Curvature homogeneous hypersurfaces in space forms
Authors
Bryant, R; Ziller, W; Florit, L
Abstract
We provide a classification of curvature homogeneous hypersurfaces in space forms by classifying the ones in and . In higher dimensions, besides the isoparametric and the constant curvature ones, there is a single one in . Besides the obvious examples, we show that there exists an isolated hypersurface with a circle of symmetries and a one parameter family admitting no continuous symmetries. Outside the set of minimal points, which only exists in the case of , every example is, locally and up to covers, of this form.