Questions

1. The sun is setting. The angle of its elevation is decreasing at $\frac{\pi}{4}$ radians per hour. How fast is the shadow cast by a building of height 50 meters lengthening, when the angle of elevation of the sun is $\frac{\pi}{6}$? (Hint: draw a picture!)
2. (Textbook, Section 4.6, qn 52) A lighthouse is 2 km from the long, straight shore of a coastline, as shown in the picture below.

(a) Find the rate of change of the distance of the spot of light from the point O with respect to the angle θ.
(b) Find the rate of change the distance of the spot of light from O with respect to the angle θ in each of the following cases. Convert your answers to meters per degree.
i. When the angle θ is $\frac{\pi}{6}$.
ii. When the distance of the spot of light from O is 4 km . (Hint: you do not need to find the value of the angle θ ! Use a trig identity instead!)
3. A revolving beacon in a lighthouse makes one revolution every 15 seconds. The beacon is 200 ft away from the nearest point P on a straight shoreline.
(a) Find the rate at which the beacon revolves in radians per second. (No calculus here!)
(b) Find the rate at which a ray of light from the lighthouse moves along the shore at a point 400 ft from P along the shoreline. Draw a picture first!
(Note: the picture is quite similar to the one in question 2 but while there, you were finding $\frac{d x}{d \theta}$, here you're trying find $\frac{d x}{d t}$.)
4. (Textbook, Section 4.6, qn 51) A train is moving East at $0.8 \mathrm{~km} / \mathrm{min}$ along a long straight track. A movie camera, 0.5 km to the South of the track, is focused on the train. Let the distance from the camera to the front of the train be $z \mathrm{~km}$. Let the distance from the nearest point to the camera on the track to the front of the train be $x \mathrm{~km}$.
(a) Draw a well-labeled picture of this situation.
(b) How fast is the camera rotating when the train is 1 km from the camera?
