Integrating to Infinity

Up to now, we've only dealt with integrals over a finite domain $[a, b]$. In fact, if you look back to when we proved FTC I, you'll see that it only deals with finite domains...

Definition Integrating over infinite domains (Part 1):
If $f(x)$ is continuous on $(-\infty, \infty)$ then

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x \quad \text { and } \quad \int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

These integrals are said to converge if the limits exist and are finite.

Examples

Compute the following integrals:

1. $\int_{0}^{\infty} e^{-2 x} d x$
2. $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
3. $\int_{-\infty}^{-1} \frac{1}{x} d x$

Definition Integrating over infinite domains (Part 2):
If $f(x)$ is continuous on $(-\infty, \infty)$ then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

where a is any number. This integral only converges (i.e. only exists) when both integrals in the sum exist and are finite.

Example

4. Compute the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$.

Exercises

Calculate the following integrals, if they converge.
5. $\int_{0}^{\infty} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x$ (This is a substitution. Don't forget to change bounds!)
6. $\int_{0}^{\infty} x e^{-x} d x$ (You may need L'Hopital's rule somewhere along the way...)
7. $\int_{0}^{\infty} \frac{1}{(x+4)^{2}} d x$
8. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc ^{2}(x) d x$ (Hint: $\left.\csc ^{2}(x)=\frac{\sec ^{2}(x)}{\tan ^{2}(x)}\right)$
9. The mass of pollutants over city up to height u meters is given by $\int_{0}^{u} 25,600 \pi e^{-0.0025 h} d h$ kilograms. Compute the total mass of pollutants over the city. (Compare Varying Density Lab, Question 15.)
10. Compare the following integrals to other integrals to see if they converge.
(a) $\int_{2}^{\infty} \frac{1}{\sqrt{x^{2}-1}} d x$
(Hint: $\sqrt{x^{2}-1}$ is a little smaller than $\sqrt{x^{2}}=x$. What does that tell you about $\frac{1}{\sqrt{x^{2}-1}}$ compared to $\frac{1}{x}$?)
(b) $\int_{0}^{\infty} \frac{1}{e^{x}+2^{x}} d x$
(c) $\int_{1}^{\infty} \frac{1+\sin x}{x^{2}} d x$ (Hint: $\quad _\leq \sin (x) \leq \square \quad$)
11. Find c such that $\int_{-\infty}^{\infty} f(t) d t=1$

$$
f(t)=\left\{\begin{array}{cc}
c t e^{-\frac{t}{2}} & t>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

