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1 Restatement of the Problem

In an attempt to improve safety and reduce workloads on air traffic controllers,
the Federal Aviation Administration is considering software that would auto-
matically alert controllers to potential collisions between planes.

Any useful algorithm must:

Identify all potential flight-path conflicts in time for the controller to re-
solve them.

Interface with the controller in a way that improves his efficiency or reduces
his workload.

To avoid confusion, we will use the following definitions for ambiguous words.

Plane will always refer to a geometric object defined by the span of two
vectors, e.g. the zy-plane.

Airplane will refer to that wonder of modern technology which we hope
to protect.

FEventual danger will refer to the seriousness of the flight-path conflict that
will develop if an airplane-pair is ignored indefinitely.

Immediate danger will refer to the degree to which a conflict must be dealt
with immediately, in order to avoid disaster.

Danger, when used without a modifier, will refer to some combination or
nonspecific conglomeration of both senses above.

2 Further Considerations

As it seems likely that any worthwhile algorithm must consider all pairs of
airplanes within a given volume of space, we cannot hope for complexity better
than O(n?), where n is the number of airplanes. Thus, since our algorithm needs
to run in real time, it must be able to determine swiftly whether a given pair of
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airplanes present a danger to one another. At the same time, it is not sufficient
to consider only the airplanes’ distance from one another. For example, a pair
of airplanes heading directly at each other from a distance of five miles are in
danger of colliding within about twenty seconds, while two heading away from
each other at a distance of a mere 1500 feet present no danger at all (although
they may have done so in the immediate past).

On a busy day, it may be no help to simply present an air traffic controller
with a list of airplane-pairs which will have flight-path conflicts in the near
future. For example, presenting a simple list of ten problems that will arise
in the next ten minutes to an already-harried controller is likely to frazzle him
even further, possibly leading to reduced efficiency and a greater chance of
disaster. Prioritizing the problems (presumably by some method combining the
proximity and immediacy of the projected encounters) is likely to go a long way
towards reducing this human tendency: the controller now needs worry only
about solving the problems in turn, rather than spend invaluable time trying to
prioritize them himself. Such a prioritization may well improve efficiency, as an
unaided controller would likely solve such pressing problems in the order that
he noticed them, rather than the “correct” order in which the computer would
present them. Thus it would be nice if our algorithm could sensibly rank the
immediate dangers presented by different airplane-pairs.

3 Assumptions and Hypotheses
We make the following assumptions in attacking the problem:

e All collisions between airplanes are equally and fundamentally undesirable.

e A near mid-air collision (sometimes called a near miss) is defined by the
FAA as an incident in which two airplanes pass within 500 feet of one
another.! Near mid-air collisions are undesirable but preferable to actual
collisions.

e The airspace may be represented by a convex subset of R3, in which we
represent the vertical direction by z and orthogonal horizontal directions
by x and y.

e Air-traffic controllers have established protocols to prevent airplanes from
colliding when crossing airspace boundaries in opposite directions.

e We can measure the position and velocity of every airplane in the airspace,
and the errors in these measurements are negligible compared to the effects
of turbulence.

e Every airplane has sufficiently negligible acceleration that linear models
for its movement will make sense over at least the next two minutes unless:

lsee [2]
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— It is accelerating under the direction of the controller, in which case
he has already determined any conflicts which this acceleration may
cause.

— It is taking off, in which case it is not in a part of the airspace used
by cruising airplanes.

— It is attempting to land, in which case it is not in a part of the
airspace used by cruising airplanes.

e All airplanes are capable of accelerating through a 2-minute turn in both
clockwise and counterclockwise directions parallel to the zy-plane.?

e The vast majority of airplanes are traveling within one of a few vertically
well-separated planes parallel to the zy-plane. (These are often called
“cruising altitudes”.)> Two airplanes which are traveling within separate
such planes pose no danger to one another.

e All airplanes are capable of accelerating at a given maximum rate in the
direction of their velocity. (In particular, airplanes do not cruise at their
maximum speed.)

e Two airplanes are said to present an eventual danger when, if their ve-
locities are allowed to go unchanged indefinitely, any of the following will
happen in the future:

— They collide.
— They pass near each other at some time.

— They pass through nearby points in space at nearby times.

Appropriate values of “near” will be discussed briefly in sections 5,7, 8,

and 11.3.

4 Possible Solutions to the Danger Problem

In attempting to determine the danger that two airplanes present one another,
two considerations seem dominant: the proximity they will attain to one an-
other, and the time remaining until they do so. Other considerations, such as
obstacles presented by bad weather, probably cannot be considered except in
the most simplistic of ways: if we attempt to do otherwise, we risk losing the
ability to determine danger in real-time.

We present several potential solutions to this problem. Later sections will
describe them in more detail.

The first is a trivial model which attempts to provide yes or no answers to
the questions “Will the airplanes collide?” and “Will they have a near mid-air
collision?”.

?see [3]
3see [1], 27
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The second is the Probabilistic model, which determines risk based upon the
probabilities of collisions and near misses.

The third is the Close-Approach method. It attempts to measure danger by
calculating the closest approach two airplanes will make to each other, and the
time until it will occur.

The next model is the Space-Time method. It attempts to measure the
danger from the closest approach the airplanes will make in space-time, and the
time until it occurs.

The last model is the Logarithmic Derivative. It attempts to measure the
immediate danger by placing a lower bound on the time until a collision occurs.

5 A Trivial Model

5.1 How it works

The first model assumes that effects such as wind, measurement uncertainty,
or piloting imperfection, which would make an airplane’s actual course deviate
from the linear model given by its current position and velocity, do not exist.

In this situation, the only question that matters is whether there will be a
collision, a near miss, or neither.

Large commercial aircraft often have lengths and wingspans in the neigh-
borhood of 200 feet.* Thus, a collision may occur only if the centers of the
airplanes pass within 200 feet of one another, and a near miss when they pass
within 700 feet. If we can determine how closely the airplanes will pass each
other in the future, we will have an answer to the question above.

Suppose airplanes A and B have position and velocity vectors pa,pp,va,
and vp. Set p = pp — pa and v = vp — v4, the position and velocity of airplane
B relative to airplane A. Then the distance of closest approach is simply the

v
Thus our model predicts a collision if the distance of closest approach 1is less
than 200 feet, and a near miss if it is less than 700 feet. Based on this model, we
are now able to define a measure of the eventual danger as follows: the measure
takes on three discrete values a, 1, and 0 (@ > 1) corresponding to a collision,
a near miss, and no danger. The value of a i1s best determined empirically; we
consider this more in the next model.

altitude from A to v, as in figure 1. Its length is clearly equal to |p|sin§ =

5.2 Strengths and weaknesses

This model is a simple and efficient method of predicting whether a collision or
near miss will occur in the future. However, this model assumes that no uncer-
tainty is present in the environment (so airplanes always travel at a constant
speed in a straight line). This assumption simply does not hold. Airplanes will,
for example, be buffeted by changing winds, and their actual trajectories will

4see [4]
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A p B

Figure 1: The position and velocity vectors of airplane B, relative to airplane

A.

vary significantly and chaotically from those predicted by a linear model. Addi-
tionally, this model only considers the eventual danger resulting from a pair of
airplanes, not how soon an immediate danger will be present. The model may
be extended to rank collisions or near misses based on immediate danger using
the following priority algorithm:

1. collisions within time period t (for example, t = 2 minutes)
2. near misses within time period t

3. collisions within time period 2t

4. near misses within time period 2t

5. collisions within time period 3t

6. etc.

Alternatively, a model may be developed which combines measures of even-
tual danger and temporal considerations into a single measure of immediate
danger. The close-approach model discussed in section 7 is one method by
which this can be achieved.

6 A Probabilistic Simulation Model

6.1 How it works

The probabilistic simulation model expands on the trivial model by taking en-
vironmental uncertainty into account. A C+4 computer program was written:
this program calculates the probability that a given situation will result in a
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collision or near miss, using a Monte Carlo simulation method. To do so, it per-
forms a large number of random trials (each of which may result in a collision,
near miss, or neither). Now let ¢ denote the total number of collisions, let m
denote the total number of near misses, and let n denote the total number of
trials. Then the program calculates the probability of collisions (x) and near
misses (y): x = P(collision) = ¢/n, and y = P(near miss) = m/n. Finally, it
computes a measure of eventual danger: danger = ¢1x + c2y. As in the trivial
model, we set ¢ = 1 and ¢; >> 1.

We now explain the simulation process in more detail. First, rather than
assuming that each plane’s speed and direction are fixed, we assume Gaussian
distributions of these quantities, allowing the user to specify the mean and
standard deviation of each. For each trial, a normally distributed random value
of each quantity is chosen, then both planes’ paths are extrapolated linearly
(using the formula for minimum distance between the two planes as in the
trivial model) to determine whether a collision, near miss, or neither occurs.

Several other methods for representing uncertainty also exist. For example,
each trial could have been divided into a large number of discrete time steps,
with random alterations to each plane’s velocity being performed after each
time step. Alternatively, a more analytical approach could be used to calculate
the probability distribution of each plane’s location as a function of time, than
compute the overlap between these regions. These methods also are potentially
useful, but proved too difficult to implement in the available time. The proba-
bilistic simulation method chosen for this project has several additional advan-
tages over these methods. First, it is relatively simple to calculate the results of
each trial; other methods may be too computation-intensive to allow real-time
simulation of a large number of potential conflict pairs. Second, the amount of
uncertainty present in a plane’s ground speed tends to be significantly higher
than the amount of uncertainty in its path, perhaps because a pilot’s goal is to
fly in a given path at the maximum safe speed. This difference in uncertainty is
evident by comparing the standards for horizontal separation and longitudinal
separation based on time: according to Mahalingam®, two airplanes should not
cross the same point within 15 minutes (this corresponds to about 120 nm), yet
planes in different paths are allowed to remain 3-5 nm apart. Finally, the linear
extrapolation of an initial uncertainty value may be thought of as a "worst case"
in terms of deviation from the mean velocity, since in models with discrete time
steps, total uncertainty is less than sum of the momentary uncertainties due to
the laws of averages. Thus our model errs in the direction of caution, providing
a built-in safety buffer for the simulation results.

6.2 Strengths and weaknesses

The probabilistic simulation model significantly improves upon the trivial model
by accounting for uncertainty in the environment. Rather than simply extrap-
olating the given values to predict whether a collision, near miss, or neither

Ssee [1] 26-7
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occurs, a large number of trials are run with Gaussian distributions centered on
the given values. This allows us to construct a danger measure that, instead
of taking on only a few discrete values, gives intermediate measures based on a
weighted average of these values, allowing us to gain a better idea of the relative
danger present in distinctly different situations.

Like the trivial model, the probabilistic simulation model considers the even-
tual danger (not the immediate danger) of a given situation. Though a minimum
time to collision or near miss is computed, this time is not taken into account
in the final measure of danger. One possible solution would be to design an
alternative danger metric taking this into account. We have chosen instead to
design the simulation program with an optional user-specified maximum time
(so that, if two airplanes do not reach their minimum distance by time t, the
distance at time t is considered instead of the minimum distance). This allows
us to ignore conflicts that occur far in the future, focusing on more immediate
dangers. MICA © states that short term conflict analysis tools which extrap-
olate based on current aircraft trajectories “operate over a short time horizon,
generally less than two minutes”. This suggests that limiting the time horizon
is a reasonable method of dealing with immediate danger under uncertainty.

One notable weakness of this simulation is its reliance on a two dimensional
model of the airspace: the model assumes that the locations of the two airplanes
either have approximately identical altitudes (in which case they are treated as
being in the same z-plane) or substantially different altitudes (in which case the
danger is assumed to be negligible). This creates a problem when the model is
faced with two airplanes with moderate differences in altitude, or when one or
both airplanes change altitude substantially over time, but the simulation could
be extended to deal with these cases with relatively little trouble.

A C++ implementation of this is available in section B.

7 The Close-Approach Method

7.1 How it works

Intuitively, we expect the eventual danger to be inversely related to the closest
approach the airplanes will achieve with each other, and the immediate danger
to be inversely related to the time until that closest approach. Thus, we have,
as a first approximation,

1

(distance of closest approach)®

Eventual danger ~

1

Immediate danger &~ — — - 5
(distance of closest approach)® (time until closest approach)

Since danger would be averted by accelerating the airplanes away from each
other, the extra separation achieved should be proportional to the square of the

bsee [7],p.124
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time during which they are accelerated. Since the time in which the airplanes
can accelerate is bounded by the time until their projected close approach, it
seems reasonable to set § = 2a. As raising to any positive power won’t affect
ordering, we can set f = 2 and @ = 1. Such a simple formula, while useful
in the general case, runs into trouble in boundary situations. No matter how
far away the airplanes will be at their closest approach, the computation above
shows the immediate danger going to infinity as they approach that closest
approach. Also, if the two airplanes are on a collision course, this computation
gives infinite immediate danger, no matter how much time remains until their
collision. Finally, if the airplanes have nearly identical velocities, this rates the
immediate danger as very close to zero (unless the aircraft are practically on
top of one another), when it should intuitively be inversely proportional to their
current separation. We fix the formula as follows:

1

Immediate danger = (distance of closest approach+c,)(time until closest approach+c,)”

Ca
current separation

where ¢1, c3 and c3 are positive constants, probably best determined empir-
ically.

Now we must compute the factors above. Suppose we are given positions pa
and pp and velocities v4 and vp for airplanes A and B. Then p = pgp — p4 and
v = vp — vy are the position and velocity vectors of airplane B in a reference
frame where airplane A is unmoving at the origin, as in figure 1. The vector

corresponding to the closest approach of the two airplanes is the altitude from
lpxv]
[v]

A to v, which has length equal to psinf = . If this distance is sufficiently

large, say greater than five nautical miles?, then we may conclude that this pair
of airplanes pose no meaningful eventual danger to one another, and move on to

the next pair. If the airplanes will pass close to one another,then we now have
[v]

. : lpxvl® . S

The time that will elapse before the closest approach is attained is simply

72|

v

a rating for eventual danger:

the time until airplane B reaches point C, or . The numerator here is equal

to |p|cos§ = L so the time is equal to L

o IER If this time is negative, then
these two airplanes have already survived their closest approach, and present
no danger to one another in the future. If the time is positive, we can calculate

the immediate danger by plugging everything in and simplifying:

Jv]’ c3

Immediate danger = —.
2.\ Ipl
(Ip x ol +Joler) (poo+ 10 c2)

This yields a % in the first summand when v = 0, i.e., when the two airplanes

are flying exactly parallel to one another. In this case, we set the immediate

danger equal to %’l.

Tsee [1], 26-7
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7.2 Strengths and Weaknesses

The main strength of this model is that it is extremely swift: the danger pre-
sented by a pair of airplanes can be computed with just over fifty basic oper-
ations on known real numbers if eventual danger exists, and about half that
to conclude that it does not; thus even a modern personal computer should be
easily able to handle this computation for several thousand airplane-pairs every
second, or about 500 airplanes every two minutes.

The most serious weakness of this model would appear to be that it does
not attempt to worry about airplanes that pass near each other in time but not
in space. For example, it cannot distinguish between two airplanes flying the
exact same route through space with a time-separation of fifteen seconds and
two airplanes flying parallel to one another with a physical separation of two
miles in some direction orthogonal to their velocity; the first situation appears to
be much more dangerous. The next model will attempt to differentiate between
these and similar situations.

8 The Space-Time Method

8.1 How it works

The Space-Time method uses similar reasoning to the Close-Approach method,
but considers the airplanes’ proximity in space-time, rather than simply in phys-
ical space. Thus, intuitively, we have:

1

closest approach in space-time

Eventual danger

1

(closest approach in space-time) (time until closest approach)

Immediate danger &

The same corrections for boundary conditions will apply, leaving

1

Immediate danger = (closest approach in space-time+, )(time until closest approach++, )

k]
+ current space-time separation

These quantities are harder to compute than in the Close-Approach method.
Suppose airplane a is positioned at the origin, and p gives the position of airplane
b with respect to airplane a, and that they have velocity vectors v, and v,
respectively. Then we may represent the future of airplanes @ and b by rays in R4,
parametrized by (vamta, Va,ta, Va,ta, kta) and (vatb, Up, T, Vb, 1o, ktb) Jta, iy >0,
where k is a constant chosen so that a distance of one unit in the time coordinate
is equally dangerous to a distance one unit in one of the horizontal coordinates.
Mahalingam® equates a fifteen-minute separation in time with a five-nautical-
mile separation in space; we will assume that this scales. Then k equals 5
nautical miles per 15 minutes, or about 34 feet per second.

8see [1],26-7
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For any t,,1p, the space-time distance between the position of airplane a at
time ¢, and the position of airplane b at time ¢; is given by

d(ta,tp) = |(vaxta, Va,ta, Va,ta, kta) — (vbmtb, vy, by, vp, b, ktb) | This yields

(8(ta,tp))” = At + Btaty, + Ct2 + Dty + Ety + |p|”, where

A =k + |va|?
B = =2k —2u, - v
C =k*+ v
D =-2p- vy,
E =2p- v
Now the minimum space-time distance occurs at ¢, and t; which minimize
this expression, that is, where Vf? = 0. This occurs at t, = %,tﬁ =

%. We observe that this is well-defined whenever the velocities are not

equal, as B?—4AC = 4 ((va ) = |val” s |” + 2k, - vy — k2 Jvg|* — k2 |vb|2).
The first two terms add to less then zero by Cauchy-Schwarz, and the last three
by AM-GM, with equality in both cases only when the velocities are equal.
(The case when the velocities are equal is handled more simply: For every %,,
there is a unique tg satisfying Bt, + 2Ctg + E = 0 (since C is always positive)
which yields the minimum space-time separation.) The minimum space-time
separation is given by f(ts,ts). The time until this separation is given by
min{t,,tg}.

The current space-time separation would appear to be the minimum of the
space-time separations between the current position of airplane a and the future
of airplane b, and the current position of b and the future of a. The first of these
occurs when t, = t9 = —%, the second where t, =ty = —%. (Note that, in
the case where the velocities are equal, 3 is the ¢4 associated to t, = 0.) If one
of these times is negative, we replace it with 0, which is not in the past. Thus
we have:

Current space-time separation = thtl:i‘I;O {6(tx,0),4(0,%3),8(0,0)}

Actual determination of danger is done as in the close-approach model, ex-
cept that the times associated to closest approach must be computed first. If
either is negative, then any danger posed by this airplane-pair has already been
avoided, and so the eventual and immediate dangers are set equal to zero. Then
the space-time separation of the closest approach is computed; if it 1s too large,
say greater than five nautical miles, we conclude that these airplanes pose no
danger to one another. If, on the other hand, they do pose significant even-
tual danger, the eventual and immediate dangers are computed by plugging
everything in.

8.2 Strengths and Weaknesses

It is clear that this is a more timid measure of danger than the close-approach
method: Every airplane-pair receives at least as high immediate- and eventual-
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danger measures from the space-time method as from the close-approach method,
while it recognizes as dangerous some cases which the close-approach method
does not. This suggests that it is probably more useful as a predictor of danger,
so long as the immediate-danger rankings continue to make sense. If one accepts
the premise that danger arises when two airplanes pass through nearby points
in space at nearby points in time, as seems eminently reasonable, then these
measures in fact make more sense than those generated by the close-approach
model. It is somewhat but not significantly slower to implement, requiring only
about 100 basic operations to compute the eventual and immediate dangers:
Thus it should be able to handle about half as many airplanes as the close-
approach model in the same amount of time; this is easily fast enough to work
in real-time.

On the other hand, this model is much more opaque to any human who
must try to work with it. An air-traffic controller attempting - in real time -
to plot a course correction which minimizes the danger measures given by this
model could easily find himself frustrated and confused very quickly. Human
beings, no matter how great our intellectual understanding of such things, are
often simply not equipped to think in terms of extra dimensions.

9 The Logarithmic Derivative

The logarithmic derivative model is different from those which have gone before
in that 1t originates from different observations and intuitions. It is probably
the model that most closely approximates what an air traffic controller would
do, in the absence of predictive software.

9.1 How it Works

The model arises from the observation that, if the velocities of airplanes A
and B remain constant, the function % (distance between airplanes A and B)
is monotonically increasing with time (unless the airplanes are traveling in the
same line, in which case it is constant) and is bounded both above and below.
Thus, —% (distance between airplanes A and B) is monotonically decreasing,
distance—¢

4 (distance)’
to and any future time ¢ at which the airplanes are separated by a distance less

. . . 4 (dist .
than £. Thus the reciprocal of this quantity, dr(distance) might work as a

. . . s~ “distance—¢ . .
measure of immediate danger. Let us investigate the behavior of this function.

Suppose that airplane B has position and velocity vectors p and v, respec-

tively, in some frame of reference where A is stationary at the origin, as in figure
2. Now

and — evaluated at ?g, gives a lower bound on the time between

d ho|” — |p|* 2hp - v+ h? o’
E('p|2):hm lp+hv|” —[pI” _ . 2hp-v+ 7 |o["

I .
h—0 h h—0 h pv

9This suggests the name “logarithmic derivative”, as the logarithmic derivative of a function
f is defined to be the derivative of its logarithm: %%
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Figure 2: The logarithmic derivative

But % (|p|2) = 2|p| % lp|, so % lp| = % = |v|cos@. This is represented in
figure 2 by p, the projection of one time-unit of velocity onto p. Dividing by
|p| — ¢ gives the number of time-units necessary before the projection onto p
intersects the circle of radius £ about A. If £ is chosen to represent some danger
threshold, this makes intuitive sense. Consider also the behavior of this function
as time passes: If B will pass through the circle of radius ¢, the target point
converges to the intersection of B’s trajectory with the circle, and the measure
goes to infinity as B approaches the circle, then becomes negative once it passes
inside. If £ is sufficiently small (like, say, 700 feet, the threshold for a near miss),
this 1s fine: Once the two airplanes are within £ of each other, it is in some sense
already too late. If, on the other hand, B will not pass within £ of A, the target
point goes to infinity as the B approaches the point of least separation from
A, and the measure simultaneously goes to zero, then becomes negative as that
point is crossed. This is also fine; all danger is past once the point of least
separation 1s reached.

9.2 Strengths and Weaknesses

The greatest strength of this model is its simplicity; the immediate danger mea-
sure can be computed with only about ten basic operations; this is even faster
than the close-approach model. Furthermore, it offers other useful information:
the reciprocal of the measure is exactly how much time the controller has to
act, before this pair of airplanes will have played out whatever danger they face
from one another.

Another strength is that this measure behaves correctly in two of the situ-
ations where the previous two measures required ugly fixes. If the two aircraft
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Figure 3: Motion of the target point over time; two cases
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are on or very near a collision course, it acts as a countdown to that collision,
which is correct behavior. If the airplanes are near their point of closest ap-
proach, it gets large only if they are actually close to one another, and remains
appropriately small otherwise.

One flaw is that this measure always gives an immediate danger near zero
when the airplanes have nearly identical velocities. As before, we’d like the
danger in this case to be roughly inversely proportional to their separation; we
can solve this problem by adding a term of ﬁ to the measure; unfortunately,
doing so eliminates the nice relationship between this measure and the time left
for the controller to act.

A potentially more serious problem is the inability of this algorithm to
project far into the future. It will detect almost no difference between, for
example, two pairs of airplanes with the same relative velocities, the first of
which are on a course to collide in five minutes’ time, and the second to pass
each other with a mile of separation.

10 Testing the models

10.1 Some sample situations

We postulate several airplane-pairs in a variety of situations which are somewhat
exceptional in terms of the quality of peril posed. Since our various systems for
determining immediate danger all purport to be measuring the same thing,
we hope that they will agree on which situations pose the greatest immediate
danger. It would also be nice if they agreed with our intuitions on the subject.

In the following situations, all airplanes move with speed equal to 480 knots,
or about 810 feet per second. Airplane a’s initial position is always at the origin.
Airplane b’s position, in feet, and the angles associated to the velocities will be
given below.

1. Impending head-on collision: Airplane a heading 0°. Airplane b head-
ing 180° from (6000,0).

2. Impending oblique collision: Airplane a heading 60°. Airplane b head-
ing 120° from (3000,0).

3. Tailgating: Airplane a heading 0°. Airplane b heading 0° from (2400,0).

4. Flying alongside: Airplane a heading 0°. Airplane b heading 0° from
(0,2400).

5. Same point, nearby time: Airplane a heading 0°. Airplane b heading
90° from (2400,-3200).

6. Same point, nearby time: Airplane a heading 0°. Airplane b heading
120° from (4400,-2100).
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7. Passing at a distance: Airplane g heading 0°. Airplane b heading 180°
from (18000,-6000).

8. Far-future head-on collision: Airplane a heading 0°. Airplane b head-
ing 180° from (600000,0).

9. Flying parallel: Airplane a heading 0°. Airplane b heading 0° from
(0,18000).

10. Right angles: Airplane @ heading 0°. Airplane b heading 270° from
(18000,0).

11. Receding: Airplane a heading 0°. Airplane b heading 180° from (0,6000).
12. Receding: Airplane a heading 120°. Airplane b heading 60° from (3000,0).
13. Receding: Airplane a heading 180°. Airplane b heading 0° from (6000,0).

10.2 Ranking the Samples

We can put an intuitive partial ordering on the immediate danger presented by
these situations. Obviously the two impending collisions are worst, with the
head-on collision being even worse than the oblique collision, as maneuvering in
the former case will avail the airplanes less. The next most dangerous situation
is the one titled Tailgating; if something causes airplane b to slow down signifi-
cantly, there is very little that airplane a can do to avoid a conflict. The fourth
situation is similar to the third, except with more maneuverability. The next
two situations feature a single point through which both airplanes pass within
one second of each other; if both speeds and directions are altered in the wrong
way, there could be serious trouble. Situation 8 will transform into situation 1
if it 1s ignored for too long. Trouble could happen in situations 7 and 9 only
if both airplanes are allowed to veer significantly in the wrong directions. In
situation 10, airplane b would nearly have to turn around to make trouble, and
in the last three situations, both airplanes would have to turn around for any
danger to arise (i.e., there is no danger at all.)

We also evaluated the immediate danger presented by each situation, using
all of the algorithms presented in the preceding sections, except for the space-
time algorithm, for which it was infeasible to find appropriate constants in
the allotted time. The rankings they produced are reported in table 1. The
probabilistic method here uses the metric

collisions 1 near misses

10000 trials T 20 10000 trials’

danger =

The close-approach method here uses the constants ¢; = 50 feet, ¢; = 5 seconds,

cs = .05 Hz?, (and displays the immediate danger value in units of %.)
These constants seem to give reasonable results.

We note immediately that both the probabilistic and the close-approach
models match up very well with our intuitive rankings, though not particularly
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Situation | Intuition | Triv Prob Close-App | Logarithmic
1 1 2 (a) 1(9946) | 2 (7.77) 3.5 (.27)
2 2 2 (a) 2 (7370) | 1 (8.60) 3.5 (.27)
3 3 9.5 (0) | 4 (860) | 3.5 (2.08) | 10.5 (0)
4 4 9.5 (0) | 7(98) 3.5 (2.08) | 10.5 (0)
5 5.5 45 (1) | 5 (479) | 5 (1.31) 2 (.28)
6 5.5 4.5 (1) | 3 (1017) | 6 (1.12) 1 (.29)
7 8.5 9.5 (0) | 11 (0) 9 (0.26) 5 (.08)
8 7 2 (a) 6 (263) 10 (.001) 7 (.003)
9 8.5 9.5 (0) | 8 (13) 8 (0.277) 10.5 (0)
10 10 9.5 (0) | 11 (0) 7 (0.280) 6 (.05)
11 12 9.5 (0) | 11 (0) 12 (0) 10.5 (0)
12 12 9.5 (0) | 11 (0) 12 (0) 10.5 (0)
13 12 9.5 (0) | 11 (0) 12 (0) 10.5 (0)

Table 1: The dangers in the situations presented in section 10.1, as ranked by
the various algorithms.

so with one another. The trivial method and the logarithmic derivative method
both compare much less favorably. This i1s no great surprise, as we have already
noted that the trivial method is a rather poor measure and that the logarithmic
derivative does poorly when both airplanes have nearly the same velocities; in
three of the thirteen situations under examination, both airplanes have exactly
the same velocity. When those situations are removed, the logarithmic derivative
corresponds quite well to the intuitive ranking.

We note as well that the close-approach model agrees with our intuition
almost exactly, except for switching the rankings of situations 8 and 10. As we
expect very little eventual danger from situation 10, and very little immediate
danger from situation 8, this is perhaps not so big a deal. In these situations, the
close-approach model does very well by our intuition. We note in passing that
the space-time model would probably do even better: It would certainly rank
situation 3 as more dangerous than situation 4 (agreeing with our intuition),
and, as it 1s very closely related to the close-approach model, might well rank
all the other situations identically.

11 Recommendations

11.1 Which danger model should we use?

We have presented, in the preceding sections, five separate models that can be
used for predicting the danger posed by a given airplane-pair, and given brief
discussions of their strengths and weaknesses. In order to obtain a quantitative
measure of the accuracy of each model, we created thirteen sample cases and
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compared each model’s ranking of the relative danger of these cases to our
own intuitive ranking of the danger of each situation. The RMS error between
the model rankings and intuitive rankings was computed for each model. The
Trivial and Logarithmic Derivative models both had RMS error values above
3.0, suggesting that these models have significant differences from our intuitive
notion of danger.

We do not recommend the trivial model, due to the manifest falsehood of
its most basic assumption (an environment with no uncertainty) and its failure
to perform satisfactorily on the sample set.

We also do not recommend the logarithmic derivative model, but our reasons
are more complex. The logarithmic derivative model in its present form does
not perform well on the sample set. Although we have briefly discussed ways
that the logarithmic derivative model could be improved, it can be argued that
the model would still be less desirable than others. The logarithmic derivative
model appears to behave in much the same manner as would a human operator
watching only a graphical display; thus any improvement would still result in a
model that essentially behaved like a very fast human operator. We expect any
model to have some “blind spots”, kinds of danger which it will fail to detect
for longer than many other models. In general, an alert human operator could
complement the model by detecting some dangers in these blind spots. The blind
spots of the logarithmic derivative model, unfortunately, will be shared by the
human operator, and so he cannot complement it in this manner. However, we
do recommend study of the logarithmic derivative model, particularly in relation
to other models. Understanding its flaws should help lead to an understanding
of human operators’ weaknesses.

We do recommend any of the other three models, however. They are all based
on sensible assumptions, and both the probabilistic and the close-approach mod-
els matched well with our intuition when we tested them on the sample set,
yielding RMS error values below 1.5. We have no reason not to believe that the
space-time method would have performed at least as well, had it been feasible
to find appropriate constants in the given time.

In particular, we most highly recommend the close-approach method. Its
rankings of immediate danger match up particularly well with our intuition,
yielding an RMS error value of only 1.28. In addition, this method computes
danger measures at blindingly fast speeds, allowing it to constantly update the
danger measures for every airplane-pair in real-time. Finally, its mechanisms
are intuitive and clear, so that controllers may intuitively take it into account
when plotting courses.

11.2 When should the tower intervene?

We have presented several methods for measuring danger; in general, when the
danger is too high, the tower must intervene. Threshold values for danger which
should force the tower to intervene will obviously vary based upon which measure
is used. Some of these models offer ways to measure both eventual danger and
immediate danger, others only one or the other. Whenever both measures exist,
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the eventual danger is the one that should be used: If the eventual danger
is higher than some threshold value, then the tower will - eventually - have
to intervene. This does not necessarily mean that the tower must intervene
immediately, however. If the immediate danger is low enough, the tower may
(and should) take the time to deal with more pressing problems first. When
a measure exists for only one of the two kinds of danger, then obviously that
measure must be used.

For each of our models, we must determine the relevant threshold values.

In the trivial model, the only values are 0,1,and a. Obviously the tower
cannot be expected to intervene for every airplane-pair with danger measure
0. On the other hand, it must intervene to prevent a near-miss, thanks to the
second assumption in section 3. Thus the threshold danger value is 1.

In the probabilistic model, we only have a measure for eventual danger.
Thanks to the simulations in section 10.1, we can guess that most situations
with no intuitive danger give a danger rating less than T(l)oo’ and all situations
with high intuitive danger give a danger rating well greater than ﬁ. Thus
m seems like a good “safe” threshold value; it will catch all high-intuitive-
danger cases, as well as cases such as situation 9 in section 10.1.

In the close-approach and space-time models, there is a natural map from
the eventual danger to distance (given by taking the reciprocal). If the corre-
sponding distance is less than some reasonable length, then the tower should
intervene. Mahalingam!? argues that airplanes should be horizontally separated
by 3 nautical miles. Taking him at his word, we can set the threshold danger
value for both of these models equal to ﬁ This corresponds to intervening if
the airplanes will eventually come within 3 nautical miles of one another. (Note
that if they come together in the past, then the danger measure will be negative
and we won’t have to intervene.)

In the logarithmic derivative model, we have only a measure of immediate
danger. There is a natural map from the immediate danger to time (also given
by taking the reciprocal). Thus if the corresponding time is less then some rea-
sonable span, we should intervene. MICA!'! argues that 2 minutes is a natural
time interval, so we set the threshold equal to —=—. This corresponds to inter-
vening only if the airplanes will come within 700 feet of their closest approach
within the next two minutes.

11.3 How close is too close?

At some point, we must face the question, “How close can two airplanes get be-
fore intervention from the tower cannot save them from at least a near-miss?”.
The answer to this question is clearly related to the paths on which they ap-
proach one another. We will put an approximate bound on the answer by
requiring that the airplanes’ original trajectories predict a head-on collision.
While there may be some trajectories for which the answer is larger, it can
never be much larger.

1011],26-7
17],125
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Assume that each airplane has velocity v feet per second, and that each
can turn z radians per second. We find the distance d (in feet) at which each
airplane must start turning, to ensure that the aircraft do not pass within each
x feet of each other at any time.

To do so, we first note that each turn (assuming constant turning rate) forms
an arc of a circle. Let r denote the circle’s radius. Since the length of an arc

subtended by an angle é is given by s=rf, we take the derivative to obtain r =
ds/dt
dejdt — v/z.

Next we note that x (the shortest distance between the two circles) is equal
to the sum of the distance k between the centers of the two circles and the two

radii: k = x + 2v/z.

x/2
d2

dr2
x/2

Finally, we observe that the initial line of flight of the two planes is tangent
to both circles, and hence two right triangles are formed. For each triangle, the
lengths of the two legs are r = v/z and d/2, and the hypotenuse is k/2 = v/z +
x/2. Thus we apply the Pythagorean theorem to obtain (d/2)? = (v/z + z/2)?
- (v/z)?. This gives us d = |/z? 4 £,

Now we consider two airplanes with velocity 480 knots = 810.67 feet per
second, and turning rate 3 degrees = 7/60 radians per second (a standard “two-
minute turn”). In order to ensure that the aircraft do not pass within 500 feet
of each other (the standard FAA definition of a "near miss"), we assume a
wingspan of 200 feet, and thus the centers of the airplanes must be 500 + 200
= 700 feet apart to ensure that a near miss is avoided. Given these values of x,
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v, and z, we calculate d = 6621 feet = 1.09 nm. Thus in order to avoid a near
miss, both pilots must start a turn at a distance of 1.09 nm from each other.
This implies that the controller must identify the problem and communicate his
command to the pilots significantly before this point. Assuming a maximum
delay of 15 seconds between when the controller’s discovery of the problem and
the pilot’s response to it, this gives us a "safety distance" of approximately five
nautical miles, or 19 seconds, until a head-on collision.

12 Measuring Complexity

In order to measure the complexity of the workload faced by an air traffic
controller (ATC), we need a basic understanding of the tasks performed by the
ATC and how his ability to perform these tasks is affected by the number of
airplanes in the airspace sector. To that end, we present the following algorithm
as a model for the decision process undertaken by an ATC in detecting and
solving conflicts:

ATC Decision Algorithm

1. Scan the radar screen (and other sources of information) for airplanes that
are located close to each other or currently at a safe distance but whose
projected paths will cross.

2. If a pair/group of airplanes at a given time instant appear close to each
other, evaluate velocity and heading information to determine whether the
airplanes will move below a minimum separation distance of each other
within the near future (2 minutes?).

3. If a potential conflict is detected, scan briefly to see if there are any more
pressing conflicts that need to be taken care of first.

4. If there appear to be no other conflicts that need to be taken care of first,
then alert the pilots of the airplanes detected in step 2 of their situation
and formulate alternate routes for them to take.

5. Assess whether the alternate routes designated in step 4 will cause conflicts
with the projected routes of nearby aircraft.

6. If the alternative routes will cause conflicts, reformulate alternative routes
for the airplanes in conflict.

7. If there are no impending conflicts, or if the most recent conflicts have
been resolved successfully, then take care of other tasks such as landings,
takeoffs, assessment of weather conditions, and clearance of airplanes to
enter/exit airspace sector.

8. When the secondary items in step 7 have been adequately dealt with,
return to step 1.
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The order of the steps in the preceeding algorithm is drawn from a synthe-
sis of reports on the factors identified by experienced air traffic controllers as
relevant to conflict prevention. 2

As we stated in our assumptions, the actual role of the factors mentioned
in step 7 must be subordinated in order to simplify the task of determining
complexity as a function of air traffic and the potential for conflicts to develop.

With this model for the decision process undertaken by the ATC, we can
examine how the number of planes in the airspace, the number of potential
conflicts, the number of planes entering and exiting the airspace at any given
time, and the volume of the air space affect the complexity of the air traffic
workload.

12.1 Complexity of Step 1

Step 1 in the ATC Decision Algorithm involves scanning the airspace for po-
tential conflicts. The ATC, or a conflict detection algorithm, might do this by
examining every pair of airplanes in the airspace to see if their distance apart is
less than some prespecified safe value. If there are currently n airplanes in the
airspace, then there will be (g) = ﬂr;—_ll airplane pairs for the ATC to consider.
Additionally, the task of identifying airplanes whose paths will probably cross at
some later time requires making tentative projections for every pair of aircrafts,
so this operation also has complexity of order O(n?).

Naturally, measuring complexity strictly by the number of pairs of airplanes
the ATC will have to evaluate for proximity violations and projected path in-
tersections does not completely capture the process by which the ATC gath-
ers information or the uncertainty of extrapolating current paths a significant
amount of time into the future. Specifically, it might be more realistic to divide
airplanes in the airspace at a given time into clusters and analyze the com-
plexity associated with each cluster. The process of dividing the airspace into
clusters can be accomplished automatically by one of several algorithms, which
are particular forms of the following general template:

Clustering Algorithm

1. Number the airplanes from 1 to n.

2. Define close(i, j) to be true iff the distance between airplanes ¢ and j is
less than a pre-specified distance threshold.

3. For each airplane a, perform one of the following operations:

(a) If no clusters have been formed yet, or if close(a,j) is false for all
airplanes j that have been placed in clusters, then create a new cluster
with the airplane as sole member.

125ee [9]
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(b) Otherwise, while close(a, j) and close(a, k) hold for airplanes j and k&
in different clusters, combine the clusters containing airplanes j and

k.

(c) Then, once clusters have been combined such that close(a, j) holds
for only airplanes j in a single cluster, add airplane a to the cluster.

If the aircraft in a given airspace can be divided into C distinct and independent
clusters, then the total number £ of proximity evaluations the ATC would have
to perform is given by

C
E:Zni(n;—l)’

i=1

where n; 1s the number of airplanes in cluster i. The motivation for the cluster
approach is that, when scanning a radar screen, an ATC often mentally groups
certain sets of aircrafts together in order to reduce the amount of mental work
he/she has to do to assess the number of potential proximity violations. Tt is
reasonable, therefore, to consider the cluster approach as a more accurate rep-
resentation of the number of comparisons the ATC must make when performing
an initial scan of the airspace sector. Note that, although the cluster approach
is O(n?), the values taken on by E for an airspace with n airplanes will be
consistently lower than the values of (g) This follows from the fact that

(Z)_E: n(n—1) X:”:n

=1

n? n an Cn~
"7 \& Z‘)
2 C 2
n n;
72
c c
— (Zz 1 ni)2 Zz—l nl
2
>0

For an airspace with C groups of equal size, for instance, the ratio of the
two measures is
E n—C 1
@ Cm-1n °C
for C' > 1. Thisillustrates the difference in the magnitudes of these two measures

for step 1 complexity.
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12.2 Impact of Group Interaction on Step 1 Complexity

Although the measure E is a reasonable metric for step 1 complexity, it can
be improved further by taking into account additional factors that affect the
number of step 1-level comparisions performed by the ATC in the ATC Deci-
sion Algorithm. One such factor is the effect of interactions between separate
clusters. Contrary to the simplifying assumption made above, clusters of air-
planes are not completely independent of each other, and decisions made to
avert problems in one cluster by rerouting flight paths might potentially affect
the airplanes in another cluster. One way of accounting for such interactions
would be to add a term to E that represents the number of pairs of groups:

C
nini—l c(C -1
Erevised :Z ( ) )+ ( B) )
i=1

This additional term encodes the fact that, for each pair of groups, the ATC
must consider the likelihood that rerouting traffic from one will affect the other.

12.3 Measuring Step 2 Danger

Up to this point, we have focused only on the component of complexity that
arises from step 1 of the ATC Decision Algorithm, where the ATC identifies
airplanes that appear too close together at the current time or whose projected
courses might lead them to an eventual conflict if not corrected. The primary
part of step 1 is the former task of identifying aircraft whose current separa-
tion distance 1s less than some approximate safe value, since presumabably any
such pair has the potential to become a dangerous situation. Given any pair
of aircraft identified in step 1 as being too close to each other, step 2 of the
ATC Decision Algorithm takes heading and velocity information into account
to generate some estimate of the potential for a collision, near miss, or lesser
airspace violation caused by that airplane pair.

In the case of step 1, we argued that complexity depends on the number
of pairs the ATC had to evaluate for proximity violations and eventual path
conflicts. For step 2, the complexity of the task facing the ATC depends in part
on the level of uncertainty involved in predicting the location of the members
of an airplane pair or cluster in the near future. Also, a measure of step 2
complexity should take into account the level of danger implicit in the various
situations identified in step 1. The more situations there are that represent a
high level of danger, the more complex the task of the ATC becomes because he
is required to make more crucial decisions per unit time. The increased demand
on mental resources, in turn, requires the ATC to pay less attention to secondary
situations that could develop into problems if left unattended. This problem is
compounded by the fact that severe problems, such as potential collisions or
near misses, demand almost total attention until they are resolved, and are not
resolved completely until (in parts 4-6) the ATC determines that the alternate
paths he has directed the pilot to take do not cause any other conflicts.

Page 23 of 35



Team 358

In order to construct a good metric for the complexity of step 2, we need
a good metric for the danger represented by a given aircraft pair, given the
position and velocity of both airplanes. The first portion of our paper is devoted
to creating several workable alternatives for such a metric, and we use those
results here.

A natural way to incorporate the danger presented by each aircraft pair into
a danger metric for the airspace as a whole would be to compute the measure

D= Z St (1)

1<k<i<n

where the airplanes in the airspace are numbered from 1 to n and f(k,[) rep-
resents the value of one of the danger metrics established earlier (trivial, close
approach, space-time, logarithmic derivative, or probabilistic) for the aircraft
pair (k,!). The higher the sum of the values of the individual metrics is, the
more dangerous the airspace clearly is. Moreover, an advantage of this danger
metric is that it can be compared across airspaces of different sizes because the
individual danger metrics take into account the distance between aircraft and
some measure of the time until the point of maximum danger.

Ideally, one would want to determine the range of values for the measure D
that correspond to airspaces with high, medium, and low danger. This would re-
quire further empirical study comparing the frequency and type of accidents that
occur in different airspaces with the values obtained for D in those airspaces.
One way of matching values of the D metric with the occurence of accidents
or operational errors by ATCs would be to measure the latter and examine the
extent to which higher accident and error rates match higher multiples of the
standard deviation above the mean for the metric D.

A disadvantage of this metric is that, by themselves, values taken on by
D have no easily interpretable meaning. This can be remedied in two ways.
The first is to determine, for whichever indicator f is being used, a function
Uy = U(f(k,l)) that, given a value of the metric f, returns the probability
that an undesirable event such as a collision or near miss will occur. Given ¥,
we compute the measure

Doy =Y (k1)

1<k<I<n

which represents the expected number of undesireable conflicts that will occur
in the airspace within the time period (the near future) for which values of ¥ are
specified. This measure of danger is appealing from the standpoint that, since
it is desireable to specify a maximum expected number of conflicts that should
occur per unit time in any airspace, we have a workable method for determining
whether real measures for airspace safety are violated.

The second way to improve on the measure given by Equation 1 is a variation
on the preceeding idea. Instead of determining the expected number of conflicts
that will occur in the airspace over the time interval for which ¥ is computed,
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we could define an indicator variable

I(k,l) = 1if f(k,01)>T"
= 0if f(k, 1) <T"

where T™ represents a threshold value for the danger metric f which, when
exceeded, requires intervention by the ATC. With this formulation, the number
of situations in which the ATC must intervene is given by

Dine = Y I(k1).

1<k<i<n

An advantage of this measure over Deyp, is that the values of T can be deter-
mined in part by the ATC based on judgement and experience, whereas Deyp, at
the very least requires a realistic probabilistic simulation to establish some rela-
tionship between the probability of mishap and the value of the danger metric
f. Also, this measure takes a more direct approach to determining the number
of cases where the ATC will have to intervene, since the ATC decides whether or
not to intervene on a case by case basis rather than by computing the expected
number of mishaps.

Now that we have posited several reasonable ways to measure danger for an
entire airspace as a function of the danger present in each individual aircraft
pair, we turn to the central question: how is the complexity of the ATC’s task
related to the danger posed by potential accidents?

12.4 From Step 2 Danger to Step 2 Complexity

The principal measure of danger we will use in this section is Djyg, because this
metric most accurately caputures the number of interventions the ATC must
make in the near future. As discussed earlier, the complexity of the situation
facing the ATC in step 2 is closely related to the danger of the situation. Now
that we have presented a workable metric for step 2 danger, we will explicate
how the complexity of step 2 depends on the measure of danger Dj,; we have
defined.

To assess the number of decisions the ATC has to make in steps 2 through 6,
we must determine the number of possibilities open to the ATC to resolve a given
conflict between n airplanes. To do so, we consider the following reasonable
algorithm for solving conflicts: for each pair of conflicting airplanes in the group,
solve the conflict while making sure the solution does not conflict with the
constraints generated by any previously solved conflicting pair. Thus we have

-1 . . .
22=1) conflicts constrains what choices we

a problem in which each of the
can make to resolve each of the other conflicts; in some cases, after the first k
conflicts are solved, no solution for conflict k41 may exist under the constraints,
and thus backtracking may be necessary. In other words, this problem is a
form of the general constraint satisfaction problem, which is known to be NP-

complete.’® Thus we postulate that the worst case complexity of the problem

13[8]
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varies exponentially with the number of pairs: O(k"("_l)/z) for some constant
k. To determine this constant, we consider the problem from a slightly different
perspective.

Under the assumption that the altitude level of the planes is not open to
modification, it seems fairly reasonable to suppose that the ATC can either tell
both pilots to bank to the right (from their point of view) or to the left. Then
for every pair of aircraft that is in conflict, there are two possible solutions open
to the ATC for averting a collision or near miss.

Using the the metric Dj,; to determine the number of situations in which
the ATC will have to intervene, and supposing that for each of these situations
there are two possible solutions for altering the headings of the aircraft involved,
we get that there are

S = 9D in

possible solutions for the system. Of course, in the near future, we assume
that Djn; refers to the measure of conflict within a given cluster, and consider
the total complexity as the sum of the complexities within each cluster. More
precisely, we let S(i) = 2Dine (1) where Dint (7) is the danger measure for cluster
¢, and define

c c

Complexity = Z S(i) = Z 9Pini (1), (2)

i=1 i=1
where C'is the total number of clusters. Given our assumptions, this provides a
reasonable initial measure for the complexity involved in resolving the conflicts
detected in step 2 of the ATC Decision Algorithm.

Nevertheless, it is obvious that the feasibility of the ATC’s decision hinges
upon the effect his preposed solution will have on nearby airplanes in the short
term and afterwards. To improve our measure of step 2 complexity, we must
take into account the conclusions of the ATC in steps 4 through 6. In other
words, we must estimate how many operations are involved in checking whether
a tentative rerouting decided upon in step 4 (based on conclusions made in step
2) will affect the routes of other airplanes in the near future.

The main factor we need to determine is the number of airplanes that should
be considered “close” to an aircraft pair that needs to be rerouted. We use
the characterization of “close” defined as part of the Clustering Algorithm we
presented earlier. Given an airspace divided into C' clusters, with n; representing
the number of planes in cluster 2, it follows that there are n; — 2 other airplanes
the ATC must consider when resolving a conflict between two airplanes in cluster
i. Thus there are (approximately)

2(n; = 2)(Dint (7))

interactions that the ATC must consider in a given cluster i. At this point,
it becomes clear that the number of interactions added by this measure does
not change the fact that that the complexity of step 2 is O(k"(”_l)/z). Thus,
we argue that the metric for step 2 complexity given above by Equation 2 is a
satisfactory proxy for our purposes.
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12.5 Additional Factors Contributing to Workload Com-
plexity

Up until this point, we have focused on defining two types of metrics for com-
plexity: first, a metric related to the number of comparisons required of the
ATC in step 1 and taking into consideration the processes involved in steps 4
through 6, and second, a metric that quantifies the role of danger and in creating
complexity. The latter metric stems mostly from step 2 considerations.

These metrics capture the most important aspects of the air traffic workload
complexity. Nevertheless, complexity is also affected by factors such as the rate
of airplanes entering and exiting the airspace, the volume of the airspace, and
the presence of additional software tools to automatically predict conflicts and
alert the ATC.

The first of these factors depends on the rate of entry and exit of planes from
the airspace at any given time. Under the (reasonable) assumption that it takes
the ATC a certain block of time to hand over every aircraft exiting the airspace
and receive every aircraft entering the airspace, we have that the complexity of
this task can be represented by

Distraction & T'|Entry Rate + Exit Rate|,

where T represents the amount of time (assumed approximately equal) that it
takes the ATC to handle entries and exit from the airspace. The complexity of
this task is linear.

The volume of the airspace, which has been taken into consideration im-
plicitly by our measures of step 2 complexity, affects the job of the ATC in
obvious ways. For a fixed number of planes, smaller airspaces will be harder
to handle than larger airspaces because the number of planes per unit volume
will be higher, so the danger metrics defined in the previous sections will tend
to be higher. Naturally, dealing with eventual conflicts (as discussed earlier in
the paper) will take even more of a secondary role to resolving more imminent
conflicts. Given that many of the operational errors made by ATCs result from
ignoring secondary conflicts for too long ', this means that the potential for
accidents is higher when the number of planes per unit volume of airspace is
higher. The larger the volume of an airspace is, the more uncertainty the ATC
faces in predicting eventual conflicts but the more leeway he has to reroute
airplanes that are on conflicting paths.

One of the main secondary factors that deserves consideration is the effect of
software to aid the ATC in predicting conflicts. The advantage of such software
is that, by identifying conflicts and ordering them by the amount of danger
they pose, i1t reduces the element of complexity that arises in step 1 of the
ATC Decision Algorithm. Nevertheless, the primary complexity of the ATC’s
job comes from trying to figure out how to solve conflicts once they arise, a
fact which follows from the discussion in the previous sections (O(n?) for step 1
versus O(2"("~1)/2) for step 2). This suggests that, while helpful in reducing one

Hgee [10]
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type of complexity, programs designed to detect conflicts might not be able to
combat the primary source of complexity faced by the ATC. The primary danger
of software designed to identify conflicts for the ATC is that it could cause the
ATC to take a more passive attitude in searching for potential conflicts not
identified by the software. Ignoring secondary (or eventual) conflicts until too
late is a primary source of operational errors in air traffic control, and there
i1s a possiblility that software aids could worsen this problem. As a point of
synthesis regarding the use of software in air traffic control, we suggest that
programs designed to aid the ATC in identifying conflicts be designed as a
guide to the ATC’s own judgement rather than a way of automating any of the
functions performed by the ATC.

12.6 Conclusion

In this section, we have derived several metrics for the complexity of the prob-
lems facing the ATC in his attempt to identify and correct potential problems
between aircraft in a dynamic environment. To clarify the problem, we intro-
duced the ATC Decision Algorithm as a model for the different types of tasks
confronting the ATC. We then examined the two primary types of complexity
that were suggested by this algorithm, namely step 1 and step 2 complexity. The
first of these corresponds to the difficulty involved in identifying aircraft between
which a potential conflict might occur and aircraft whose current trajectories
suggest the possibility of an eventual conflict. The second type of complexity
refers to the difficulty involved in determining, given that two airplanes are near
each other in the airspace, whether they present a situation in which the ATC
should intervene to avoid a collision, near miss, or lesser airspace violation. We
determined that step 1 complexity is of order O(n?) and that step 2 complexity
is of order 0(2”(”_1)/2), where n represents the number of airplanes in a given
cluster of the airspace. It is possible, of course, that we consider the airspace
itself to be one cluster, in which case the above measures represent the step 1
and step 2 orders of complexity of the entire airspace. If the airspace can be
divided into more than one cluster, we have shown that from the perspective
of the ATC (and the number of required decisions/assessments required in the
ATC Decision Algorithm) the complexity of the entire airspace is the sum of
the complexity measure for the individual clusters.

The primary consideration for step 2 complexity follows from extending the
results relating to assessing the danger between the airplanes in an aircraft
pair. Three metrics for assessing danger were presented and discussed, and
we argued for Dj,;, the number of interventions required of the ATC based
on the exceeding of certain danger criteria, as the best measure of danger for
determining the compexity of step 2. As for step 1, we considered the analysis of
step 2 complexity as it relates to demands placed on the ATC by steps 4 through
6, and modified both measures to take the interactions between clusters and the
interactions between the conflict pair and other airplanes in the cluster into
account.

The connection between the number of airplanes in the airspace at any one
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time and the complexity of the airspace is implicit throughout our analysis.
The number of airplanes present during any given interval of time affects our
complexity analysis in much the same way as the number of aircraft present
at any given time, in the sense that the average number of airplanes in the
airspace at any given time that are part of a larger cluster is the primary fac-
tor in determining complexity. The only real difference that this distinction
makes comes from considering a situation where the average time each airplane
spends in the airspace is small, since in this case step 2 (and 4 through 6) com-
plexity factors (identifying planes with short term path conflicts and rerouting
them) will be relatively more important since the flight paths of other airplanes
are harder to predict and the airspace is potentially smaller. Also, the order
O(n per unit time) complexity due to clearing planes to enter and exit the sec-
tor will be higher because the rates of entry and exit are likely to be higher in
this situation. Fluctuations in the air traffic over a 24 hour period'®, judging by
patterns exhibited in major European areas, consist of low night time plateaus,
a sharp rise, and a higher midday plateau with the number of airplanes in the
aircraft sector. The complexity of each of these periods depends in the manner
discussed earlier on the number of planes present in the airspace at a given time
and the extension of the danger measures from the first portion of the paper to
the complexity metric of part 2 in the ATC Decision Algorithm. In the period
of sharp rise and sharp decline, clearance effects will be more important than
usual, as will step 2 effects when it is more difficult for the ATC to assess how
to deal with potential conflict situations. For the higher plateau, step 1 effects
will be higher than the other periods of traffic. In sum, we believe the combina-
tion of the complexity metrics we have derived takes the potential complexity
from short and long term conflicts into account reasonably well for all of these
periods of intraday variation by considering the primary factors affecting the
specific stages of the ATC’s decision process over a given period of time.

A Summary for presentation to FAA administra-
tor

In an attempt to improve safety and reduce workloads on air traffic controllers,
the FAA is considering software that would automatically alert controllers to
potential collisions between planes. To assist in the development of this soft-
ware, we first created and tested five models, each of which gives a metric for
the danger presented by two airplanes flying in space. For all metrics, higher
measures correspond to more imminent danger between the two planes, and thus
each metric suggests a priority ordering by which the controller should attend to
problems; additionally, controller intervention for a particular conflict is neces-
sary when the situation’s danger measure becomes higher than some predefined
threshold value. We propose five models for solving this problem: the triv-
ial model (which simply calculates whether a collision or near miss will occur,

Bsee [6]
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assuming linear trajectories with no uncertainty), the probabilstic simulation
model (which finds the probabilities of a collision or near miss, by assuming
Gaussian parameter distributions and performing a large number of random
trials), the close-approach model (which calculates danger as a function of the
two airplanes’ minimum distance and the time until that minimum distance
is reached), the space-time model (which extends the close-approach model to
four dimensions by calculating a minimum spacetime "distance" between two
airplanes), and the logarithmic derivative model (which calculates a lower bound
on the time until closest approach).

While each of the five proposed models has advantages and disadvantages, we
demonstrate that the close-approach model is particularly successful in propos-
ing a danger metric which is both accurate and efficient to calculate. When
the models were tested on various sample cases, the close-approach method
computed relative danger values that corresponded closely with our intuitive
understanding of the situations, obtaining the lowest RMS error with respect
to an intuitive ranking of test cases by difficulty. The probabilistic simula-
tion model also performed well on the test cases (though slightly worse than
the close-approach model), and also has the advantage of dealing with some of
the uncertainty present in the environment; it is more computationally inten-
sive than the close-approach method, but not unreasonably so. The space-time
method may be more accurate than the close-approach method, but 1s also
slower to compute, more difficult to implement, and more opaque to the con-
troller. Finally, the logarithmic derivative model is likely to closely approximate
a human observers’s intuitions of how fast two planes are approaching, but as
a result it loses an accurate measure of whether the two planes will actually
collide. Finally, we take factors such as plane maneuverability and response
time into account in order to obtain another measure of minimum safe distance
for two approaching planes.

Next, we expand on the two-plane case by considering the complexity of an
entire airspace sector with respect to the number of aircraft and the number of
potential conflicts. To do so, we present an algorithm as a model for the decision
process undertaken by an air traffic controller in detecting and solving conflicts.
We examine each step of this algorithm individually to obtain a measure of its
complexity. In particular, the step of scanning for potential conflicts was found
to vary quadratically in complexity as a function of the number of airplanes,
either based directly on the number of airplane pairs, or more accurately as a
sum of complexities of individual clusters of airplanes. Next we present several
methods for calculating a danger metric for the airspace as a whole, based on
the sum of some measure (danger, number of conflicts, etc.) over all possible
pairs or clusters of airplanes. We next compute the complexity of conflict res-
olution for a given cluster of n planes: this is an NP-complete problem with
worst case complexity 27("=1)/2 Finally, we discuss other factors contribut-
ing to controller workload complexity, including airplanes entering and exiting
the airspace, weather conditions, and the presence of software tools for conflict
prediction.
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B Probabilistic Simulation Program
This program implements the Probabilistic simulation model described in 6

#include <iostream.h>
#include <math.h>
#include <stdlib.h>

#define PI 3.14159265359

int BAD=18240;
int WORSE=700;
int WORST=200;
int n=10000;
float ¢1=50;
float c2=5;
float ¢3=0.05;

float phi(float x)

{
// Abramowitz & Stegun 26.2.19
float
dl = 0.0498673470,
d2 = 0.0211410061,
d3 = 0.0032776263,
d4 = 0.0000380036,
dbs = 0.0000488906,
dé = 0.0000053830;
float a = fabs(x);
float t = 1.0 + a*x(dil+a*x(d2+a*(d3+a*(d4+a*x(d5+a*d6)))));
// to 16th power
t %= t; t *= t; t %= t; t *= t;
t = 1.0 / (t+t); // the MINUS 16th
if (x>=0) t=1 - t;
return t;
}

float phiinv(float p)
{

// 0deh & Evans. 1974. AS 70. Applied Statistics. 23: 96-97

float
pO = -0.322232431088,
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}

pl = -1.0,
p2 = -0.342242088547,
p3 = -0.0204231210245,
p4 = -0.453642210148E-4,

q0 = 0.0993484626060,
ql = 0.588581570495,
q2 = 0.531103462366,
q3 = 0.103537752850,
q4 = 0.38560700634E-2,
PP, ¥, XP;

if (p < 0.5) pp =p; else pp=1- p;

if (pp < 1E-12)
Xp = 99;
else {
y = sqrt(log(1/(pp*pp)));
xp =y + ((((y * p&4 + p3) *y +p2) *y +pl) *xy+p0)/
((((y * g4 +q3) *y +qg2) *xy +ql) * y + q0);
¥

if (p < 0.5) return -xp;
else return xp;

float getrand(float mu,float sigma)

{

}

float r=rand()+0.5;
return mu+phiinv(r/32768)*sigma;

int main()

{

float x,y,mvl,mv2,svl,sv2,mal,ma2,sal,sa2;

float vi,v2,al,a2,vx,vy;

float dot,normp,normv,mindist,mintime;

int bad=0,worse=0,worst=0;

float mini=-1,min2=-1,min3=-1;

int limit;

cout << "Enter initial x,y coordinates of plane 2: ";

cin >> x;

cin >> y;

mvi=mv2=811; //cout << "Enter mean velocities of planes 1 and 2: ";
//cin >> mvi;

//cin >> mv2;

sv1=sv2=40; //cout << "Enter sigma velocities of planes 1 and 2: ";
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//cin >> svi;
//cin >> sv2;
cout << "Enter mean angles of planes 1 and 2: ";
cin >> mail;
cin >> ma2;
sal=sa2=1; //cout << "Enter sigma angles of planes 1 and 2: '";
//cin >> sal;
//cin >> sa2;
limit=-1; //cout << "Enter time limit (-1 for none): ";
//cin >> limit;
normp=sqrt (x*x+y*y);
for (int i=0;i<n;i++)
{
vi=getrand(mvi,svi);
v2=getrand (mv2,sv2);
al=getrand(mal,sal);
a2=getrand(ma2,sa2);
vx=(vi*cos(al1*PI/180))-(v2*cos(a2*%PI/180));
vy=(vi*sin(a1*PI/180))-(v2*sin(a2*PI/180));
dot=x*vx+y*vy;
normv=sqrt (VX*vx+vy*vy) ;
mindist=normp#*normp- (dot*dot/(normv+normv));
if (mindist<0) mindist=0; else mindist=sqrt(mindist);
mintime=dot/(normv*normv) ;
if (mintime<0)

{
mintime=0;
mindist=normp;
}
if ((limit!=-1) && (mintime>limit))
{
mintime=limit;
mindist=sqrt((x+limit*vx)*(x+limit*vx)+(y+limit*vy)*(y+limit*vy));
}
if ((mindist<BAD) && (mindist>=WORSE))
{
bad++;
if ((mini==-1) || (mintime<min1)) minl=mintime;
}
if ((mindist<WORSE) && (mindist>=WORST))
{
worse++;
if ((min2==-1) || (mintime<min2)) min2=mintime;
}
if (mindist<WORST)
{
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worst++;
if ((min3==-1) || (mintime<min3)) min3=mintime;

}

cout << "In " << n << " flights there were:" << endl;
cout << worst << " collisions" << endl;

cout << worse << " near misses'" << endl;

cout << bad << " violations'" << endl << endl;

cout << "Minimum time to collision: " << min3 << endl;
cout << "Minimum time to near miss: " << min2 << endl;
cout << "Minimum time to violation: " << minil << endl;

vx=(mvi*cos(mal1*PI/180))-(mv2*cos(ma2+«PI/180));
vy=(mvi*sin(mal*PI/180))-(mv2*sin(ma2*PI/180));
dot=x*vx+y*vy;

normv=sqrt (VX*vx+vy*vy) ;

mindist=normp*normp- (dot*dot/(normv*normv));

if (mindist<0) mindist=0; else mindist=sqrt(mindist);
mintime=dot/(normv*normv) ;

if (mintime<O0)

{
mintime=0;
mindist=normp;
}
if ((limit!=-1) && (mintime>limit))
{
mintime=limit;
mindist=sqrt((x+limit*vx)*(x+limit*vx)+(y+limit*vy)*(y+limit*vy));
}
cout << "Danger measure 1: " << (mindist<700) << endl;

cout << "Danger measure 2: "

<< 1/((mintime+c1)*(mintime+c1)*(mindist+c2)) + c3/normp << endl;
cout << "Danger measure 3: "

<< dot/(normp*normp) << endl;
return 0;

References

[1] Mahalingam, S. Air Traffic Control. New Delhi: Kaveri Books, 1999.

[2] Federal Aviation Administration,

http://wuw.asy.faa.gov/asy_internet/safety data/default.htm

[3] Denker, John S., See How It Flies,
http://www.monmouth.com/~jsd/how/htm/maneuver.html

Page 34 of 35



Team 358

[4]

[9]

Airbus Industries, http://www.airbus.com/imperial.html

Wiener, E. and D. Nagel. Human Factors in Aviation. San Diego: Academic
Press, 1988.

MAICA: modeling and analysis of the impact of changes in ATM, Transport
Research #71.

MICA: MET improvement for controller aids, Transport Research #72.

Vardi, M. "The descriptive complexity of constraint satisfaction", Implicit
Computational Complexity 1999,

http://www.cs.indiana.edu/icc99/vardi.html

Endsley, M. and M. Rodgers. "Situation Awareness Information Require-

ments for En Route Air Traffic Control", DOT/FAA/AM-94/27, 1994.

Endsley, M. and M. Rodgers. "Distribution of attention, situation aware-
ness, and workload in a passive air traffic control task", DOT/FAA/AM-
97/13, 1997.

H. Kremer et al. "Probabilistic vs, Geometric Conflict Probing", National
Aerospace Laboratory NLR, 1997.

L.V. Lauderman et al. "Dynamic Density: An Air Traffic Management
Metric", NASA, NASA/TM-1998-112226, 1998.

M. Rodgers et al. "The Relationship of Sector Characteristics to Opera-
tional Errors", DOT/FAA/AM-98/14, 1998.

Page 35 of 35



