Math 403 Homework \#4, Spring 2024

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
(1 point for each of up to 3 collaborators who also list you)
Due: 11:59pm Saturday 23 March 2024

Reading assignments

16-17. for Tue. 5 March and Thu. 7 March

- [Tapp, Chap.5] Lie algebras as tangent spaces to the identity
- [Lax, Chap.9: Matrix-valued Functions, through §Matrix Exponential]
- [Wikipedia, Exponential map (Lie theory)]

18. for Tue. 19 March

- [Lax, Chapter 16, p.237-240] entrywise positive matrices, Perron's theorem

19. for Thu. 21 March

- [Lax, Chapter 16, p.240-245] stochastic and nonnegative matrices, Frobenius thm

20. for Tue. 26 March

- [Treil, §8.5] multilinear algebra, tensor product
- [Wikipedia, Tensor product]

21-22. for Thu. 28 March and Tue. 2 April

- [Wikipedia, Exterior algebra]

Exercises

1. Show that $\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}$ whenever the product $A B$ is defined.
2. Show that $\lim _{k \rightarrow \infty} A^{k}=0$ if and only if its spectral radius satisfies $\rho(A)<1$. $/ 3$
3. Show that if ν is a consistent norm on $\mathbb{C}^{n \times n}$, then $\lim _{k \rightarrow \infty} \nu\left(A^{k}\right)^{\frac{1}{k}}=\rho(A)$. $\quad / 3$
4. Prove or disprove, and salvage the statement as best you can in case you find it's false: /3 If $\left\|(\tilde{\lambda} I-A)^{-1}\right\| \geq \eta$ then there is an eigenvalue λ of $A \in \mathbb{C}^{n \times n}$ satisfying

$$
|\tilde{\lambda}-\lambda| \leq 2\left(\|A\|+\eta^{-1}\right) \eta^{-\frac{1}{n}}
$$

5. For $A \in \mathbb{C}^{m \times n}$, set $\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}$. Prove that $\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|$.
6. Assume that the union of m out of the n Gerschgorin disks \mathcal{G}_{i} is disjoint from the other $/ 3$ $n-m$ disks. Prove that the union of m disks contains precisely m of the eigenvalues. Hint: how do the eigenvalues move as A proceeds along a straight line to \widetilde{A} ?
7. Let $G(A)$ be the union of the Gerschgorin disks of A. Show that the intersection $/ 3$ $\bigcap_{S} G\left(S^{-1} A S\right)$ over all nonsingular matrices S equals the spectrum of A.
8. Prove that the spectrum of A is contained in $G(A) \cap G\left(A^{\top}\right)$. Illustrate with the $3 \times 3 / 3$ matrix with entries $a_{i j}=i / j$.
9. Fix the matrix

$$
A=\left[\begin{array}{rrr}
7 & -16 & 8 \\
-16 & 7 & -8 \\
8 & -8 & -5
\end{array}\right]
$$

(a) Use Gerschgorin's Theorem to say as much as you can about the locations of the /3 eigenvalues of and the spectral radius of A.
(b) Consider $D^{-1} A D$ for a diagonal matrix D to see if you can improve your estimates $/ 3$ for the eigenvalue locations.
(c) Compute the actual eigenvalues and comment on the quality of your estimates $/ 3$ in (a) and (b).
10. Find the Lie algebra $\mathfrak{s o}_{n}$ of the special orthogonal group $S O_{n}(\mathbb{R})$.
11. Fix a matrix group $G \subseteq M_{n} F$ over the field $F \in\{\mathbb{R}, \mathbb{C}\}$ and a matrix $A \in G$. Show $/ 3$ that the tangent space $T_{A}(G)$ of G at A is $A \mathfrak{g}$, and show that this equals $\mathfrak{g} A$.
12. Prove that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$.
13. Explain why $\mathfrak{s u}_{n}=\mathfrak{u}_{n} \cap \mathfrak{s l}_{n}(\mathbb{C})$. (You may use the previous exercise.)
14. Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow G L_{n}(F)$ be a differentiable path, where $F \in\{\mathbb{R}, \mathbb{C}\}$. Use Cramer's $/ 3$ rule (or some other method) to show that the inverse path $t \mapsto \gamma(t)^{-1}$ is differentiable.

