Sequences, Sums, and Sigma (Σ) Notation

Sequences

Definition A sequence is an ordered set of numbers defined by some rule.

Examples

- 1. Write out completely the sequences given by the following rules:
 - (a) $a_i = i^2$, where $0 \le i \le 5$.
 - (b) $c_k = \frac{1}{k}$, where $5 \le k < 9$.
 - (c) $p_j = 3$, where $3 \le j \le 6$.
 - (d) $b_n = (n-3)^2$, where $3 \le n \le 8$ (compare this to question (a) above.)
- 2. Write a rule for sequences with the given bounds that are identical to the ones above:
 - (a) $10 \le i \le 15$ identical to the sequence in (1)(a).
 - (b) $1 \le k < 5$ identical to the sequence in (1)(b).
 - (c) $-2 \le j \le 1$ identical to the sequence in (1)(c).
 - (d) $100 \le n \le 105$ identical to the sequence in (1)(d).
- 3. Write down rules for the following sequences:
 - (a) 1, 8, 27, 64, 125, starting with index i = 1.
 - (b) 1, 2, 4, 8, 16, 32, starting with j = 1.
 - (c) 1, 2, 4, 8, 16, 32, starting with j = 0.
 - (d) 6, 9, 12, 15, starting with k = 0.
 - (e) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$, starting with i = 1.
 - (f) $2, 4, \ldots, 10, 12$, starting with k = 0.
 - (g) $3, 6, \ldots, 102, 105$, starting with k = 1.
- 4. In your own words, explain what the ... notation in the last two questions means.

Series

Definition A series is the sum of a sequence. We will develop short-hand notation for series, called Sigma-notation, after the Greek letter Σ .

Example Consider the sequence $a_i = i^2$, where $0 \le i \le 5$ from Question 1 (a). Suppose we want to add it up. We could write

$$0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2,$$

but this is pretty tedious, and will only get more so if our series has, say, 500 terms in it! Instead, we can write the following:

$$\sum_{i=0}^{5} i^2$$

Note that this contains many features:

- The index (i)
- The index bounds (0 to 5).
- The rule for generating the sequence.
- The Σ indicating that we add the terms up.

Questions

- 5. For each of the sequences in questions 1, 2, and 3 above, write the corresponding series in Σ -notation.
- 6. Write out the following in long-form, either completely or using ... notation. Also, write down how many terms are in each of the series:

(a)
$$\sum_{i=1}^{5} \frac{5}{i^3}$$
.
(b) $\sum_{k=0}^{101} e^{\sin(k)}$.
(c) $\sum_{m=4}^{9} \frac{5}{(m-3)^3}$ (Compare to (a)!)
(d) $\sum_{n=6}^{107} e^{\sin(n-6)}$ (Compare to (b)!)
(e) $\sum_{i=0}^{10} 1$ (For this one, also find the actual sum.)

- 7. **Reindexing:** Rewrite each of the following sums with the given lower or upper bound, and write how many terms are in each sum. For a hint, see Questions 6(c) and 6(d).
 - (a) $\sum_{i=1}^{5} i^2$, with lower bound 0. (b) $\sum_{k=1}^{100} \frac{1}{k+1}$, with upper bound 99.

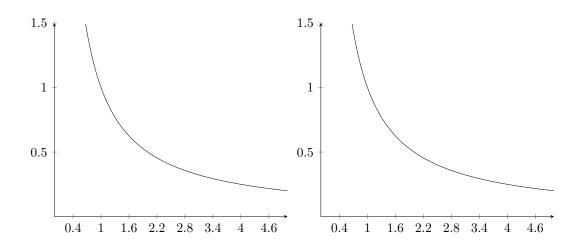
(c)
$$\sum_{m=203}^{300} \frac{6}{e^m}$$
, with lower bound 1.

(d)
$$\sum_{m=203} \frac{6}{e^m}$$
, with lower bound 0.

Toward Areas Under Curves

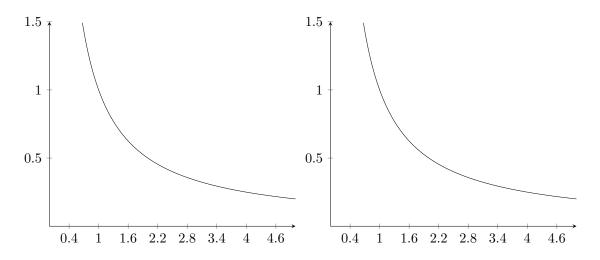
- 8. Write rules for the following sequences with the given bounds:
 - (a) 1, 1.6, 2.2, 2.8, 3.4, with lower bound 0.
 - (b) 1.6, 2.2, 2.8, 3.4, 4, with upper bound 5.
 - (c) $\frac{1}{1}, \frac{1}{1.6}, \frac{1}{2.2}, \frac{1}{2.8}, \frac{1}{3.4}$, with lower bound 0.
 - (d) $\frac{1}{1.6}, \frac{1}{2.2}, \frac{1}{2.8}, \frac{1}{3.4}, \frac{1}{4}$, with upper bound 5.
- 9. Write the following series in Σ -notation with the given bounds:
 - (a) $\frac{1}{1} \times 0.6 + \frac{1}{1.6} \times 0.6 + \frac{1}{2.2} \times 0.6 + \frac{1}{2.8} \times 0.6 + \frac{1}{3.4} \times 0.6$, with lower bound 0.
 - (b) $\frac{1}{1.6} \times 0.6 + \frac{1}{2.2} \times 0.6 + \frac{1}{2.8} \times 0.6 + \frac{1}{3.4} \times 0.6 + \frac{1}{4} \times 0.6$, with upper bound 5.
 - (c) $\frac{1}{1} \times 0.3 + \frac{1}{1.3} \times 0.3 + \ldots + \frac{1}{3.4} \times 0.3 + \frac{1}{3.7} \times 0.3$, with lower bound 0.
 - (d) $\frac{1}{1.3} \times 0.3 + \frac{1}{1.6} \times 0.3 + \ldots + \frac{1}{3.7} \times 0.3 + \frac{1}{4} \times 0.3$, with upper bound bound 10.
- 10. Consider the curve $f(x) = \frac{1}{x}$. Using methods developed in class, we can estimate the area under this curve from, say, x = 1 to x = 4. Suppose we do by dividing the interval [1,4] into n = 5 equal subintervals.
 - (a) What is the length, Δx , of each subinterval?

(b) On two copies of the curve, draw the rectangles for a left-hand sum (LHS) estimate of the area. On the other, draw the rectangles for a right-hand sum (RHS) estimate of the area.



- (c) This part of this question concerns only the LHS:
 - i. Write down all the elements of the sequence of the left-hand sides of your subintervals.
 - ii. Write down all the elements of the sequence of the heights of each of your rectangles.
 - iii. Write down (in long form) the series giving your estimated area under the curve.
- (d) This part of this question concerns only the RHS:
 - i. Write down all the elements of the sequence of the right-hand sides of your subintervals.
 - ii. Write down all the elements of the sequence of the heights of each of your rectangles.
 - iii. Write down (in long form) the series giving your estimated area under the curve.
- (e) Write the LHS and RHS in Σ -notation. Compare your answers to questions 9(a) and 9(b) above.

11. Do the previous question again, but with n = 10 this time. Compare your final answers to questions 9(c) and 9(d) above.



12. Now suppose n = 100. At that point, it seems more than just tedious to write out all the terms. This is where the power of Σ -notation shines! Write down sums for the LHS and RHS for the area under the curve $f(x) = \frac{1}{x}$ between x = 1 and x = 4 with n = 100 subintervals. Be sure to start by figuring out Δx , and perhaps the first (and last) few subintervals.