aX = 2023 in this case. Hence, the average
value of aX across all nonempty subsets X of M is 2023 .
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