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Abstract. Single nucleotide polymorphisms (SNPs) are useful markers for
locating genes since they occur throughout the human genome and thousands can
be scored at once using DNA microarrays. Here, we use branching processes and
coalescent theory to show that if one uses Kruglyak’s (1999) model of the growth
of the human population and one assumes an average mutation rate of 1 × 10−8

per nucleotide per generation then there are about 5.7 million SNP’s in the human
genome, or one every 526 base pairs. We also obtain results for the number of
SNPs that will be found in samples of sizes n ≥ 2 to gain insight into the number
that will be found by various experimental procedures.

1. Introduction. The information in DNA is encoded in a sequence of nucleotides, four
chemicals that are usually referred to by the first letters of their names: A, C, G, and T.
Single nucleotide polymorphisms (SNPs) are as the name suggests, single nucleotides in a
genome that are polymorphic, i.e., in which each allele has a frequency of less than 99%
in the population as a whole. SNPs are of interest as genetic markers for locating genes.
To look for a gene that causes a disease like type I diabetes, one would take a sample of
several hundred individuals with and without the disease and then look for a correlation
(in genetics this is called linkage disequilibrium) between the disease state of individual
and the state of these markers. A significant correlation in one region of the genome would
then suggest that it contains the disease causing gene and further sequencing efforts would
be concentrated there.

Given that the human genome consists of about 3 billion nucleotides, it is clear that
this strategy will require a large number of SNPs, but it is an important question to
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determine the order of magnitude of the number required. Current technology allows DNA
microarrays to be constructed so that state of thousands, or perhaps tens of thousands
of SNPs can be determined in a single procedure, (Landegren et al 1998) but is that
enough? In a recent article in Nature Genetics, Leonid Kruglyak (1999) used simulations
based on the coalescent to suggest the range at which SNPs have useful levels of linkage
disequilibrium (i.e., correlation) are unlikely to extend beyond 3 kilobases (kb) in the
general population. Since the human genome consists of 3 billion bases, this means that
even if SNPs are evenly spaced, approximately 500,000 SNP’s are needed, a very depressing
number for makers of DNA chips.

The purpose of this article is to do a mathematical analysis of two related questions:
“How many SNPs are there in the human genome?” and “What percentage of these will a
sample of size n find?” The second question in the case n = 6 is related to Celera’s original
strategy for sequencing the human genome, as described by a lecture of Gene Myers at
a Cornell Theory Center Symposium on Oct 14, 1999. At that point, he said that they
would achieve “ten times coverage,” i.e., each nucleotide will be sequenced on the average
10 times. To make the assembly process easier, one individual will be used for the first 6
times coverage of the human genome. Since humans are diploid organisms (i.e., have two
copies of the genetic information) this will with probability 31/32 lead to a sample of size
2 at each site. To find more SNPs, Celera will then use multiple individuals for the final 4
times coverage. This gives an average of a little less than 4 samples per nucleotide, making
a total of about 6.

The exact details of Celera’s strategy are not important here. We will derive results
that are valid for all n ≥ 2, since they allow us to make predictions about the results of
other sampling strategies. For example, n = 20 is related to experimental work of Wang
et al (1998) and n = 5 is related to the strategy Celera ended up using. To answer the
questions posed above, we need a model of the growth of the human population. Following
Kruglyak (1999) we will assume that humans had a constant population size of 10,000
individuals until 5,000 generations ago and then expanded at a constant exponential rate
to its present day size of 5 billion. Solving the equation

(1.1) µ5000 = (5× 109)/(10, 000) = 500, 000

we find µ = 1.00263. For those who might complain that the current population is actually
6 billion, we note that this changes the answer to 1.00266. Another possible objection is
that according to the World Book encyclopedia, “the world’s population grew slowly before
AD 1, then almost doubled by the year 1000. At its present rate of growth the world’s
population doubles every 41 years.” Taking the estimated world population of 138 million
in AD1, using a human generation time of 20 years leads to the new equation

(1.2) µ4900 = (138× 106)/(10, 000) = 13, 800

which solves to give µ = 1.00194. Since all three computations lead to roughly the same
growth rate we will choose µ = 1.0026 to keep the closest connection with Kruglyak’s work.

For convenience, we will let T = 5000 and index generations by integers m ≤ T so
that the expansion began at time m = 0. Recalling that humans are diploid organisms,
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the number of copies of the nucleotide under consideration in generation m is then

(1.3) Nm =
{

20, 000 for m ≤ 0
20, 000 · µm for m ≥ 0

Kruglyak builds his genealogical relationships by working backwards in time and using
the discrete time coalescent with a varying population size (see e.g., Griffiths and Tavare
(1994)). In words, each of the Nm nucleotides in generation m picks its parent uniformly
from the possible choices in generation Nm−1. Of course, all of the choices at one time are
made independent of each other and independent of what has already been done at times
T, T − 1, . . .m+ 1.

In addition to working backwards in time, we will find it convenient to work forward
from time 0, using a branching process in which each individual in generation t gives birth
to an independent number of children in generation t+ 1 with mean µ. To see what distri-
bution to take for the number of children, we note that in the coalescent a given nucleotide
in generation t will be chosen with probability 1/Nt by each of the Nt+1 nucleotides in
generation t+1, and Nt is large, so the number of descendants will have roughly a Poisson
distribution with mean µ = Nt+1/Nt. For readers who might complain that observed hu-
man family size distributions are not Poisson, we note that (i) this choice of distribution is
needed to keep a close connection with the coalescent, and (ii) the assumption can easily
be dropped. As we will indicate in Section 2, the answers depend only on the first two
moments of the number of offspring X, µ = EX and a = EX(X − 1)/2.

While working forwards in time we are only interested in individual nucleotides that
have offspring alive at the present, time T = 5000. It is a well-known fact in the theory
of branching processes (this and other “well-known” facts can be found in Chapter 1 of
Athreya and Ney (1972)) that if we let pk be the probability of k children and define
the generating function φ(θ) =

∑∞
k=0 pkθ

k then the probability a family has died out by
generation k is σk = φk(0), and if µ > 1 then as k → ∞, σk converges to σ, the unique
solution of φ(σ) = σ that lies in [0, 1). In the case of interest here, the Poisson distribution
with mean µ has generating function

(1.4) φ(θ) =
∞∑
k=0

e−µ
µk

k!
θk = exp(−µ(1− θ))

so the fixed point equation is σ = exp(−µ(1− σ)).
For a given value of µ equation (1.4) can only be solved numerically. However, our µ

is close to 1, so expanding φ to second order in a Taylor series around 1, we can solve it
approximately with the simple result that the survival probability ρ = 1− σ has

(1.5) ρ ≈ µ− 1
a

= 0.0052

With a little help from a computer one can find that ρ = 0.00518203 . . .
Let Zm be the number of individuals in generation m in the branching process. The

expected value EZm = Z0µ
m, so if we let ẐTm be the number of individuals in generation

3



m with offspring at time T and ρk be the probability an individual in generation 0 has
offspring in generation k, we have

(1.6) EẐTm = Z0µ
mρT−m

a result that was derived earlier by Griffiths and Pakes (1988). To compare this result
with the prediction of the coalescent let Ŷ Tm be the number of individuals in generation m
that have offspring in generation T . In Section 6 we will show that

(1.7) Theorem. If T →∞ and M →∞ then

max
M≤m≤T

∣∣∣∣∣ Ŷ Tm
NmρT−m

− 1

∣∣∣∣∣→ 0 in probability.

Having proved the equivalence between the coalescent in an exponentially growing
population and the corresponding Poisson branching process, we will feel free to use either
process to investigate mutations at positive times. This and the ordinary coalescent in a
population of constant size are the three models we will consider here. All of our estimates
of the number of SNPs are based on an estimate of the per nucleotide per generation
probability, u, of a mutation, so we make the

Important Announcement. To remove the mutation probability from later calculations,
we will instead calculate the expected total time in the genealogy.

The reader can then multiply by their favorite estimate of the mutation rate to get a
concrete estimate of the number of SNPs. Along the way we will do this with our favorite
estimate u = 1 × 10−8 which comes from Drake, Charlesworth, Charlesworth, and Crow
(1998).

Having announced our plan, we have 8 = 2 ·2 ·2 things to do. We have to compute the
total time in the genealogy at positive times and at negative times, in the whole population
and in a sample of size n, and in addition for these four combinations we have to compute
the expected amount of “good time,” times when the mutation will be a SNP, i.e., have
frequency between 1% and 99%.

I. Results for the entire population.

a. Total time for t ≥ 0. The expected total time in the tree between times 0 and T is

(1.8)
T∑

m=0

N0µ
mρT−m = NT ·

T∑
k=0

µ−kρk

Using our approximation ρ ≈ 0.0052 and recalling µ−T = 1/500, 000 we have

ρ

T∑
k=0

µ−k = ρ · 1− µ−(T+1)

1− µ−1
≈ ρµ

µ− 1
≈ 2
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The second part of the sum must be evaluated numerically. Stopping the first time the
survival probability ρk < 0.0052, which occurs at k = 2178, we have

T∑
k=0

µ−k(ρk − 0.0052)+ ≈ 8.78

Combining the last two results with (1.8), and recalling that the number of the copies of
the nucleotide at time T is NT = 2 · (5× 109) gives

(1.9) the expected total time in the tree in 0 ≤ t ≤ T is 1.078× 1011.

Taking u = 1 × 10−8 as our estimate for the mutation rate, it follows that the expected
number of mutations per nucleotide is approximately

(1× 10−8) · 2(5× 109) · 10.78 = 1078

This is a huge number of mutations. However, an average of (1× 10−8) · 2(5× 109) = 100
of these mutations occurred in the most recent generation. In a moment, we will see that
almost all of the 539 mutations per site exist at very small frequencies.

b. Good time for t ≥ 0. Our next step is to calculate the probability a mutation will
have a frequency greater than 1% in the population today. Suppose, for simplicity, that
the mutation occurs at time 0. Our estimate of the survival probability in the branching
process implies that on the average a fraction 0.0052 of the 20,000 individuals at time 0,
or 104, will have descendants alive at time T . To estimate the probability that a mutation
at time 0 will have a frequency greater than 1% at time T , we use a result of Jagers
(1975), see (2.2) below, to conclude that since our branching process is close to critical,
the number of descendants at time T , conditioned to be positive, and divided by its mean,
has approximately an exponential distribution.

If we ignore the variability of the total of the 104 normalized family sizes, an as-
sumption we will justify in Section 2 by computing the exact distribution, then it follows
from Jagers’ result that the probability of ending up at a frequency greater than 1% is
approximately exp(−1.04) = 0.3534. As one moves forward to generation m, the number
of individuals with offspring alive at time T grows to N0µ

mρT−m ≥ 104µm. Using the
lower bound, we see that the probability a mutation will have a frequency greater than
1% is approximately exp(−1.04µm), which decays to 0 very rapidly. The last fact implies
that the difference between ρT−m and ρ is unimportant in this case.

Summing we see that the number of opportunities in generations 0 ≤ t ≤ T for a
mutation with frequency of at least 1% is

(1.10) ≈
T∑
t=0

104µt exp(−1.04µt) = 13, 595

Since any mutation at a positive time will be contained inside one of the 104 families at
time 0, there is only a very small probability that the mutation will end up with 99% of
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the population, and we will ignore this. Multiplying (1.10) by our mutation rate estimate
of u = 1× 10−8 gives a per nucleotide probability for SNPs of

p = 1.3595× 10−4 or 1 SNP from [0, T ] every 73,556 bp

As some readers may have noticed, this density is much less than the figure of 1 SNP
per Kilobase (Kb) that is often quoted. (See Wang et al (1998), Lai et al (1998), Brooks
(1999).) There is no contradiction, however. As we will soon see, most of the mutations
that are SNPs occurred at times t < 0.

c. Total time for t < 0. To count the expected number of mutations at times t < 0 we
will use the theory of the coalescent. To follow the arguments below, the reader need know
only that if time is written in units of N0 generations, then in the limit as N0 → ∞ the
number of lineages in the coalescent decreases from k to k− 1 at rate k(k− 1)/2 (see e.g.,
Kingman (1982), Hudson (1990)). To begin to compute the expected number of mutations
at times t < 0, we note that each of the original N0 = 20, 000 nucleotides will have offspring
at time T with probability 0.0052, so the number that succeed has approximately a Poisson
distribution with mean 104. When there are K success in the population we have to work
backwards in time until their lineages coalesce. The result cited above implies that the
time required, when measured in units of N0 generations, has mean

K∑
k=2

k · 2
k(k − 1)

≈ 2 lnK

We will argue in Section 3 that it is permissible to replace K by its mean in the formula
above. However, as the reader can easily check by computing each side of the equation for
K = 104, to get an accurate answer one must use the sum rather than its approximation.
Multiplying by N0 = 20, 000 we arrive at the following estimate for the total time in the
tree at times t < 0 for the population:

(1.11) 20, 000 ·
104∑
k=2

2
k − 1

= 20, 000 · 10.43358 = 208, 672

Taking u = 1× 10−8, the expected number of mutations per nucleotide at times t < 0 is

p = 2.08672× 10−3 or one mutation from t < 0 every 479 bp.

d. Good time for t < 0. To determine the frequency of the mutations at times t < 0 in
the population at the present time T , we use Ewens’ (1972) sampling formula in Section
3 to conclude, see (3.11), that on the average 3.3268× 10−4 mutations per nucleotide fail
to end up with a frequency between 1% and 99% of the population. This reduces the
probability given above to

p = 1.75345× 10−3 or 1 SNP from t < 0 every 570 bp.
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Dividing by our mutation rate estimate u = 1× 10−8 we see that

(1.12) the expected amount of good time in the tree for t < 0 is 175, 345.

Adding the 13,595 from (1.10) for the good times t ∈ [0, T ], we get an expected total good
time in the tree of 189,940. From this we get

Our Main Result. Assuming a mutation rate of u = 1× 10−8 gives an estimate for the
density of SNPs of p = 1.8994× 10−3 or 1 SNP every 526 bp.

Dividing 3 × 109 by 526 gives our estimate of 5.7 million SNPs in the human genome.
These results in (1.9)–(1.12) are summarized in Table 1 for comparison with

II. Results for a sample of size n.

As we have mentioned earlier, we will begin by considering the special case n = 6, because
of its connections to Celera’s strategy. A second reason is that restricting our attention to
n = 6 will give us the opportunity to have concrete numerical answers in addition to our
sometimes complicated formulas.

e. Total time for t ≥ 0. As in the case of the entire population, we will begin at the
present time T and work backwards. To get an upper bound on the size of the genealogy
of a sample of size six, we can suppose that the six lines stay distinct until time 0, after
which they coalesce in the usual way. The total time in the genealogical tree between 0
and T will then be 6 · 5000 = 30, 000. The last result is an upper bound, but it turns out
to be quite a good one. Let X(t) be the number of lineages surviving to time t. One can
recursively compute (even with a small computer) the probabilities P (X(t) = k) working
backwards from time T to conclude

(1.13)
T−1∑
t=0

EX(t) = 29, 891

This result shows that the naive upper bound of 30,000 is very good. This outcome is
no surprise since genealogies in exponentially growing populations are known to be “star-
shaped,” see e.g., Slatkin and Hudson (1991).

f. Good time for t ≥ 0. Using the reasoning that led to (1.10) we can conclude that for
the sample of size 6, the expected amount of good time (i.e., instances at which a mutation
will be a SNP at time T ) in the tree during [0, T ] is

(1.14)
T−1∑
t=0

EX(t) · exp(−1.04 · µt) = 458

Multiplying by 1 × 10−8 leads to an estimate of 4.58 × 10−6 SNPs per nucleotide from
mutations in [0, T ] or 1 every 218,340 nucleotides. However, this number was doomed
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to be disappointing by the corresponding computation for the whole population: the ex-
pected number of polymorphic mutations from [0, T ] is only 1 SNP from [0, T ] every 73,556
nucleotides.

g. Total time for t < 0. To begin, we note that if all the 6 lineages do not coalesce
before time 0, then by the reasoning that led to (1.11) the expected total time in the tree
before 0 will be

2 ·
(

1
5

+
1
4

+
1
3

+
1
2

+ 1
)
· 20, 000 = 91, 333

Note that even though there are 6 individuals rather than 104 as in (1.11), the total time
here is about 44% of the time 208,672 for the whole population given in (1.12).

The first correction that must be made in the previous calculation is to realize that
the six lineages from time T will undergo some coalescence during [0, T ]. Let X(t) be the
number of distinct lineages at time t. Recursively computing P (X(t) = k) starting from
P (X(T ) = 6) = 1 gives

k 6 5 4 ≤ 3
P (X(0) = k) 0.74881 0.22742 0.02284 9.2× 10−4

Taking this into account, however, does not make a big change. The expected total time
in the tree drops only a small amount to 89,074, a loss of about 2.5%.

h. Good time for t < 0. The next factor to consider is that not all mutations will have
a frequency of 1%. Using a result of Joyce and Tavare (1987) that relates the coalescent
to the binary branching process, and some elementary computations with the distribution
of order statistics, see Section 5, we can compute that the expected total amount of good
time in the tree at times t < 0 to be 82,881. See Table 1 which summarizes our results for
the population and the sample of size 6.

population sample

total time in [0, T ] 1.078× 1011 29,891
good time in [0, T ] 13,595 458

total time for t < 0 208,672 89,074
good time for t < 0 175,345 82,881

total time, total 119,595
good time, total 189,940 83,356

Table 1. Summary of computations

Our mutation rate estimate is 1× 10−8 per nucleotide for the human genome, which
has 3×109 nucleotides, so there are an average of 30 mutations per generation. Multiplying
the total time 119,595 by 30 gives our prediction that a sample of size 6 will have 3.58
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million variable nucleotides. Of course, only the mutations at good times will produce
SNP’s so

83, 566
119, 565

= 70% of the variable nucleotides or 2.51 million are SNPs.

Having worked to do computations for the special case of a sample of size 6, it is now
straightforward to generalize to samples of any size. The results are given in Table 2.

good time good time total sample vs fraction
in [0,T] for t < 0 good time population that are SNPs

2 157 36,786 36,943 0.196 0.750
3 234 55,180 55,413 0.293 0.751
4 309 67,180 67,489 0.357 0.735
5 384 75,984 76,369 0.404 0.718
6 458 82,881 83,339 0.441 0.701
7 531 88,514 89,045 0.471 0.684
8 603 93,251 93,854 0.497 0.668
9 674 97,321 97,995 0.519 0.653
10 745 100,876 101,620 0.538 0.639
12 882 106,834 107,717 0.570 0.612
14 1,017 111,679 112,697 0.596 0.589
16 1,149 115,732 116,881 0.619 0.567
18 1,277 119,193 120,471 0.638 0.547
20 1,403 122,197 123,600 0.654 0.529

Table 2. Results for varying sample size

During the time it took to write this paper and have it refereed, Celera sequenced the
entire human genome 4.6 times (rather than their initially proposed 10) using DNA from
5 individuals, three females and two males who have identified themselves as Hispanic,
Asian, Caucasian, or African American. To provide an overestimate of the number of
SNPs they found we will assume that they have 5 times coverage of the genome with
each nucleotide sequences from five different chromosomes. They claim to have found
2.4 million SNPs. (This information comes from press releases on Celera’s web page:
www.celera.com.) Consulting the table our prediction is that they have found 40.4% of
the 5.7 million SNPs in the human genome or 2.3 million.

At the top of the Table 2 we see that in the case n = 2, 75% of differences between
two chromosomes are SNPs, and that one individual already has about 20% of the SNPs
in the genome. At the other end of Table 2, the case n = 20 gives results relevant to the
experimental set up of Wang et al (1998) who screened genetic material from 10 humans to
look for SNPs in 26,568 sequence tagged sites (STSs) used in the construction of a physical
map of the human genome at the Whitehead Institute. As Table 2 indicates, if one were to
simply accept sites that were polymorphic in the sample then one would find 65.4% of the
SNPs in the region surveyed, but one would also find an almost equal number of variable
nucleotides that are not SNPs.
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Wang et al. (1998) did not use this naive experimental design. To quote from their
paper: “Each STS was amplified from four samples: three individual samples and a pool
of 10 individuals. Candidate SNPs were declared when two alleles were seen among a
subsample of three individuals, with both alleles present at a frequency of greater than
30%.” In principle, one could also use our methods to compute the probability of success
with that strategy, however, we have not yet attempted to wrestle with the details. Of
course, no algorithm can find SNPs that are not variable in the sample so the 65.4% figure
is an upper bound on the performance of any selection algorithm. Wang et al. (1998) found
279 “candidate SNPs” after screening 279,165 nucleotides, which corresponded to a rate of
one SNP per 1001. Multiplying the good time in the tree for a sample of size 20 given in
Table 2 times our mutation rate 1× 10−8 we conclude that the per nucleotide probability
of a good SNP in this region of the genome is 1.236 × 10−3 or one every 809 bp, in good
agreement with what Wang et al (1998) found.

Up to this point all of our calculations have been done using the 1% definition of
polymorphism. However the basic computational machinery generalizes to other cutoff
levels. Table 3 gives results for cutoffs of 5 to 30 percent compared to the number present
with the 1% definition. In the first column numbers that are < 1 are left blank. Note
that when the threshold is increased to 0.05, 38% of the 0.01 level SNPs are no longer
considered polymorphic. At the other extreme insisting on between 30 and 70 percent
reduces the total number to 17.6% of the original collection. Using u = 1 × 10−8 for a
mutation rate we have a prediction of one SNP every 526 bp, so using SNPs where the
most common allele is at most 70% would produce one every 2988 bp, which matches the
density Kruglyak (1999) says we need.

good time good time relative
% for [0, T ] for t < 0 to 1%

1 13,593 175,345 1.000
5 42 117,342 0.621
10 87,461 0.463
15 68,931 0.365
20 54,970 0.291
25 43,430 0.230
30 33,340 0.176

Table 3. Varying the threshold for polymorphism.

The methods used to generate Table 3 can without any additional effort give us how
the good time in the tree is distributed over time. Figure 1 shows results for the 1%, 5%,
10%, and 30% definitions of SNPs. Comparision with the histograms in Kruglyak (1999)
shows that our analytical approach provides more refined results than simulation alone.
Combining this information with an estimate of the recombination rate per generation one
can obtain an estimate of the range over which there is significant linkage disequilibrium,
however we have not carried out the details of the calculation.
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The remainder of the paper is devoted to justifying the claims and doing the compu-
tations reported in the introduction. We will study the number of mutations in the whole
population in [0, T ] in Section 2, and the number of mutations at times t < 0 in Section
3. Sections 4 and 5 are devoted to the number of mutations at corresponding times in a
sample. Finally in Section 6, we prove (1.7) to justify our claim that the branching process
and the coalescent approaches give the same answer for the expected number of mutations.

2. Mutations in the population at times 0 ≤ t ≤ T . LetX have a Poisson distribution
with mean µ. Differentiating the definition of the generating function

φ′(1) = EX = µ and a ≡ φ′′(1)/2 = E(X(X − 1)/2)

Expanding in a Taylor series about 1, we have

φ(1− x) = φ(1)− φ′(1)x+ φ′′(1)
x2

2
+ ... = 1− µx+ ax2 + ...

Setting 1− x = φ(1− x) and rearranging we have for µ ≈ 1

(µ− 1)x ≈ ax2 so x ≈ µ− 1
a

Letting ρk = 1 − σk denote the probability of the family line surviving for k generations
and ρ = 1 − σ be the limit of ρk = P (Zk > 0), this says that in the Poisson case with
mean µ = 1.0026

(2.1) ρ ≈ µ− 1
a
≈ 0.0052

Our next task is to compute the distribution of the frequency at time T of a mutation
that occurs at time t. We begin with special case t = 0. Each individual at time 0 starts
a copy of the branching process Zt. Well known results imply that when µ > 1 as t→∞,
Zt/µ

t →W a random variable with EW = 1 and P (W > 0) = P (Zt > 0 for all t). A less
widely known result, but one very useful for us is Theorem 3.3.1 of Jagers (1975).

(2.2) Theorem. For any α > 0 let Kα be a class of Galton-Watson processes with
reproduction variances less than α and uniformly convergent second reproduction moments
(i.e., for each ε > 0 it should be possible to choose kε so that∑

k>kε

k2pk < ε

for all reproduction laws in the class). Suppose that the number 1 belongs to the closure
of the set of reproduction means of processes in Kα. Write a = φ′′(1)/2 and interpret
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cµ,n = (1− µ−n)/(µ− 1) as n for µ = 1. Then uniformly for all process in Kα as n→∞
and µ→ 1

acµ,n · P (Zn > 0)→ 1(a)

E(Zn/acµ,n|Zn > 0)→ 1(b)

P (Zn/acµ,n > u|Zn > 0)→ e−u(c)

If we apply this result with Kα equal to the Galton-Watson processes in which the offspring
distribution is Poisson with a mean µ ∈ [1/2, 2], it follows that when µ is close to 1, the
limit distribution has P (W = 0) = 1− ρ and

(2.3) P (W > x) ≈ ρe−ρx

As should be clear from the formulation of Jagers’ theorem, (2.2), this result holds for a
general distribution, but the value of the survival probability ρ given in (2.1) changes.

Let K be the number of individuals in generation 0 with offspring at time T . Each of
the original N0 = 20, 000 nucleotides, will have offspring at time T with probability 0.0052,
so the number that succeed has approximately a Poisson distribution with mean 104. If
we let V1, V2, . . . be independent with P (Vi > x) = e−x then the fraction of offspring in
family 1 has approximately the same distribution as V1/

∑K
i=1 Vi. Writing S =

∑K
k=2 Vi

and V = V1 we have

(2.4)
P

(
V

V + S
> x

)
= P

(
V >

x

1− x
S

)
=
∫ ∞

0

e−xs/(1−x)P (S = s) ds = Ee−xS/(1−x)

Now Ee−θVi = 1/(1 + θ) = 1− x when θ = x/(1− x). Writing λ instead of 104 to prepare
for later generalizations, and summing over the possible values of our Poisson random
variable K, except for K = 0 which has probability e−104, we have

(2.5) Ee−xS/(1−x) =
∞∑
k=1

e−λ
λk

k!
(1− x)k−1 =

e−λx − e−λ

1− x

Note that as x→ 1, the right hand side does not go to 0 but to λe−λ = P (K = 1).
Changing variables λx = y leads to

(2.6) P

(
V

V + S
> y/λ

)
=

1
1− y/λ

· (e−y − e−λ)

We will use this formula with y/λ = 0.01, so we will (i) ignore the first factor which
is 1/0.99 and (ii) ignore exp(−λ) = e−100y which for y ≥ 1 is much smaller than e−y.
Implementing these two ideas, we have the very simple conclusion

(2.7) P

(
V

V + S
>

y

E(V + S)

)
≈ e−y

12



We could have arrived at this end much more easily if we had simply replaced V + S in
the denominator by its mean. However, now we know that this simple approximation is
accurate for the values of y and λ we are concerned with.

To illustrate the use of (2.6) we note that at time 0, E(V + S) = 104, so if we are
interested in families that are more than x = 0.01 of the population then y = 1.04 and the
probability is about e−1.04 = 0.3534. As we mentioned in the introduction, we don’t worry
about the probability that V/(V + S) > 0.99 which by (2.6) with λ = 104 and y/λ = 0.99
is

100 · (e−102.96 − e−104)

As we move forward from time 0 the probability of being larger than 1% drops to 0 very
quickly. The population doubles every 267 generations, so in generation 267r, we have
λ = 104 · 2r. The value x = 0.01 corresponds to y = 1.04 · 2r, so the probability of ending
up with at least 1% of the population at the rth stage is exp(−1.04 ·2r). Numerical results
show that this rapidly gets very small

r 0 1 2 3 4
probability 0.3534 0.1249 0.0156 2.4× 10−4 5.9× 10−8

In words, each time the population doubles the probability of success is squared.
The last calculation shows that there will be a negligible contribution from times

t ≥ 1000 so by a remark in the calculations used to evaluate the sum (1.8), we can replace
ρk by its limit ρ. Thus, to compute the number of opportunities for mutations at times
t ≥ 0 we have to evaluate

(2.8)
T∑
t=0

104µt · exp(−1.04µt)

Replacing the sum by an integral from 0 to ∞ and then changing variables x = µt,
dx = (lnµ)µt dt we have that sum above is

(2.9) ≈ 100
lnµ

∫ ∞
1

1.04 exp(−1.04x) dx =
100

0.0026
· e−1.04 = 13, 595

Of course, one can skip the approximation and the calculus, by evaluating the sum in (2.8)
numerically to find that it is 13,593.70.

3. Mutations in the population at times t < 0. To count the expected number of
mutations at times t < 0 we can use coalescent theory. Let K be the number of individuals
at time 0 that have offspring alive at time T . Well-known results about the coalescent imply
that as we work backwards from time 0, the amount of time required for coalescence, when
measured in units of N0 generations, has mean

(3.1)
K∑
k=2

2
k − 1

≈ 2 lnK
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We would like to replace K by its mean. To justify this we expand f(x) = 2 lnx in Taylor
series around the point x0 = EK to conclude that

(3.2) E(2 lnK) = 2 lnEK +
2
EK

· E(K − EK)− 1
(EK)2

· E(K − EK)2 + · · ·

We have E(K − EK) = 0, E(K − EK)2 = 104, and EK = 104, so the first correction
term vanishes and the second is 1/104 = 0.0096 compared with 2 ln 104 = 9.2888, so we
can safely ignore it.

The difference of the two sides of (3.1), which some reader’s will recognize as roughly
two times Euler’s constant γ ≈ 0.577, is not small enough to ignore, so we will instead
evaluate the sum

(3.3)
104∑
k=2

2
k − 1

= 10.43358

and conclude that the expected total time in the tree at times t < 0 is approximately

(3.4) 10.43358 · 20, 000 = 208, 672

Taking u = 1 × 10−8 for our estimate of the mutation rate, the expected number of
mutations per nucleotide is 1.043358× 10−3 or one every 958 bp.

To determine the distribution of the frequencies of these mutations, we use Ewens’
(1972) sampling formula. Recalling that our N is the total number of copies and letting

θ = 2Nu = 2 · (2× 104)× (1× 10−8) = 4× 10−4

it says that the probability of an allelic partition (a1, a2, . . . an) is given by

(3.5)
n!
θ(n)

n∏
j=1

(
θ

j

)aj 1
aj !

Here ai is the number of alleles with i representatives in the sample of size n and θ(n) =
θ(θ + 1) · · · (θ + n− 1). When an = 1 this becomes

(3.6)
1

θ + 1
· 2

2 + θ
· · · (n− 1)

(n− 1) + θ

which is the probability that coalescence always comes before the next mutation. Plugging
in θ = 2× 10−4 and n = 104, we see that the probability of no mutation is

p0 = 0.997915590 = 1− (2.084410× 10−3)

The reader will see the reason for the high degree of precision in a minute.
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Consider now the case in which aj = an−j = 1 for some j < 52 and ai = 0 otherwise.
Replacing the product in (3.6) by its value computed above, (3.5) becomes

(3.7) p0 · θ ·
n

j · (n− j)

When j = 52 the answer is 1/2 of this. Summing the probability of a j to n − j split for
j = 1 to 52 gives that the probability of one mutation is

(3.8) p1 = 2.082367× 10−3

Using this with the value of p0, we see that the probability of two or more mutations is

q2 = 2.043× 10−6

Note that q2 is much smaller than p1, the probability of one mutation, consistent with
the observation that “in humans, tri-allelic and tetra-allelic SNPs are rare to the point of
nonexistence.” See e.g., Brookes (1999).

Suppose now that j of the K lineages at time 0 have the mutation. Here we are
assuming that K is fixed, as would occur if we were looking at the conditional distribution
of the good time t < 0 conditional on the number of families at time 0 that have offspring at
time T . We have argued earlier that variability in K can be ignored so we will set K = 104.
Our next step is to compute f(j,K) = the probability a fixed set of j of the K families
end up with at most 1% of final population. To do this let ξ1, . . . , ξK be independent mean
one exponentials, and let Sj = ξ1 + · · ·+ ξj .

It is a standard fact that {Sj/SK , 1 ≤ j < K} has the same distribution as the order
statistics from a sample of K− 1 random variables uniform on (0, 1). The last observation
leads easily to the following formula for the density function. If 1 ≤ j < K then

(3.9) P (Sj/SK = x) = (K − 1) ·
(
K − 2
j − 1

)
xj−1(1− x)K−1−j

A little calculus shows that

(3.10) P (Sj/SK ≤ y) = 1−
j−1∑
i=0

(
K − 1
i

)
yi(1− y)K−1−i

which can be checked by induction or by noting that the right hand side is the probability
that at least j particles will end up in (0, y) when we throw K − 1 at the unit interval.

Setting y = 0.01 and K = 104 in (3.10) we can compute that

j f(j, 104) j f(j, 104)
1 0.64839 6 6.58× 10−4

2 0.27902 7 9.11× 10−5

3 0.08687 8 1.09× 10−5
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4 0.02088 9 1.16× 10−6

5 0.00405 10 1.11× 10−7

Table 4. Probabilities that the total of j out of 104
families is at most 1% of population at time T .

In our numerical computations we will suppose that this probability f(j, 104) = 0 for
10 ≤ j ≤ 52, and thus make a very small error in our computations. Taking this into
account, the loss from the mutation probability is

(3.11)
10∑
j=1

θ · 104
j · (104− j)

· f(j, 104) = 1.66634× 10−4

which reduces the previous frequency of 10.4227× 10−4 given in (3.6) to

(3.12) p = 8.76724× 10−4 or 1 every 1,140 bp.

Dividing by our mutation estimate u = 5 × 10−9, we see that the expected good time in
the tree for t < 0 is 175,345.

4. Mutations in the sample at times 0 ≤ t ≤ T . Our first task in this section is to
compute the expected number of mutations hitting a genealogy of six individuals. To get
an upper bound, we can suppose that the six lines stay distinct until time 0, after which
they coalesce in the usual way. The total time in the tree will then be 6 · 5000 = 30, 000
between 0 and T . To get an exact result we have to compute how much coalescence occurs
between the six lineages in [0, T ]. When there are k lineages at time t + 1 a coalescence
will occur at time t with probability(

k

2

)
/Nt +O(1/N2

t )

From this it follows that if we represent the time interval [t, t+ 1] as a segment of length
1/Nt then on the new time scale, our process is almost the continuous time coalescent in
which k lineages coalesce after an exponentially distributed amount of time with mean
1/
(
k
2

)
.

This idea which is due to Kingman (1982b), see page 104, allows us to reduce our
computation for a population of variable size to one for the ordinary coalescent run for an
amount of time

(4.1) τ =
T−1∑
t=0

1
Nt

=
1
N0

T−1∑
t=0

µ−t =
1− µ−T

N0 · (1− µ−1)
≈ µ

N0(µ− 1)
=

1.0026
52

Reindexing time so that time 0 is the present, and so that s represents s units of time in
the past, let Tk be the first time at which there are only k lineages. Since

(
6
2

)
= 15, it is

clear that the probability of no coalescence is

(4.2) P (T5 > τ) = exp(−15τ) = 0.7488538
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Since
(

5
2

)
= 10, breaking things down according to the value of T5 we have that the

probability of ending up with 5 lineages at time τ is

(4.3)
P (T4 > τ > T5) =

∫ τ

0

15e−15re−10(τ−r) dr = 3e−10τ

∫ τ

0

5e−5r dr

= 3(e−10τ − e−15τ ) = 0.2285897

This already accounts for 97.6% of the probability but we can go further by noting

(4.4) P (T4 > s) = P (T5 > s) + P (T4 > s > T5) = 3e−10s − 2e−15s

and
(

4
2

)
= 6 so the probability of ending up with 4 lineages at time τ is

(4.5)
P (T3 > τ > T4) =

∫ τ

0

30(e−10r − e−15r)e−6(τ−r) dr = 30e−6τ

∫ τ

0

(e−4r − e−9r) dr

= 30e−6τ

(
1
4

(1− e−4τ )− 1
9

(1− e−9τ )
)

= 0.0228590

which now accounts for 99.9% of the probability.
To compute the effect coalescence has on reducing the tree between times 0 and T ,

we suppose that there is a constant coalescence probability 15/Nt. If a reduction in the
number of lineages occurs at time k then we have lost one lineage for k+1 times (0, 1, . . . k)
so the expected loss is at most

(4.6)
15
N0

T−1∑
k=0

µ−k(k + 1)

Using the fact that the mean of geometric with success probability p = 1− µ−1 is 1/p the
above is

(4.7) ≈ 15
N0(1− µ−1)2

=
15µ2

52 · 0.0026
= 111.52

Subtracting this from the upper bound of 30,000 gives an adjusted estimate of 29,888.48
for the total time in the tree of the six individuals during [0, T ].

Using the logic that led to (2.7), we can compute the number of opportunities at times
t ≥ 0 for mutations that lead to polymorphic SNP’s, by evaluating

T−1∑
t=0

EX(t) · exp(−1.04 · µt)

where X(t) is the number of lineages at time t. To do this we have written a program
to work backwards from time T to time 0 computing P (X(t) = k) by the discrete time
recursion

(4.8) P (X(t− 1) = k) =

(
1−

(
k
2

)
N(t− 1)

)
P (X(t) = k) +

(
k+1

2

)
N(t− 1)

P (X(t) = k + 1)
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The next table gives the values of P (X(0) = k) and compares with the values computed
earlier using the continuous time coalescent.

j coalescent recursion
6 0.74885 0.74881
5 0.22736 0.22742
4 0.02285 0.02284
3 9.1× 10−4

2 1.4× 10−5

1 5.3× 10−8

Table 5. Probability that j of the 6 lineages survive to time 0.

The small discrepancy between the two sets of answers is due to mainly to the fact that
the coalescent computation is for the continuous time limit, while the recursion happens in
discrete time. However, there is also some round off error which effects the sixth significant
digit in these computations.

Using the values of P (X(t) = k), from the discrete time recursion our program com-
putes

(4.10)

T−1∑
t=0

EX(t) = 29, 891.08

T−1∑
t=0

EX(t) · exp(−1.04 · µt) = 458.13

The first result shows that our lower bound of 29,888.48 from (4.7) is very accurate. The
second answer is considerably lower than the 13,595 for the total population given in (2.9),
however, the most important source of mutations is yet to come.

5. Mutations in the sample at times t ≤ 0. If there are exactly six lineages at time 0
then using the reasoning that led to (3.1) the expected total time in the genealogy before
time 0 will be

(5.1) 2 ·
(

1
5

+
1
4

+
1
3

+
1
2

+ 1
)
· 20, 000 = 91, 333

Taking into account the possibility there may not be six lineages at time 0 and using the
coalescence probabilities computed in the previous section, we then arrive at the corrected
value for the expected total time for the sample before time 0,

(5.2) 2 ·

(
2.28333−

5∑
k=1

P (Tk ≤ τ) · 1
k

)
· 20, 000 = 89, 074
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which is about a 2.5% reduction from the previous value.
As in Section 3, not all of the mutations will lead to an allele that has a frequency of

1% at time T . To begin to attack this problem we will first give a new more complicated
solution of the problem of computing the expected number of mutations for the whole
population at times t < 0. The key is the following

Lemma. Consider the coalescent starting with ` lineages. If we pick one of them at
random when there are k ≤ ` lineages then the probability it will contain m of the `
starting lineages is

(5.3) s(k,m) =
(
`−m− 1
k − 2

)/(
`− 1
k − 1

)

Proof. It is well known and easy to check that we can build up the relationships between
particles in the continuous time coalescent by running a continuous time binary branching
process in which each particle splits into two at rate 1. (See Joyce and Tavare 1987).
Consulting page 109 of Athreya and Ney (1972) we see that starting from a single particle
at time 0, the number of particles in a binary branching process at time t has a geometric
distribution with success probability p = e−t. Let Zit , 1 ≤ i ≤ k be independent copies of
the branching process. If j1, . . . jk be positive integers that add up to ` then

P (Z1
t = j1, . . . Z

k
t = jk) = (1− p)`pk

Recalling that there are
(
`−1
k−1

)
possible vectors (j1, . . . , jk) of positive integers that add up

to ` it follows that

P

(
Z1
t = m

∣∣∣∣ k∑
j=1

Zjt = `

)
=
(
`−m− 1
k − 2

)/(
`− 1
k − 1

)

When the mutant has m copies at time 0, the probability it will end up at most 1% of
the population is given by the quantity f(m, 104) defined at the end Section 3 for m ≤ 52.
We also have to worry about the possibility of the mutation ending up with more than 99%
of the population, so we will set f(104 −m, 104) = f(m, 104) for 1 ≤ m < 52. Breaking
things down according to the number of particles and using (5.3) we see that the expected
amount of time t ≤ 0 where a mutation will produce a polymorphic SNP is

(5.4) 20, 000 ·
104∑
k=2

2
k(k − 1)

· k
105−k∑
m=1

s(k,m) · [1− f(m, 104)]

where we have kept the redundant factor of k to prepare for the analogous formula given
in (5.6) for the sample. Evaluating the sum gives 175,345 which is identical to the answer
found at the end of Section 3.
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To compute the answer for the sample, we begin with the case in which there is no
coalescence of the six lineages during [0, T ]. To do the computation in this case, it is useful
to think of the original 104 lineages as consisting of six green particles (the sample) and 98
white particles, and that the coalescence of a green particle with another particle (green
or white) yields a green particle. Let Xk be the number of green particles when only k of
the original 104 lineages remain. Our first step is to compute pk,j = P (Xk = j) starting
from p104,6 = 1, using the discrete time recursion

(5.5) pk,i = pk+1,i

(
1− (i− 1)i

k(k + 1)

)
+ pk+1,i+1

i(i+ 1)
k(k + 1)

Once this is done we can compute that the amount of time t ≤ 0 where a mutation will
produce a SNP is

(5.6) 20, 000 ·
104∑
k=2

2
k(k − 1)

· µ(k)
105−k∑
m=1

s(k,m) · [1− f(m, 104)]

where µ(k) =
∑6
i=2 i · pk,i. We have excluded the term pk,1 from the sum defining the

“mean” µ(k) since the mutation must be polymorphic in the sample to be detected. Doing
the sum in (5.6) yields the answer 84,919. To check our work we replaced 1−f(m, 104) by
1 in (5.6) to compute that the expected total time in the tree for times t < 0 was indeed
91,333.33 as we computed in (5.1).

The calculations in the last paragraph are for starting with exactly 6 lineage at time
0. To get the expected value for 6 particles at time T , we have to consider what happens
starting with 5 or 4 particles at time 0. The results are given in Table 6.

particles probability total time good time size bias

6 0.748812 91,333 84,919 88,831
5 0.227422 83,333 77,712 81,142
4 0.023764 73,333 68,587 71,486

average 89,073 82,881 86,658

Table 6. Components of the final answer for times t < 0 for sample size 6

6. Equivalence of the coalescent and branching process approaches. In this
section we will prove (1.7). When moving back from generation m to generation m−1, each
of the Ŷ Tm surviving lineages will pick each of the 1/Nm−1 ancestors with equal probability.
Noting that the expected number of ancestors chosen is Nm−1 times the probability a given
ancestor is selected we have

(6.1) E
(
Ŷ Tm−1

∣∣∣ Ŷ Tm) = Nm−1

[
1−

(
1− 1

Nm−1

)Ŷ Tm ]
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Using the facts that Nm/Nm−1 = µ and for large k, (1− 1/k)y ≈ exp(−y/k) this formula
can be written as

E

(
Ŷ Tm−1

Nm−1

∣∣∣∣∣ Ŷ TmNm
)
≈ 1− exp

(
−µ · Ŷ

T
m

Nm

)
= ψ

(
Y Tm
Nm

)
where ψ(x) = 1−e−µx = 1−φ(1−x) and φ is the generating function for the Poisson given
in (1.4). Thus the expected fraction of surviving lines almost satisfies the same recursion
that the survival probability ρk does and it follows by induction that EŶ TT−k/NT−k ≈ ρk.
Our next task is to show that if all of the population sizes are large then the approximation
is good and furthermore the fraction observed stays close to its mean.

(6.3) Theorem. If T →∞ and M →∞ then

max
M≤m≤T

∣∣∣∣∣ Ŷ Tm
NmρT−m

− 1

∣∣∣∣∣→ 0 in probability

Proof. We begin by computing second moments. Let qi = (1 − i/Nm)Ŷ
n
m+1 be the

probability that i individuals specified in advance are all not chosen by the Y nm+1 lineages
in generation m+ 1. Writing Y Tm as a sum of indicator random variables

E
(

(Ŷ nm)2
∣∣∣ Ŷ nm+1

)
= Nm(1− q1) +Nm(Nm − 1)[1− (2q1 − q2)]

Subtracting the square of the mean, [Nm(1− q1)]2, we have

var
(
Ŷ nm

∣∣∣∣Ŷ nm+1

)
= Nm · q1(1− q1) +Nm(Nm − 1) · [q2 − q2

1 ]

Simple algebra shows q2 < q2
1 , so the off diagonal terms are negative, and it follows that

(6.4) var
(
Ŷ nm
Nm

∣∣∣∣Ŷ nm+1

)
≤ 1

4Nm

If we let fm(x) = 1− (1− 1/Nm)xµNm then it follows from (6.1) and (6.4) that

(6.5) P

(∣∣∣∣∣ Ŷ nmNm − fm
(
Ŷ nm+1

Nm+1

)∣∣∣∣∣ > N−1/3
m

)
≤

var
(
Ŷ nm/Nm

∣∣∣ Ŷ nm+1

)
N
−2/3
m

≤ 1

4N1/3
m

Therefore if we define the “good event”

GM,n =

{∣∣∣∣∣ Ŷ nmNm − fm
(
Ŷ nm+1

Nm+1

)∣∣∣∣∣ ≤ N−1/3
m for all M ≤ m ≤ n

}
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we have a good estimate for its failure probability

(6.6) P (GcM,n) ≤
n−1∑
m=M

1

4N1/3
m

≤ 1

4N1/3
M (1− µ−1/3)

To prove (6.3) now we define iterated functions

gn,m(x) = fm(gn,m+1(x)) for m < n

with gn,n(x) = fn(x) and then write

(6.7)

Ŷ nm
Nm
− ψn−m(1) =

Ŷ nm
Nm
− fm

(
Ŷ nm+1

Nm+1

)

+ fm

(
Ŷ nm+1

Nm+1

)
− fm(gn,m+1(1))

+ gn,m(1)− ψn−m(1)

The first difference on the right is controlled by (6.6). Our next step is to estimate the
third difference.

Lemma. There is a constant Co so that if Nm ≥ 2 then

sup
x∈[0,1]

|fm(x)− ψ(x)| ≤ Coµ/Nm(6.8)

sup
x∈[0,1]

|f ′m(x)− ψ′(x)| ≤ Co(µ+ µ2)/Nm(6.9)

Proof. Expanding − ln(1− x) = x+ x2/2 + · · ·, we have

−ε−1 ln(1− ε)− 1
ε

→ 1
2

as ε→ 0

Using 1− x ≤ e−x it follows that there is a Co so that

(6.10) 0 ≤ −ε−1 ln(1− ε)− 1 ≤ Coε if 0 ≤ ε ≤ 1/2

To estimate the difference in (6.8), we observe that (1− 1/Nm)Nm ≤ e−1 so

fm(x) ≥ 1− exp(−µx) = ψ(x)

To bound fm(x)− ψ(x) and hence prove (6.8), we note that

e−µx − eµxNm ln(1−1/Nm) =
∫ −xNm ln(1−1/Nm)

x

µe−µy dy

≤ µx (−Nm ln(1− 1/Nm)− 1) ≤ Coµx/Nm
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To prove the second result, we note that differentiating the definitions

f ′m(x) = −µNm ln
(

1− 1
Nm

)
·
(

1− 1
Nm

)xµNm
and ψ′(x) = µe−µx. Adding and subtracting µfm(x), then using (6.10) and (6.8) we have

|f ′m(x)− ψ′(x)| ≤ Coµ

Nm
· fm(x) + µ|fm(x)− ψ(x)| ≤ Co(µ+ µ2)

Nm

which proves (6.9).

We are now ready to tackle the third term on the right in (6.7)

Lemma. If Nm ≥ 2 then

(6.11) |gn,m(1)− ψn−m(1)| ≤ Coµ
n−1∑
k=m

1
Nm

Proof. Using the triangle inequality

|gn,m(1)− ψn−m(1)| ≤ |fm(gn,m+1(1))− ψ(gn,m+1(1))|
+ |ψ(gn,m+1(1))− ψ(ψn−m−1(1))|

The first term ≤ Coµ/Nm by (6.8). To estimate the second difference we note that ψ(x) =
1 − exp(−µx) is increasing and concave, so we have ψ′(x) ≤ ψ′(ρ) < 1 for all x ≥ ρ.
ψk(1) ↓ ρ, the positive fixed point of ψ(x), so ψn−m−1(1) ≥ ρ. To handle the other
term in the second difference, we note that fm(x) ≥ ψ(x) so by induction it follows that
gn,m+1(1) ≥ ψn−m−1(1) ≥ ρ. Combining our observations, the second term is bounded by
|gn,m+1(1)− ψn−m−1(1)| and the result in (6.11) follows by induction.

It remains to estimate the middle term on the right in (6.7). The first step is to note
that results in the proof of (6.11) imply that

(6.12) We can pick δo > 0 so that ψ′(x) ≤ 1− δo when x ∈ [ρ− δo, 1].

Thus if we let δ1 = ρ− φ(ρ− δo) which is < δo, then for x ≥ ρ− δo,

(6.13) ψ(x) ≥ ψ(ρ− δ0) = ρ− δ1

Lemma. If M is large then on the good set of outcomes GM,n

(6.14)
Ŷ nm
Nm
≥ ρ− δo for M ≤ m ≤ n
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Proof. We proceed by induction backwards. The conclusion is trivially true when m = n.
Suppose now that Ŷ nm+1/Nm+1 ≥ ρ− δo. Using fm ≥ ψ, our choice of δ1 implies that

fm+1(Ŷ nm+1/Nm+1) ≥ ρ− δ1

so on the good set GM,n we will have

Ŷ nm
Nm
≥ ρ− δ1 −N−1/3

m ≥ ρ− δo

if M is chosen large enough so that N−1/3
M ≤ δo − δ1.

The next result takes care of the second term in the right in (6.7) and thus will
complete the proof of our main result, (6.4).

Lemma. If M is large then on GM,n we have for M ≤ m < n

(6.15)

∣∣∣∣∣fm
(
Ŷ nm+1

Nm+1

)
− fm(gn,m+1(1))

∣∣∣∣∣ ≤
∣∣∣∣∣ Ŷ nm+1

Nm+1
− gn,m+1(1)

∣∣∣∣∣ ≤
n−1∑

k=m+1

N
−1/3
k

Proof. To prove the first inequality, observe that by (6.9) and the choice of δo, if M is
large then 0 ≤ f ′m(x) ≤ 1 when x ≥ ρ − δo. Using (6.14) now and the triangle inequality
it follows that on GM,n if M ≤ k < n then∣∣∣∣∣ Ŷ nkNk − fn,k

(
Ŷ nk+1

Nk+1

)∣∣∣∣∣+

∣∣∣∣∣fk
(
Ŷ nk+1

Nk+1

)
− fk(gn,k+1(1))

∣∣∣∣∣
≤ N−1/3

k +

∣∣∣∣∣ Ŷ nk+1

Nk+1
− gn,k+1(1)

∣∣∣∣∣
and the desired result follows by induction.
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Griffiths, R.C., and Tavaré, S. (1994) Sampling theory for neutral alleles in a varying
environment. Phil. Trans. Roy. Soc. London, B. 344, 403–410

Jagers, P. (1975) Branching Processes with Biological Applications. John Wiley and Sons,
New York

Joyce, P., and Tavaré, S. (1987) Cycles, permutations, and the structure of the Yule process
with immigration.Stoch. Proc. Appl. 25, 309–314

Kingman, J.F.C. (1982a) The coalescent. Stoch, Proc. Appl. 13, 235–248

Kingman, J.F.C. (1982b) Exchangeability and the evolution of large populations. Pages
97–112 in Exchangeability in Probability and Statistics. Edited by G. Koch and F.
Spizzichino. North-Holland Publishing, Amsterdam

Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nature
Genetics. 17, 21–24

Kruglyak, L. (1999) Prospects for whole-genome linkage disequilibrium mapping of com-
mon disease genes. Nature Genetics. 22, 139–144

Lai, E., Riley, J., Purvis, I., and Roses, A. (1998) A 4-Mb high-density single nucleotide
polymorphism-based map around human APOE. Genomics. 54, 31–38

Landegren, U., Nilsson, M., and Kwok, P.Y. (1998) Reading bits of genetic information:
methods for single nucloetide polymorphism analysis. Genome Research. 8, 769–776

Li, W.H., and Sadler, L.A. (1991) Low nucleotide diversity in man. Genetics. 129, 513–523

Slatkin, M., and Hudson, R.R. (1991) Pairwise comparison of mitochondrial DNA se-
quences in stable and exponentially growing populations. Genetics 129, 555-562

Wang, D.G. et al (1998) Large-scale, identification, mapping, and genotyping of single
nucleotide polymorphisms in the human genome. Science. 280, 1077–1082

25


