Mathematics of Machine Learning


The course will explore mathematics underlying the practice and theory of various machine learning concepts and algorithms. Kernel methods, deep learning, reinforcement learning, generalization error, stochastic gradient descent, and dimension reduction or data embeddings will be introduced. The interplay between the mathematics and real applications will be an component of the course. Students can take both this course and Math 465 for credit. Prerequisites Math 230/340 and 218/216/221 and some familiarity with programing, preferably Python.

Additional Notes

Fall Only

Curriculum Codes