A summary of the basic integral theorems of vector calculus.

Part One. \(n = 2. \)

Suppose
\[
\mathbf{F} = P\mathbf{i} + Q\mathbf{j}
\]

Green’s Theorem. Suppose \(R \) is a bounded region in \(\mathbb{R}^2 \) with boundary \(C \). Suppose \(\mathbf{T} \) is a unit tangent vector to \(C \) which points in the counterclockwise direction on the outer part of \(C \) and in the clockwise direction on the inner part of \(C \). Then
\[
\int_C \mathbf{F} \cdot \mathbf{T} \; ds = \iint_R \nabla \times \mathbf{F} \; dA.
\]

\(\nabla \times \mathbf{F} \) here is, by definition, the scalar \(Q_x - P_y. \)

Remark. This may also be written
\[
\int_C P \, dx + Q \, dy = \iint_R Q_x - P_y \, dx \, dy
\]
where \(C \) is oriented as before.

The Divergence Theorem. Suppose \(R \) is a bounded region in \(\mathbb{R}^2 \) with boundary \(C \). Suppose \(\mathbf{n} \) is the outward pointing unit exterior normal to \(R \) along its boundary \(C \). Then
\[
\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R \nabla \cdot \mathbf{F} \; dA.
\]

Part Two. \(n = 3. \) Suppose
\[
\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}.
\]

Stokes’ Theorem. Suppose \(S \) is a surface in \(\mathbb{R}^3 \) with boundary \(C \) and unit normal \(\mathbf{n} \). Suppose \(\mathbf{T} \) is the unit tangent field along \(C \) such that \(\mathbf{n} \times \mathbf{T} \) points into \(S \). Then
\[
\int_C \mathbf{F} \cdot \mathbf{T} \; ds = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \; dA.
\]

Remark. This may also be written
\[
\int_C P \, dx + Q \, dy + R \, dz = \iint_S (R_y - Q_z) \, dy \, dz + (P_z - R_x) \, dz \, dx + (Q_x - P_y) \, dx \, dy
\]
where \(S \) is oriented as before.

The Divergence Theorem. Suppose \(T \) is a bounded region in \(\mathbb{R}^3 \) with boundary \(S \). Suppose \(\mathbf{n} \) is the outward pointing unit exterior normal to \(T \) along its boundary \(S \). Then
\[
\iiint_T \mathbf{F} \cdot \mathbf{n} \; dA = \iiint_T \nabla \cdot \mathbf{F} \; dV.
\]