The Product Rule:

1. (a) The Product Rule states that:

$$
\frac{d}{d x}[u(x) v(x)]=
$$

(b) Thus, we can apply the Fundamental Theorem of Calculus and obtain

$$
u(x) v(x)=\int \quad+\int
$$

(c) We can now write $d u=u^{\prime}(x) d x$ and $d v=v^{\prime}(x) d x$. Rearranging the terms, we get the
Integration by Parts Formula:

In order for this to be useful, the integral on the right needs to be easier than the integral on the left. How do we pick u and $d v$? Well, to start with, $d v$ should to be easy to integrate!

Examples:

2. $\int x e^{x} d x$
$u=\quad d v=$
$d u=\quad v=$
3. $\int_{1}^{2} \ln x d x$
$u=\quad d v=$
$d u=\quad v=$
4. $\int x \ln x d x$
5. $\int_{0}^{\pi} x \sin x d x$
6. $\int_{0}^{1} x \sqrt{x+1} d x$ (Compare to worksheet 7-2, Q15. Which method do you prefer?)
7. $\int_{1}^{2} x^{2} e^{x} d x$ (Hint: Integrate by parts twice)
8. $\int \arctan x d x$ (Hint: Let $u=\arctan x$.)
9. $\int e^{x} \cos x d x$ (Hint: Integrate by parts twice, and carefully observe the equation you obtain.)
10. $\int x(\ln x)^{3} d x$ (Hint: Integrate by parts times.)
11. $\int x e^{-x^{2}} d x$ (Hint: Don't work too hard!)
