Math 403 Homework \#5, Spring 2024

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment... (1 point for each of up to 3 collaborators who also list you)

Due: 11:59pm Tuesday 9 April 2024

Reading assignments

20. for Tue. 26 March

- [Treil, §8.5] multilinear algebra, tensor product
- [Wikipedia, Tensor product]

21-22. for Thu. 28 March and Tue. 2 April

- [Wikipedia, Exterior algebra]

Exercises

1. For $P \in \mathbb{R}^{n \times n}$ with $P>0$, set $\Gamma(P)=\left\{\lambda \in \mathbb{R}_{\geq 0} \mid P \mathbf{x} \leq \lambda \mathbf{x}\right.$ for some nonzero $\left.\mathbf{x} \geq \mathbf{0}\right\}$. $/ 3$ Show that the dominant eigenvalue $\lambda(P)$ satisfies $\lambda(P)=\min _{\lambda \in \Gamma(P)} \lambda$.
2. In class, we stated the theorem that for $P>0$ a stochastic $n \times n$ matrix with dominant $/ 3$ eigenvector \mathbf{v}, and $\mathbf{x} \geq 0$ any nonzero vector, $P^{k} \mathbf{x} \rightarrow \alpha \mathbf{v}$ as $k \rightarrow \infty$ for some real $\alpha>0$. But we only proved it when P is diagonalizable. Complete the proof.
3. Prove that P has a dominant positive eigenvalue if $P \geq 0$ and $P^{k}>0$ for some $k>0 . / 3$
4. Prove or disprove: the set of stochastic $n \times n$ matrices is compact and convex. $/ 3$
5. Use the universal property of tensor products to prove commutativity: there is a unique / 3 isomorphism $V \otimes W \rightarrow W \otimes V$ such that $v \otimes w \mapsto w \otimes v$ for all $v \in V$ and $w \in W$.
6. Use the universal property of tensor products to prove associativity: there is a unique $/ 3$ isomorphism $(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ such that $(u \otimes v) \otimes w \mapsto u \otimes(v \otimes w)$ for all $u \in U, v \in V$, and $w \in W$. Hint: You can either use the universal property to produce the map or check that the two parenthesizations have the same universal property regarding bilinear maps on $(U \times V) \times W=U \times(V \times W)$ and appeal to "abstract nonsense": universal constructions are unique up to unique isomorphism.
7. Prove that homomorphisms $\varphi: V \rightarrow V^{\prime}$ and $\psi: W \rightarrow W^{\prime}$ result in a canonical $/ 3$ homomorphism $\varphi \otimes \psi: V \otimes W \rightarrow V^{\prime} \otimes W^{\prime}$. Given matrices for φ and ψ, write down a matrix for $\varphi \otimes \psi$. Note: your answer will depend on how you order the basis of $V \otimes W$.
8. Prove that a homomorphism $\varphi: V \rightarrow W$ results in a canonical homomorphism $\bigwedge^{r} \varphi: / 3$ $\bigwedge^{r} V \rightarrow \bigwedge^{r} W$. Given a matrix for φ, write down a matrix for $\bigwedge^{r} \varphi$. Note: make no attempt to draw a matrix; just describe its entries as labeled by pairs of basis vectors.
9. Prove that tensor products commute with direct sums: if I is any (finite or infinite) $/ 3$ index set and $V=\bigoplus_{i \in I} V_{i}$, then there is a natural isomorphism $V \otimes W \rightarrow \bigoplus_{i \in I} V_{i} \otimes W$.
10. Construct a natural map $V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$. Show that it is injective. If one of $V / 3$ and W has finite dimension, show that the map is an isomorphism.
11. Prove the existence of a bilinear map $\bigwedge^{r} V \times \bigwedge^{s} V \rightarrow \bigwedge^{r+s} V$ taking

$$
\left(v_{1} \wedge \cdots \wedge v_{r}, v_{1}^{\prime} \wedge \cdots \wedge v_{s}^{\prime}\right) \mapsto v_{1} \wedge \cdots \wedge v_{r} \wedge v_{1}^{\prime} \wedge \cdots \wedge v_{s}^{\prime} .
$$

Write $\omega=v_{1} \wedge \cdots \wedge v_{r}$ and $\omega^{\prime}=v_{1}^{\prime} \wedge \cdots \wedge v_{r}^{\prime}$, so $\omega \wedge \omega^{\prime}=v_{1} \wedge \cdots \wedge v_{r} \wedge v_{1}^{\prime} \wedge \cdots \wedge v_{s}^{\prime}$. Show that $\omega^{\prime} \wedge \omega=(-1)^{r s} \omega \wedge \omega^{\prime}$.
12. Show how to recover the atlas for $G_{k}\left(F^{n}\right)$ in Lecture 9 (lecture notes p.19) from the $/ 3$ Plücker coordinates in Lecture 22 (lecture notes, p.46).

