Math 403 Homework \#3, Spring 2024

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
(1 point for each of up to 3 collaborators who also list you)
Due: 11:59pm Saturday 2 March 2024

Reading assignments

13. for Thu. 22 February

- [Treil, §6.3.3-§6.3.4] singular value decomposition
- [Lax, Chap.7: §Norm of a Linear Map, §Spectral Radius]
- [Lax, Chap.8: §Norm and Eigenvalues]
- [Treil, §6.4] Applications of SVD: spectral radius, operator norm, condition number

14. for Tue. 27 February

- [Stewart-Sun, §II.2.1] matrix norms, consistency
- [Stewart-Sun, §IV. 1 through Thm 1.3] general perturbation theorems

15. for Thu. 29 February

- [Stewart-Sun, §IV.1.2 through Thm 1.6] Bauer-Fike theorem
- [Lax, Appendix 7] Gershgorin's Theorem
- [Stewart-Sun, §IV. 2 through §IV.2.1] Gerschgorin theory

16-17. for Tue. 5 March and Thu. 7 March

- [Tapp, Chap.5] Lie algebras as tangent spaces to the identity
- [Lax, Chap.9: Matrix-valued Functions, through §Matrix Exponential]
- [Wikipedia, Exponential map (Lie theory)]

Exercises

1. Prove that a subset of a manifold is open if and only if its preimage under every chart $/ 3$ is an open subset of a vector space. (Note: This can be used to specify the topology on a manifold without knowing what a topological space is, since vector spaces have the usual notion of "open": what it means for a neighborhood of a point in a manifold to be open is well defined independent of which charts are used to verify openness.)
2. Prove that the sphere $S^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid\|\mathbf{x}\|=1\right\}$ is a smooth manifold. Is it a rational $/ 3$ algebraic variety over the field \mathbb{R} ?
3. Fix a field F. Prove that the unipotent lower-triangular matrices $U^{-} \subseteq G L_{n}(F) \operatorname{map} / 3$ injectively to the set $\mathcal{F} \ell_{n}(F)$ of complete flags in F^{n} expressed as the set of orbits of the group B^{+}acting on the right of $G L_{n}(F)$; that is, $U^{-} \hookrightarrow \mathcal{F} \ell_{n}(F)=G L_{n}(F) / B^{+}$.
4. Let $S_{n} \subseteq G L_{n}(F)$ be the set of permutation matrices. Prove that $\mathcal{F} \ell_{n}(F)$ is a rational $/ 3$ algebraic variety with atlas $\left\{\pi_{w}: w U^{-} \rightarrow \mathcal{F} \ell_{n}(F) \mid w \in S_{n}\right\}$ naturally indexed by S_{n}. You will need to use that any level set of a polynomial with coefficients in F is closed.
5. The standard complex structure on $\mathbb{R}^{2 n}$ is the block-diagonal $2 n \times 2 n$ matrix $J_{2 n}$ whose $/ 3$ diagonal blocks are all $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Prove that $A \in G L_{2 n}(\mathbb{R})$ is complex-linear if and only if A commutes with the standard complex structure: $A J_{2 n}=J_{2 n} A$.
6. Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of a unitary matrix then $|\lambda|=1$.
7. Show that the standard Hermitian inner product on \mathbb{C}^{n} defines a distance $d(\mathbf{x}, \mathbf{y})=/ 3$ $\|\mathbf{x}-\mathbf{y}\|$ on \mathbb{C}^{n}. Give an example of an isometry φ of \mathbb{C}^{n} such that $\varphi(\mathbf{0})=\mathbf{0}$ but φ is not \mathbb{C}-linear.
8. Let φ be an orthogonal transformation of a real inner product space V. Assume $/ 3$ that $\varphi^{2}=-I$. Show that $\operatorname{dim} V$ is even, say $2 n$. Moreover, prove that there exists a dimension n subspace $W \subset V$ and an isometry $\psi: W \rightarrow W^{\perp}$ such that, in the decomposition $V=W \oplus W^{\perp}$, the operator φ is given by the block matrix

$$
\left[\begin{array}{cc}
\mathbf{0} & -\psi^{*} \\
\psi & \mathbf{0}
\end{array}\right]
$$

(N.B. The result means that φ can be thought of as multiplication by i on a complex vector space whose real and imaginary parts are W and W^{\perp}.)
9. True or false: the sum of two normal operators is normal. Justify.
10. Show that the space of positive (semi)definite real symmetric matrices is convex. Is $/ 3$ the same true with "complex Hermitian" in place of "real symmetric"?
11. Orthogonally diagonalize the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$. Find all square roots of A; note that $/ 3$ they are all self-adjoint.
12. Find a singular decomposition of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$. Use it to find $\max _{\|\mathbf{x}\| \leq 1}\|A \mathbf{x}\| / 3$ and $\min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|$, as well as the vectors where this maximum and minimum are attained. Describe geometrically the image under A of the closed unit disk in \mathbb{R}^{2}.
13. Prove that the operator norm of a matrix A coincides with the Frobenius norm of $A / 3$ if and only if A has rank at most 1.

