Math 403 Homework #1, Spring 2024

Instructor: Ezra Miller

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment... (1 point for each of up to 3 collaborators who also list you)

/3

Due: 11:59pm Saturday 27 January 2024

READING ASSIGNMENTS (item numbers are lecture numbers as in PDF lecture notes)

/57

- 1. for Thu. 11 January
 - [Hefferon, p.153–154] field axioms
 - [Cornell, "Fields" (about 1/3 of the way through 4330-week1.pdf)]: more on fields
 - [Climenhaga, §7.2, §9.1] isomorphism, rank-nullity
- 2. for Tue. 16 January
 - [Lax, Chapter 1] quotients
 - [Climenhaga, §5.1] quotients
 - [Cornell, "Quotient Spaces" (4330-week5.pdf)] universal properties
 - [Cornell, "Exact Sequences" (about halfway through 4330-week5.pdf)]
- 3. for Thu. 18 January
 - [Lax, Chapter 2] duality
 - [Climenhaga, §5.1, §8.2] duality, transpose
 - [Treil, §5.1–5.5] Hermitian inner products, ajoints; §5.2–5.4 should be mostly review
- 4. for Tue. 23 January
 - [Lax, Appendix 15] Jordan canonical form (very short proof)
 - [Hefferon, §5.IV.1] characteristic polynomial and minimal polynomial
 - [Treil, §9.3 and §9.5] generalized eigenspaces and Jordan canonical form
- 5. for Thu. 26 January
 - [Lax, Chapter 14, p.214–221] norms, equivalence, continuity, local compactness
 - [Stewart–Sun, §II.1] norms, equivalence, Hahn–Banach theorem
- 6. for Tue. 30 January
 - [Lax, Chap.12, p.187–190] Convex sets
- 7. for Thu. 1 February
 - [Serge Lang, Linear Algebra, Chapter XII, §1–§2] separating hyperplanes
 - [Serge Lang, Linear Algebra, Chapter XII, §3–§4] support hyperplane, extreme point

EXERCISES

- 1. (Freshman's Dream): The *characteristic* of a field F is the smallest positive integer p/3 such that the sum $1 + \cdots + 1$ of p multiplicative identities is 0 in F. Prove that p is prime if it is finite. If F has characteristic p, show that $(a+b)^p = a^p + b^p$ for $a, b \in F$.
- 2. Fix a vector space V and a subspace $W \subseteq V$ over a field F. Let $\pi: V \to V/W$ be the /3 projection homomorphism given by $\pi(v) = v + W$. Write X for the set of all subspaces of V that contain W, and write Y for the set of all subspaces of V/W. Prove that π induces a bijection between these two sets, with

$$X \to Y$$

$$L \mapsto \pi(L) = \{\pi(v) \mid v \in L\}$$

and

$$Y \to X$$

$$M \mapsto \pi^{-1}(M) = \{ v \in V \mid \pi(v) \in M \}.$$

- 3. Show that giving an exact sequence $\cdots \to V_{i-1} \to V_i \to V_{i+1} \to \cdots$ is the same /3 as giving a collection of short exact sequences $0 \to K_i \to V_i \to K_{i+1} \to 0$, one for each i. (The long exact sequence is said to be constructed by *splicing* the short exact sequences together.)
- 4. Rank-nullity theorem for exact sequences: Given an exact sequence

$$0 \to V_0 \to V_1 \to \cdots \to V_r \to 0$$
,

/3

prove that $\sum_{i=0}^{r} (-1)^i \dim V_i = 0$.

5. Rank-nullity for arbitrary complexes: Given a complex $0 \to V_0 \to V_1 \to \cdots \to V_r \to 0$, /3 write $B_i = \operatorname{im}(V_{i-1} \to V_i)$ and $Z_i = \ker(V_i \to V_{i+1})$. Prove that

$$\sum_{i=0}^{r} (-1)^{i} \dim V_{i} = \sum_{i} (-1)^{i} \dim H_{i},$$

where $H_i = Z_i/B_i$ is the i^{th} homology of the complex. [In Exercise 4, $B_i = Z_i = K_i$, so $H_i = Z_i/B_i = 0$ for all i.]

- 6. Two elements u and v in a vector space V are congruent modulo a subspace $W \subseteq V$, /3 written $u \equiv v \pmod{W}$, if u + W = v + W. Show that congruence modulo W is an equivalence relation on V, meaning that it is
 - reflexive: $v \equiv v \pmod{W}$ for all $v \in V$;
 - symmetric: if $u \equiv v \pmod{W}$, then $v \equiv u \pmod{W}$; and
 - transitive: if $u \equiv v \pmod{W}$ and $v \equiv x \pmod{W}$ then $u \equiv x \pmod{W}$.

- 7. Give an example of three subspaces Y_1 , Y_2 , and Y_3 in \mathbb{R}^2 such that $Y_1 + Y_2 + Y_3 = \mathbb{R}^2 / 3$ and $Y_i \cap Y_j = \{0\}$ for all $i \neq j$, but \mathbb{R}^2 is not the direct sum of Y_1 , Y_2 , and Y_3 .
- 8. Prove that if V is a vector space and $W \subseteq V$ is a subspace, then W has a complement: /3 a subspace $U \subseteq V$ such that $V = W \oplus U$. Hint: V/W has a basis; lift it back to V.
- 9. For vectors $\mathbf{x} = (1, 2i, 1+i)$ and $\mathbf{y} = (i, 2-i, 3)$, compute
 - (a) $\langle \mathbf{x}, \mathbf{y} \rangle$, $||\mathbf{x}||^2$, $||\mathbf{y}||^2$, and $||\mathbf{y}||$; /3
 - (b) $\langle 3\mathbf{x}, 2i\mathbf{y} \rangle$ and $\langle 2\mathbf{x}, i\mathbf{x} + 2\mathbf{y} \rangle$; /3
 - (c) $||\mathbf{x} + 2\mathbf{y}||$. [Use parts (a) and (b) for this.]
- 10. Prove that for vectors in an inner product space, $||\mathbf{x} \pm \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 \pm 2\text{Re}\langle \mathbf{x}, \mathbf{y} \rangle$. /3
- 11. For any $m \times n$ complex matrix A, prove that $\ker(A^*A) = \ker(A)$.
- 12. Prove that if P is self-ajoint (that is, $P^* = P$) and idempotent (that is, $P^2 = P$) then /3 P is the matrix for an orthogonal projection.
- 13. If V is a vector space over \mathbb{C} of dimension n, then it is also a vector space over \mathbb{R} /3 of dimension 2n. (If this isn't clear to you, then write down a proof.) Given a Hermitian inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ on V as a complex vector space, show that the real part $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}} = \text{Re}(\langle \mathbf{x}, \mathbf{y} \rangle)$ is an inner product on V as a real vector space.
- 14. Find all possible Jordan forms of linear transformations with characteristic polynomial $\sqrt{3}$ $(t-1)^2(t+2)^2$.
 - Solution: OK, so now what happens if I write a paragraph or two in response to one of these questions? Does the inter-paragraph spacing look okay?
 - It will, of course, be important to write more than one paragraph to detect whether or not it looks okay.
- 15. Find all possible Jordan forms of linear transformations with characteristic polynomial $(t-2)^3(t+1)$ and minimal polynomial $(t-2)^2(t+1)$.
- 16. How many similarity classes are there for 3×3 matrices whose only eigenvalues are $\sqrt{3}$ -3 and 4?
- 17. Prove or disprove: two $n \times n$ matrices are similar if and only if they have the same /3 characteristic polynomial and minimal polynomial.